FASC. 2

SOME SUFFICIENT CONDITIONS FOR UNIVALENCE AND STARLIKENESS

RY

RAM SINGH AND SUNDER SINGH (PATIALA)

Let A denote the class of functions f(z) regular in the open unit disc $E = \{z: |z| < 1\}$ and normalized so that f(0) = 0 = f'(0) - 1. We denote by S the subclass of A consisting of univalent functions in E; C and S^* stand for the subclasses of S whose members are close-to-convex and starlike (with respect to the origin) in E, respectively.

In this note we shall establish a few sufficient conditions for univalence. Some of these conditions are new and others are improvements of the well-known ones.

The basic tool in proving our results is the following lemma due to Jack [1]:

LEMMA. Let w(z) be regular in the unit disc E and such that w(0) = 0. Then if |w(z)| attains its maximum value on the circle |z| = r at a point z_0 , we have $z_0w'(z_0) = kw(z_0)$, where $k \ge 1$ is a real number.

THEOREM 1. If $f \in A$ and

(1)
$$|f'(z)-1|^{1-\gamma}|zf''(z)|^{\gamma}<1, \quad z\in E,$$

for some $\gamma \geqslant 0$, then f is close-to-convex and bounded in E.

Proof. To prove the assertion it suffices to show that (1) implies

(2)
$$|f'(z)-1| < 1, z \in E$$
.

Let us define w in E by

(3)
$$w(z) = f'(z) - 1.$$

Then, clearly, w(0) = 0 and w(z) is regular in E. We want to prove that |w(z)| < 1 in E. Differentiating (3) we obtain zf''(z) = zw'(z), and therefore

$$|f'(z)-1|^{1-\gamma}|zf''(z)|^{\gamma}=|w(z)|^{1-\gamma}|zw'(z)|^{\gamma}.$$

Suppose that there exists a point z_0 in E such that

$$\max_{|z| \le |z_0|} |w(z)| = |w(z_0)| = 1.$$

Applying Jack's lemma to w(z) at z_0 and letting $z_0w'(z_0)/w(z_0) = k$ so that $k \ge 1$, we obtain from (4)

$$|f'(z_0)-1|^{1-\gamma}|z_0f''(z_0)|^{\gamma}=k\geqslant 1, \quad \gamma\geqslant 0,$$

which contradicts (1). Therefore, |w(z)| < 1 in E, and so |f'(z)-1| < 1, $z \in E$, which shows that f is close-to-convex (and hence univalent) in E. From |f'(z)-1| < 1, $z \in E$, it follows easily that f is bounded in E.

Taking $\gamma = 1$ in Theorem 1 we have

COROLLARY 1. If $f \in A$ and

$$|zf''(z)| < 1, \quad z \in E,$$

then f is close-to-convex and bounded in E.

Remark 1. It is readily seen that if $f \in A$ satisfies (5), then f maps the disc |z| < 1/2 onto a convex domain. Indeed, from (5) we obtain

$$zf''(z) = z\varphi(z),$$

where φ is regular and $|\varphi(z)| \leq 1$ in E. Integrating (6) we get

$$f'(z)-1 = \int_{0}^{s} \varphi(t) dt.$$

Therefore,

$$\left|\frac{zf''(z)}{f'(z)}\right| = \left|\frac{z\varphi(z)}{1+\int\limits_0^z \varphi(t)\,dt}\right| \leqslant \frac{r}{1-r}, \quad r=|z|,$$

from which we deduce that for r = |z| < 1/2

$$\operatorname{Re}\left(1+rac{zf^{\prime\prime}(z)}{f^{\prime}(z)}
ight)>0$$
 .

Consequently, f maps the disc |z| < 1/2 onto a convex domain. The function $f(z) = z + z^2/2$, which satisfies (5), shows that the number 1/2 cannot be replaced by any larger one.

THEOREM 2. If $f \in A$ satisfies

(7)
$$|f'(z)-1|^{1-\gamma} \left| 1 + \frac{zf''(z)}{f'(z)} \right|^{\gamma} < \left(\frac{3}{2}\right)^{\gamma}, \quad z \in E,$$

for some $\gamma \geqslant 0$, then f is close-to-convex and bounded in E.

Proof. It suffices to show that (7) implies (2) which, in turn, proves that f is close-to-convex and bounded in E. To this aim we define w in E by (3) and proceed as in the proof of Theorem 1.

Taking $\gamma = 1$ in Theorem 2, we have

COROLLARY 2. If $f \in A$ satisfies

$$\left|1+\frac{zf''(z)}{f'(z)}\right|<\frac{3}{2},\quad z\in E,$$

then f is close-to-convex and bounded in E.

THEOREM 3. If $f \in A$ satisfies in E the condition

(8)
$$\left| \frac{zf'(z)}{f(z)} - 1 \right|^{1-\gamma} \left| \frac{zf''(z)}{f'(z)} \right|^{\gamma} < \left(\frac{3}{2} \right)^{\gamma}$$

for some $\gamma \geqslant 0$, then $f \in S^*$.

Proof. We have to prove that (8) implies the inequality

$$\operatorname{Re} \frac{zf'(z)}{f(z)} > 0, \quad z \in E.$$

Define w in E by

(9)
$$G(z) = \frac{zf'(z)}{f(z)} = \frac{1+w(z)}{1-w(z)}.$$

Evidently, w(0) = 0. Differentiating (9) logarithmically and simplifying, we obtain

$$(10) \quad \left|\frac{zf'(z)}{f(z)}-1\right|^{1-\gamma}\left|\frac{zf''(z)}{f'(z)}\right|^{\gamma}=\left|\frac{2w(z)}{1-w(z)}\right|\left|1+\frac{zw'(z)}{w(z)}\frac{1}{1+w(z)}\right|^{\gamma}.$$

If $\operatorname{Re} G(z_0)=0$ for a certain $z_0\in E$ and $\operatorname{Re} G(z)>0$ for $|z|<|z_0|$, then $|w(z)|<|w(z_0)|=1$ for $|z|<|z_0|$ and, of course, $w(z_0)\neq 1$. Applying Jack's lemma to w(z) at the point z_0 and letting $z_0w'(z_0)=kw(z_0)$ so that $k\geqslant 1$, we obtain from (10)

$$\left| \left| rac{z_0 f'(z_0)}{f(z_0)} - 1
ight|^{1-\gamma} \left| \left| rac{z_0 f''(z_0)}{f(z_0)} \right|^{\gamma} \geqslant \left(1 + rac{k}{2}\right)^{\gamma} \geqslant \left(1 + rac{1}{2}\right)^{\gamma} \geqslant \left(rac{3}{2}\right)^{\gamma}, \quad \gamma \geqslant 0,$$

which contradicts (8). This proves that ReG(z) > 0 in E, and hence $f \in S^*$. Thus the proof of Theorem 3 is completed.

Taking $\gamma = 1$ in Theorem 3, we have Corollary 3. If $f \in A$ satisfies

$$\left|\frac{zf''(z)}{f'(z)}\right| < \frac{3}{2}, \quad z \in E,$$

then f is starlike univalent in E.

THEOREM 4. If $f \in A$ satisfies

$$\left|a\left(\frac{zf'(z)}{f(z)}-1\right)+(1-a)\frac{z^2f''(z)}{f(z)}\right|<1, \quad z\in E,$$

for $0 \le a \le 1$, then f is bounded and starlike in E.

Proof. It is sufficient to prove that (11) implies the inequality

$$\left|\frac{zf'(z)}{f(z)}-1\right|<1, \quad z\in E.$$

We define w in E by

(12)
$$w(z) = \frac{zf'(z)}{f(z)} - 1.$$

Evidently, w(0) = 0. Differentiating (12) logarithmically we obtain

$$\frac{zf''(z)}{f'(z)} = w(z) + \frac{zw'(z)}{1+w(z)},$$

and hence

$$(13) \left| a \left(\frac{zf'(z)}{f(z)} - 1 \right) + (1-a) \frac{z^2 f''(z)}{f(z)} \right| = |w(z)| \left| 1 + (1-a) \left(w(z) + \frac{zw'(z)}{w(z)} \right) \right|.$$

We claim that |w(z)| < 1, $z \in E$. Suppose z_0 is a point of E such that

$$\max_{|z| \le |z_0|} |w(z)| = |w(z_0)| = 1.$$

Applying Jack's lemma to w(z) at the point z_0 , letting $z_0w'(z_0)/w(z_0) = k$ so that $k \ge 1$ and $w(z_0) = e^{i\theta}$, we obtain from (13)

$$\left|a\left(\frac{z_0f'(z_0)}{f(z_0)}-1\right)+(1-a)\frac{z_0^2f''(z_0)}{f(z_0)}\right|=|1+(1-a)(k+e^{i\theta})|\geqslant 1,$$

which contradicts (11). This proves that |w(z)| < 1 in E, and hence |zf'(z)/f(z)-1| < 1 in E, which implies that f is bounded and starlike in E.

Taking a = 0 in Theorem 4, we get COROLLARY 4. If $f \in A$ satisfies

$$\left|\frac{z^2f''(z)}{f(z)}\right|<1, \quad z\in E,$$

then $f \in S^*$.

THEOREM 5. If $f \in A$, $\alpha > 1/2$, and

(15)
$$\operatorname{Re}\left[a\left(1+\frac{zf''(z)}{f'(z)}\right)+(1-a)\frac{1}{f'(z)}\right]<\frac{1+2a}{2},\quad z\in E,$$

then f is close-to-convex and bounded in E.

Proof. It suffices to prove that (15) implies (2) from which our result follows. To this aim we define w in E by (3) and proceed as in the proof of Theorem 1.

Taking a = 1 in Theorem 5 we have

COROLLARY 5. If $f \in A$ satisfies

(16)
$$\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right)<\frac{3}{2},\quad z\in E,$$

then f is close-to-convex and bounded in E.

Remark 2. Ozaki [2] has proved that if (16) holds, then f is univalent in E. The result of Corollary 5 shows that f is not only univalent but also close-to-convex and bounded in E.

Our next theorem strengthens the result of Corollary 5.

THEOREM 6. If $f \in A$ satisfies (16), then

$$\frac{zf'(z)}{f(z)} < \frac{2(1-z)}{2-z}, \quad z \in E.$$

Moreover, f is starlike in E.

Proof. One can easily verify that g(z) = 2(1-z)/(2-z) is univalent in E. Now, let

(18)
$$\frac{zf'(z)}{f(z)} = \frac{2(1-w(z))}{2-w(z)}, \quad z \in E.$$

Evidently, w(0) = 0. We want to prove that |w(z)| < 1 in E. Differentiating (18) logarithmically we get

(19)
$$1 + \frac{zf''(z)}{f'(z)} = \frac{2(1-w(z))}{2-w(z)} + \frac{zw'(z)}{2-w(z)} - \frac{zw'(z)}{1-w(z)}.$$

Suppose that z_0 is a point of E such that

$$\max_{|z| < |z_0|} |w(z)| = |w(z_0)| = 1.$$

Then applying Jack's lemma to w(z) at z_0 , letting $z_0w'(z_0)/w(z_0) = k$ so that $k \ge 1$, and $w(z_0) = e^{i\theta}$, we obtain from (19)

$$\operatorname{Re}\left(1+rac{z_0f''(z_0)}{f'(z_0)}
ight)=rac{3}{2}+rac{3(k-1)}{5-4\cos heta}\geqslantrac{3}{2},$$

which contradicts (16). This proves that |w(z)| < 1 in E, and hence (17) holds, which in turn implies

$$\operatorname{Re} rac{zf'(z)}{f(z)} \geqslant \min_{|z|=r} \operatorname{Re} rac{2(1-z)}{2-z} = rac{2(1-r)}{2-r} > 0, \quad |z| = r < 1.$$

Hence $f \in S^*$. This completes the proof of Theorem 6.

REFERENCES

- [1] I. S. Jack, Functions starlike and convex of order a, The Journal of the London Mathematical Society 3 (1971), p. 469-474.
- [2] S. Ozaki, On the theory of multivalent functions. II, Science Reports of the Tokyo Bunrika Daigaku, Section A, 4 (1941), p. 45-87.

Reçu par la Rédaction le 2. 10. 1979