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SOME SUFFICIENT CONDITIONS
FOR UNIVALENCE AND STARLIKENESS

BY

RAM SINGH aAxp SUNDER SINGH (PATIALA)

Let A denote the class of functions f(2) regular in the open unit disc
E = {z: |2| <1} and normalized so that f(0) = 0 = f’(0)—1. We denote
by 8§ the subclass of A consisting of univalent functions in ¥; C and §*
stand for the subclasses of 8§ whose members are close-to-convex and starlike
(with respect to the origin) in E, respectively.

In this note we shall establish a few sufficient conditions for uni-
valence. Some of these conditions are new and others are improvements
of the well-known ones.

The basic tool in proving our results is the following lemma due
to Jack [1]:

LEMMA. Let w(2) be regular in the unit disc E and such that w(0) = 0.
Then if |w(z)| attains its mazvimum value on the circle |3| = r at a point 2,,
we have z,w' (2,) = kw(z,), where k > 1 i3 a real number.

THEOREM 1. If fe A and
(1) If' (&) =17 (2" <1, ze€kE,

for some y = 0, then f is close-to-conves and bounded in E.
Proof. To prove the assertion it suffices to show that (1) implies

(2) If'(z)—1l<1, =zekE.
Let us define w in E by
(3) w(z) = f'(2)—1.

Then, clearly, w(0) = 0 and w(=2) is regular in E. We want to prove
that |w(2)] <1 in E. Differentiating (3) we obtain zf’’/(z) = 2w’(z), and
therefore

(4) |f (2) =11 7lef " ()" = | (2)I'™" Jow’ (2)1"
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Suppose that there exists a point 2, in ¥ such that

max |w(?)] = |w(z)| = 1.
121<IZp!

Applying Jack’s lemma to w(z) at 2, and letting 2,w’(2,)/w(z,) = k
so that k¥ > 1, we obtain from (4)
If' (20) —1['7|zof " (o)l = k=1, y>0,

which contradicts (1). Therefore, |w(2)| <1 in E, and so |f'(2)—1| <1,
z € E, which shows that f is close-to-convex (and hence univalent) in E.
From [f'(2)—1| < 1, z € E, it follows easily that f is bounded in E.

Taking y = 1 in Theorem 1 we have
COROLEARY 1. If fe A and

(8) lof"(2)l <1, =z€kH,

then [ 18 close-to-convex and bounded in E.

Remark 1. It is readily seen that if f € A satisfies (5), then f maps
the disc |2| < 1/2 onto a convex domain. Indeed, from (5) we obtain

(6) of"(2) = 2p(2),
where ¢ is regular and |p(2)| <1 in E. Integrating (6) we get

f'(@)—1 = [o(tde.
0

" Therefore,
2f" (2 2@(z
:;,(i)) = l}:( ) < y r=|z],
1+ fe(t)dt
0
from which we deduce that for r = |2] < 1/2
zfll(z)
Rel1+4+ —=; >0.
(s

Consequently, f maps the disc 'z|] < 1/2 onto a convex domain. The
function f(z) = z-+22/2, which satisfies (5), shows that the number 1/2
cannot be replaced by any larger one.

THEOREM 2. If fe A satisfies

zf"(z) |y 3\”
14 f,(z) ‘ <(§') ’ ZEE,

Jor some y > 0, then f is close-to-convexr and bounded in E.

(7) If'(z)—1]"77
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Proof. It suffices to show that (7) implies (2) which, in turn, proves
that f is close-to-convex and bounded in E. To this aim we define w in E
by (3) and proceed as in the proof of Theorem 1.

Taking y = 1 in Theorem 2, we have
COROLLARY 2. If f e A satisfies

7" (2)
J'(?)

3
|1+ <§, ze E,

then f is close-1o-convexr and bounded in E.
THEOREM 3. If f € A satisfies in E the condition

» 3\?
<(3)
for some y >0, then feS8*.
Proof. We have to prove that (8) implies the inequality

1-y

7" (2)
f(?)

o)
1)

(8)

£

@) , 2ek.

Define w in E by
of'(2)  1+w(2)

® =T T 1oe@

Evidently, w(0) = 0. Differentiating (9) logarithmically and sim-
plifying, we obtain

L4

2f'(2)

1=y zfn(z)
@ |

| f'(2)

| 2w'(2) 1

(10) T w(z) 1+w(2) |

Y 2w(2)
1 —w(2)

If ReG(z,) = 0 for a certain 2,€ E and ReG(2) >0 for |2] < |z,l,
then |w(z)] < |w(2,)| = 1 for |2]| < |2,| and, of course, w(2,) # 1. Applying
Jack’s lemma to w(z) at the point 2, and letting zow’(z,) = kw (zo) so that
k > 1, we obtain from (10) .

Zof’ (%o) . 2of"' (20)

¥y k 4 1 b 4 3 Y
1) f(zo) >(1+'2") >(“’2‘) 2(5) =20

which contradicts (8). This proves that Re@(z) > 0 in E, and hence f € §*.
Thus the proof of Theorem 3 is completed.

1=y
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Taking y = 1 in Theorem 3, we have
CoROLLARY 3. If fe A satisfies

7"() | 3
@) <§, zekl,
then f is starlike univalent in E.
THEOREM 4. If f e A satisfies
o' (2) 22" (2)
(11) ‘a @ —1)+(1.—a) 7@ <1, z€kE,

for 0 < a<1, then f i3 bounded and starlike in E.
Proof. It is sufficient to prove that (11) implies the inequality

' (2)
@) —1|<1, ze k.
We define w in E by
oty T ()
(12) w(2) = —_—f(z) 1.
Evidently, w(0) = 0. Differentiating (12) logarithmically we obtain
#f'"'(#) - aw'(2)
o Ot Towe
and hence
o’ (2) 2f"(2) | _ aw’ (2)
(13) a('f(z) —1)+(1—a) @) l = |w(z)|l1+(1—a)(w(z)+ w(z )

We claim that |w(z)| < 1, z € E. Suppose z, is8 a point of F such that

max |w(2)] = |w(2,)] = 1.
Izl <teol

Applying Jack’s lemma to w(2) at the point z,, letting 24w’ (2,)/w(2,)
= k so that k> 1 and w(z,) = ¢*°, we obtain from (13)

2of (20) " (2)
20 W) 4 (1 —
( 1) )*‘ TPR

which contradicts (11). This proves that |w(2)| <1 in F, and hence
|zf’(2)[f(2) —1| < 1 in E, which implies that f is bounded and starlike in H.

= 1+(1—a)(k+e*) > 1,
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Taking a = 0 in Theorem 4, we get
CoROLLARY 4. If fe A satisfies

22f" (2)
(14) @) 1, =z€kE,
then fe S*.
THEOREM 5. If fe A, a>1/2, and
zf" (2) 1 14 2a
(15) Re[a(1+ f’(z))+(1—a) f'(z)]< 5 ze B,

then f is close-to-convexr and bounded in E.

Proof. It suffices to prove that (15) implies (2) from which our
result follows. To this aim we define w in E by (3) and proceed as in the
proof of Theorem 1.

Taking a = 1 in Theorem 5 we have
COROLLARY 5. If f € A satisfies

7" (2)
F'(2)
then f 18 close-to-convex and bounded in H.

Remark 2. Ozaki [2] has proved that if (16) holds, then f is univalent
in E. The result of Corollary 5 shows that f is not only univalent but also
close-to-convex and bounded in E.

Our next theorem strengthens the result of Corollary 5.
THEOREM 6. If f e A satisfies (16), then

(16) Re(1+ )<%, zekl,

zf’ (2) 2(1—2)
f(=) < 2—2z '’

Moreover, f is starlike in E.

Proof. One can easily verify that g(2) = 2(1 —=2)/(2 —#) is univalent
in E. Now, let

(17) zeH.

of'(2) _ 2(1—w(2)
f(2) 2—w(z) ’

Evidently, w(0) = 0. We want to prove that |w(2)| < 1 in E. Differen-
tiating (18) logarithmically we get

(18) zeH.

o)  2(1—w(2) 2w’ (2) 2w’ (2)
(19) 1+ f'(e)  2—w(s) @ 2—w(z) 1—w()
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Suppose that z, is a point of E such that
max [w(z)| = |w(2)| = 1.
lel <lgg|
Then applying Jack’s lemma to w(2) at 2,, letting 2w’ (2,)/w(2,) = k
so that k> 1, and w(z,) = €*®, we obtain from (19)
wf"(@)| _ 3 3(k=1 _3
fl(z) ] 2 ' B5—4cos6” 2’
which contradiets (16). This proves that |w(2)] <1 in E, and hence (17)
holds, which in turn implies

2f' (2) ) 2(1—2) 2(1-—7)
@) Mt Tams T 2o

Hence f € 8*. This completes the proof of Theorem 6.

Re(l—l—

Re >0, [ =r<l.
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