ANNALES POLONICI MATHEMATICI XXXIII (1977)

On generalized periodic solutions of linear differential equations of order n

by J. LIGEZA (Katowice)

Abstract. In this note the author proves the following theorems:

Theorem 1. Let $V^{(n-1)}$ be the set of all distributions whose derivatives (in the distributional sense) are functions of locally bounded variation in R^1 . Moreover, let p_i be periodic measures with the period ω ($\omega > 0$) for i = 1, 2, ..., n+1 such that

 1° p_1 is a locally integrable function in \mathbb{R}^1 ,

$$2^{0} p_{r} \in V^{(n-r-1)}$$
 for $r = 1, 2, ..., n-1 (n > 2)$,

$$3^{\circ} \sum_{i=1}^{n} (-1)^{n-i} p_i^{(n-i)} \geqslant 0,$$

$$4^{0}\int\limits_{0}^{\omega}p_{n}(t)dt>0$$
, $p_{n}\geqslant0$,

5° for a fixed $\varepsilon > 0$

$$\max_{1\leqslant i\leqslant n}\int\limits_0^{\omega+\varepsilon}|p_i(t)|\,dt<\Bigl(\sum_{i=0}^{n-1}(\omega+\varepsilon)^{n-i-1}\Bigr)^{-1}.$$

Then there exists exactly one periodic solution with the period ω of the equation

$$x^{(n)} + p_1(t)x^{(n-1)} + \ldots + p_n(t)x + p_{n+1}(t) = 0.$$

THEOREM 2. If p and q are periodic measures with the period ω (ω > 0) such that

$$10 p \geqslant 0, \int_{0}^{\omega} p(t) dt > 0,$$

$$2^{o}$$
 for a fixed $\varepsilon > 0$ $\int_{0}^{\omega + \varepsilon} p(t) dt < (\omega + \varepsilon)^{-n+1}$,

 3° p is a locally integrable function in R^{1} if n=1, then there exists exactly one periodic solution with the period ω ($\omega > 0$) of the equation

$$x^{(n)} + p(t)x + q(t) = 0.$$

THEOREM 3. If p and q are periodic measures with the period ω ($\omega > 0$) such that

$$p \neq 0$$
, $\int_{0}^{\omega} p(t) dt > 0$, $\int_{0}^{\omega} |p(t)| dt < 16/\omega$,

then there exists exactly one periodic solution with the period ω of the equation

$$x^{\prime\prime}+p(t)x+q(t)=0.$$

210 J. Ligęza

The above theorems generalize some results for linear differential equations (see [5], [6]). All the solutions of the equations are considered in the class $V^{(n-1)}$ (n — order of equation). The principal results of this note are based on the sequential theory of distributions (see [4]).

1. In this note we consider the equation

(*)
$$x^{(n)} + p_1(t)x^{(n-1)} + \ldots + p_n(t)x + p_{n+1}(t) = 0,$$

where p_i for $i=1,2,\ldots,n+1$ are given periodic measures and p_1 is a locally integrable function. The derivative is understood in the distributional sense. By a solution of equation (*) we understand every distribution (n-1) whose derivative (in the distributional sense) is a function of locally bounded variation in R^1 . This class will be denoted by $V^{(n-1)}$. We prove some theorems on the existence and the uniqueness of periodic solutions of equation (*). Our results generalize some theorems for linear differential equations (see [5], [6]). The sequential theory of the distributions will be used (see [4]).

2. Our aim is now to show the principal results. We first introduce some notations.

A sequence of smooth, non-negative functions $\{\delta_k\}$ satisfying: $\int_{-\infty}^{\infty} \delta_k(t) dt$ = 1, $\delta_k(t) = \delta_k(-t)$, $\delta_k(t) = 0$ for $|t| \ge a_k$, where $\{a_k\}$ is a sequence of positive numbers with $a_k \to 0$ is called a δ -sequence (see [3], [4], p. 75). By a regular sequence for a distribution u we mean any sequence of the form $\varphi_k(t) = (u*\delta_k)(t) = \int_{-\infty}^{\infty} u(t-s)\,\delta_k(s)ds$, where $\{\delta_k\}$ is a δ -sequence (see [4], p. 117, 153). If, for every regular sequence $\{\varphi_k\}$ of a distribution u, the sequence $\{\int_{b}^{\infty} \varphi_k(t) dt\}$ is convergent to some finite limit as $k \to \infty$, then the limit $\lim_{k \to \infty} \int_{a}^{b} \varphi_k(t) dt$ is called the definite integral of u and is denoted by $\int_{a}^{b} u(t) dt$ (see [3], [4]). We say that the product of distributions u and v exists if the sequence $\{(u*\delta_k)(v*\delta_k)\}$ is distributionally convergent for every δ -sequence $\{\delta_k\}$ (see [4], p. 242). If, for every regular sequence $\{\varphi_k\}$ for a distribution u, the sequence $\{|\varphi_k|\}$ is distributionally convergent, then we say that the modulus |u| of u exists and we put $|u| = \lim_{h \to \infty} (d)|\varphi_k|$.

The consistency of the last definitions follows from the fact that the interlaced sequence of two δ -sequences is also a δ -sequence.

By a non-negative distribution we understand a distribution for which there exists a fundamental sequence whose terms are non-negative functions. A distribution u is a measure if there exists a function of locally bounded variation Φ such that $\Phi' = u$ (see [2]). We say that a distri-

bution p is periodic with the period ω ($\omega \neq 0$) if $p(t) = p(t+\omega)$ (see [4], p. 49).

Analogously to [5] (p. 72) we can prove (see [7]) the following

THEOREM 2.1. If p_i are periodic measures with the period ω for $i=1,2,\ldots,n+1$, p_1 is a locally integrable function in R^1 and zero-distribution is the only periodic solution with the period ω of the equation

$$(2.1) x^{(n)} + p_1(t)x^{(n-1)} + \ldots + p_n(t)x = 0,$$

then there exists exactly one periodic solution with the period ω of equation (*).

In the sequel we shall give some conditions which guarantee that the trivial solution is the only periodic solution of equation (2.1).

Let ε and ω be positive numbers. We put

(2.2)
$$a(\omega, \varepsilon) = \left[\sum_{i=0}^{n-1} (\omega + 3\varepsilon)^{n-i-1}\right]^{-1}.$$

THEOREM 2.2. Let p_i (i=1,2,...,n) be periodic measures with the period ω $(\omega>0)$ such that

(2.3) p_1 is a locally integrable function in R^1 ,

(2.4)
$$p_r \in V^{(n-r-1)}$$
 for $r = 1, 2, ..., n-1$ $(n \ge 2)$,

(2.5)
$$\sum_{i=1}^{n} (-1)^{n-i} p_i^{(n-i)} \geqslant 0,$$

(2.6)
$$\int_{0}^{\omega} p_{n}(t) dt > 0, \quad p_{n} \geqslant 0,$$

for a fixed $\varepsilon > 0$

(2.7)
$$\max_{1 \leq i \leq n} \int_{0}^{\omega + 3\varepsilon} |p_{i}(t)| dt < a(\omega, \varepsilon).$$

Then x = 0 is the unique ω -periodic solution of equation (2.1).

From Theorems 2.1 and 2.2 we infer that if p_{n+1} is a periodic measure with the period ω and p_i (i=1,2,...,n) satisfy the assumptions of the least theorem, then equation (*) has exactly one periodic solution with the period ω .

A real function of a single real variable is of class C^n in R^1 if all its derivatives of order $\leq n$ exist and are continuous functions in R^1 . Theorem 2.2 guarantees the existence and the uniqueness of periodic solutions in the class C^n of the equation

$$(2.8) \quad c_1(t)x^{(n)} + (c_1'(t) + c_2(t))x^{(n-1)} + \ldots + (c_n'(t) + c_{n+1}(t))x = c_{n+2}(t)$$

212 J. Ligeza

in some cases to which the theorems of A. Lasota and Z. Opial (see [5], p. 81-85) cannot be applied.

EXAMPLE. Let p be a periodic function defined as follows:

$$p(t) = egin{cases} 0 & ext{for } n-1+rac{1}{30} \leqslant t < n-rac{1}{30}, \ 900(t-n+rac{1}{30}) & ext{for } n-rac{1}{30} < t \leqslant n, \ -900(t-n-rac{1}{30}) & ext{for } n < t \leqslant n+rac{1}{30}, \ 0 & ext{for } n+rac{1}{30} < t \leqslant n+1-rac{1}{30}, \end{cases}$$

where n is an arbitrary integer number. We take the following equation

$$(2.9) x'' + \frac{1}{4}x' + \frac{1}{3}p(t)x = 0.$$

Theorem 2.2 implies that x=0 is the unique periodic solution with the period 1 of equation (2.9). However, Theorem 4 of [5] cannot be applied to (2.9) because $\lambda_1 c_1 + \lambda_2 c_2 > 1$, where $\lambda_1 = \frac{1}{2}$, $\lambda_2 = \frac{1}{8}$, $c_1 = \frac{1}{4}$, $c_2 = 10$.

Theorem 2.3. Let p be a periodic measure with the period ω ($\omega>0$) such that

$$(2.10) p \geqslant 0, \int_{0}^{\omega} p(t) dt > 0,$$

for a fixed $\varepsilon > 0$

(2.11)
$$\int_{0}^{\omega+3\varepsilon} p(t) dt < (\omega - 3\varepsilon)^{-n+1},$$

p is a locally integrable function in R^1 if n = 1.

Then x=0 is the unique periodic solution with the period ω of the equation

$$(2.12) x^{(n)} + p(t)x = 0.$$

By Theorem 2.1 we infer that if p and q are periodic measure with the period ω and p satisfies the assumptions of the last theorem, then the equation

$$(2.13) x^{(n)} + p(t)x + q(t) = 0$$

has exactly one periodic solution with the period ω .

If p and q are periodic locally integrable functions with the period ω , then the results of A. Lasota and Z. Opial (see [5]) guarantee the existence and uniqueness of periodic solutions of equation (2.13) in some cases to which Theorem 2.3 cannot be applied.

THEOREM 2.4. If p is a periodic measure with the period ω ($\omega > 0$) such that

(2.14)
$$\int_{0}^{\omega} |p(t)| dt < 16/\omega, \quad \int_{0}^{\omega} p(t) dt \geqslant 0, \quad p \neq 0,$$

then x = 0 is the unique periodic solution with the period ω of the equation

$$(2.15) x'' + p(t)x = 0.$$

Let p and q be periodic measures with the period ω . Moreover, let p satisfy the assumptions of Theorem 2.4. Then from Theorem 2.1 and 2.4 it follows that the equation

$$(2.16) x'' + p(t)x + q(t) = 0$$

has exactly one periodic solution with the period ω .

If p and q are periodic locally integrable functions with the period ω and $\int_0^\omega |p(t)| dt \le 16/\omega$, $\int_0^\omega p(t) dt \ge 0$, $p \ne 0$, then there exists exactly one periodic solution with the period ω of equation (2.16) (see [5]). In note [6] there are considered non-trivial periodic and sign-changing solutions of equation (2.15).

3. Before giving the proofs of Theorems 2.2, 2.3 and 2.4 we shall formulate some properties of a definite integral and introduce the notation of a smooth integral.

A distribution u takes the mean value a at a point t_0 if and only if $\lim_{k\to\infty} \varphi_k(t_0) = a$ for each regular sequence $\{\varphi_k\}$ of u. Then we put $u(t_0) = a$ (see [3]).

If u is a measure, then for all a and b $(a, b \in R^1)$ the integral $\int_a^b u(t) dt$ exists and

$$\left|\int_{a}^{b}u(t)\,dt\right|\leqslant\int_{a}^{b}|u(t)|\,dt\qquad(a\leqslant b),$$

(3.2)
$$U(t) = \int_a^t u(s) ds + U(a),$$

where U' = u (see [3]).

We write $u \ge v$ if and only if the difference u - v is a non-negative distribution (see [2]). Let u and v be measures and $u \ge v$; then

(3.3)
$$\int_a^b v(t) dt \leqslant \int_a^b u(t) dt \quad (a \leqslant b).$$

Using (3.2), we obtain

(3.4)
$$\int_{a}^{b} u(t) q(t) dt = U(b) q(b) - U(a) q(a) - \int_{a}^{b} U(t) q(t) dt,$$

where u is a measure, U' = u and q is an absolutely continuous function.

A periodic distribution p is called *hereditarily periodic* if and only if there is a periodic distribution q such that q' = p (see [9]). One can show (see [9]) that for every hereditarily periodic distribution p there exists a unique hereditarily periodic distribution q such that q' = p (see [9]).

Let ε be a positive number and let the carrier of a smooth, non-negative function φ equals $[\varepsilon, 2\varepsilon]$. Moreover, let $\int_{-\infty}^{\infty} \varphi(t) dt = 1/\omega (\omega > 0)$ and let Π be the characteristic function of the interval $[0, \omega]$. We define

$$(3.5) F_k(t) = \int_0^{\omega+3s} \lambda(r-c) dr \int_r^t f_k(s) ds \stackrel{\mathrm{dr}}{=} \int_{c_1}^t f_k(s) ds,$$

where $\lambda = \Pi * \varphi$, $c \in (0, \varepsilon)$ and $\{f_k\}$ is a fundamental sequence of f. If c and λ are fixed, then integral (3.5) is a primitive function of f_k . A primitive function which is of the form (3.5) will be called a *smooth integral of* f_k . One can show that the sequence $\{F_k\}$ defined by (3.5) is also fundamental (see [9]). Hence we can define

(3.6)
$$\int_{c_1}^t f(s) ds \stackrel{\mathrm{df}}{=} \lim_{k \to \infty} (d) \int_{c_1}^t f_k(s) ds.$$

The smooth integral of order n we define by induction, letting

(3.7)
$$\int_{c_{\lambda}}^{t} f(s) ds^{0} = f, \quad \int_{c_{\lambda}}^{t} f(s) ds^{n} = \int_{c_{\lambda}}^{t} \left(\int_{c_{\lambda}}^{s} f(r) dr^{n-1} \right) ds.$$

One may prove (see [9]) that, for every hereditarily periodic distribution f, $\int_{c_{\lambda}}^{t} f(s) ds^{n}$ is also a hereditarily periodic distribution which does not depend on the choice of c and λ .

Proof of Theorem 2.2. Let x be a non-zero periodic solution with the period ω of equation (2.1). Then we consider two cases:

1° there exists a $t_0 \in [0, \omega]$ such that $x(t_0) = 0$,

 $2^{\circ} x(t) > 0 (x(t) < 0) \text{ for all } t \in \mathbb{R}^{1}.$

If n=1, then Theorem 2.2 is obvious. We assume that n>1. Then $x', x'', \ldots, x^{(n-1)}$ are hereditarily periodic distributions. Hence we have

(3.8)
$$x(t) = -\int_{t_0}^t \left[\int_{c_\lambda}^{\tau} \left(\sum_{i=1}^n p_i(s) x^{(n-i)}(s) \right) ds^{n-1} \right] d\tau.$$

We put

$$(3.9) \varphi_{ir} = p_i * \delta_r, \overline{\varphi}_{ir} = |p_i| * \delta_r, \psi_{ir} = x^{(n-i)} * \delta_r,$$

$$M_i = \sup_{t \in [0, \omega]} |x^{(n-i)}|(t), M = \sum_{i=1}^n M_i, \Phi_{ik} = (p_i x^{(n-i)}) * \delta_k,$$

where $\{\delta_r\}$ is a δ -sequence. We take the sequence $\{F_k^{(v)}\}$ defined as follows:

$$(3.10) F_k^{(v)}(t) = -\left[\int\limits_{c_1}^{t} \left(\sum_{i=1}^{n} \Phi_{ik}(s)\right) ds^{n-1}\right]^{(v)}, v = 0, 1, \ldots, n-2.$$

By [9] we infer that $F_k^{(v)}$ is a hereditarily periodic distribution and the sequence $\{F_k^{(v)}\}$ is convergent to the function $x^{(v+1)}$. Since

$$|\Phi_{ik}| = |\lim_{r \to \infty} (\varphi_{ir} \psi_{ir}) * \delta_k| \leqslant M_i \overline{\varphi}_{ik},$$

by (3.10) we have

$$|F_k^{(n-2)}(t)| \leqslant M \max_{1 \leqslant i \leqslant n} \int_0^{\omega + 3\epsilon} \bar{\varphi}_{ik}(t) \, dt.$$

Hence, we get

(3.13)
$$\sup_{t \in [0, \omega]} |F^{(n-2)}|(t) \leqslant M \max_{1 \leqslant i \leqslant n} \int_{0}^{\omega + 3s} |p_i(t)| dt.$$

Similarly

$$\sup_{t \in [0,\omega]} |F^{(v)}|(t) \leqslant M(\omega + 3\varepsilon)^{n-v-2} \max_{1 \leqslant i \leqslant n} \int_{0}^{\omega + 3\varepsilon} |p_i(t)| dt.$$

Using (3.8), (3.13) and (3.14), we obtain

$$(3.15) M \leqslant M(a(\omega, \varepsilon))^{-1} \max_{1 \leqslant i \leqslant n} \int_{0}^{\omega+3s} |p_i(t)| dt.$$

Having integrated by parts the product $p_i x^{(n-i)}$, we obtain in case 2° the inequality

$$(3.16) 0 = \int_{0}^{\omega} x^{(n)}(t) dt = \left| \int_{0}^{\infty} \left(\sum_{i=1}^{n} (-1)^{n-i} p_{i}^{(n-i)}(t) x(t) \right) dt \right|$$

$$\geq \min_{t \in [0, \omega]} |x(t)| \int_{0}^{\omega} p_{n}(t) dt > 0,$$

which is of course impossible. Thus the proof is complete.

2 - Annales Polonici Mathematici XXXIII.3

Proof of Theorem 2.3. Suppose that there exists a non-zero periodic solution x with the period ω of equation (2.12). If there exists a t_0 such that $t_0 \in [0, \omega]$ and $x(t_0) = 0$, then by (3.8) we can write

(3.17)
$$\max_{t \in [0, \omega]} |x(t)| \leqslant \max_{t \in [0, \omega]} |x(t)| (\omega + 3\varepsilon)^{n-1} \int_{0}^{\omega + 3\varepsilon} p(t) dt,$$

which contradicts (2.11). In the second case Theorem 2.3 is obvious. Thus our assertion follows.

Proof of Theorem 2.4. Let x be a non-zero periodic solution of (2.15) with the period ω . Then we consider three cases:

I. x(t) > 0 (x(t) < 0) for all $t \in \mathbb{R}^1$,

II. there exist t_1, t_2, t_3 such that $0 \le t_1 < t_2 < t_3 \le \omega$,

$$x(t_1) = x(t_2) = x(t_3) = 0,$$

III. there exist only two point $t_1, t_2 \in [0, \omega]$ such that

$$0 \leqslant t_1 < t_2 \leqslant \omega, \quad x(t_1) = x(t_2) = 0.$$

By (2.15) and [1] we get in the case of I

Since $x(0) = x(\omega)$, $x'(0) = x'(\omega)$, integrating by parts the left-hand side of (3.18), we infer that

(3.19)
$$\int_{a}^{\infty} \left[\frac{x'(t)}{x(t)} \right]^{2} dt + \int_{a}^{\infty} p(t) dt = 0,$$

which contradicts (2.14).

In the case of II, we can write by [8]

(3.20)
$$\int_{t_{1}}^{t_{2}} |p(t)| dt \geqslant \frac{4}{t_{2} - t_{1}}, \quad \int_{t_{2}}^{t_{3}} |p(t)| dt \geqslant \frac{4}{t_{3} - t_{2}}.$$

Hence and from (2.14) we state that

$$(3.21) \qquad \frac{16}{\omega} > \int_{0}^{\omega} |p(t)| dt \geqslant 4 \left(\frac{1}{t_{2} - t_{1}} + \frac{1}{t_{3} - t_{2}} \right) \geqslant \frac{16}{\omega},$$

which is of course impossible.

In the case of III, we can assume without loss of a generality

$$(3.22) x(0) = x(\omega) = 0, x(t) \geqslant 0 (x(t) \leqslant 0) \text{for all } t \in \mathbb{R}^1.$$

If x'(0) = 0, then by [7] we have x = 0. Let $x'(0) \neq 0$ and let $\varphi_k = p * \delta_k$, $\psi_k = x * \delta_k$. Then there exists a point t_k in the interval $[-2a_k, 2a_k]$ such that $\psi'_k(t_k) = 0$. Besides, the sequence $\{t_k\}$ converges to zero. Now we consider the sequence $\{Y_k^{(v)}\}$ defined as follows:

(3.23)
$$Y_k^{(v)}(t) = -\left[\int_{t_k}^t (t-s)\varphi_k(s)\psi_k(s)ds + \psi_k(t_k)\right]^{(v)},$$

v = 0, 1.

From Helly's theorem it follows that a subsequence $\{Y_{k_r}^{(v)}\}$ of $\{Y_k^{(v)}\}$ is convergent to a function $Y^{(v)}$ of locally bounded variation in R^1 . Without loss of a generality we can assume that sequences $\{Y_k^{(v)}\}$ are convergent to $Y^{(v)}$. Since

$$(3.24) Y_k''(t) = -\varphi_k(t)\psi_k(t),$$

$$Y(t) = x(t) + ct + d,$$

where c and d are some constants. From the almost uniform convergence of $\{Y_k\}$ we have

(3.26)
$$x(0) = \lim_{k \to \infty} \psi_k(t_k) = 0, \quad \lim_{k \to \infty} Y_k(t_k) = Y(0) = 0.$$

Hence, by (3.22) and (3.25), we get d=0. We shall prove that c=0. In fact, let $\beta_k \stackrel{\text{df}}{=} Y' * \delta_k$. Then by (3.25) we obtain $\beta_k(t_k) = c$. On the other hand, from the properties of convolution and (3.23) we have

$$(3.27) |\beta_{k}(t_{k})| = \left[\left|\lim_{r\to\infty}\int_{-a_{k}}^{a_{k}}d\tau\int_{t_{r}}^{t-\tau}\varphi_{r}(s)\psi_{r}(s)\delta_{k}(\tau)ds\right|\right]_{t=t_{k}}$$

$$\leq \left[\left|\lim_{r\to\infty}(\varPhi_{r}\psi_{r})*\delta_{k}\right|\right]_{t=t_{k}} + \left|\lim_{r\to\infty}\varPhi_{r}(t_{r})\psi_{r}(t_{r})\right| +$$

$$+ \left[\left|\lim_{r\to\infty}\int_{-a_{k}}^{a_{k}}d\tau\int_{t_{r}}^{t-\tau}\varPhi_{r}(s)\psi_{r}'(s)\delta_{k}(\tau)ds\right|\right]_{t=t_{k}},$$

where $\varphi_r = p * \delta_r$, $\psi_r = x * \delta_r$, $\Phi_r(t) = \int_0^t \varphi_r(s) ds$.

Consequently $\lim_{k\to\infty}\beta_k(t_k)=0$. Hence it follows that the sequence $\{Y_k\}$ is uniformly convergent to the function x. By (3.23) and Gronwall's inequality we get

$$(3.28) |Y_k(t)| \leqslant E_k(M) \exp\left[|t-t_k| \left| \int_{t_k}^t \varphi_k(s) \, ds \, \right|\right],$$

where M is an arbitrary compact interval and

$$(3.29) E_{\underline{k}}(M) = \max_{t \in M} \Big| \int_{t_k}^{t} (t-s) \big(\psi_k(s) - Y_k(s) \big) \varphi_k(s) \, ds \, \Big| + |\psi_k(t_k)|.$$

Evidently $\lim_{k\to\infty} Y_k = 0$. Thus our assertion follows.

References

- [1] P. Antosik, Порядок относительно меры и его применение к исследованию произведения обобщённых функций, Studia Math. 26 (1966), p. 247-261.
- [2] On the modulus of a distribution, Bull. Acad. Polon. Sci. Sér. math. astr. et phys. 15 (1967), p. 717-722.
- [3] The mean value of a distribution at a point (in preparation).
- [4] -, J. Mikusiński and R. Sikorski, Theory of distributions. The sequential approach, Amsterdam-Warszawa 1973.
- [5] A. Lasota et Z. Opial, Sur les solutions périodiques des équations différentielles ordinaires, Ann. Polon. Math. 16 (1964), p. 69-94.
- [6] A. Lasota and F. H. Szafraniec, Application of the differential equations with distributional coefficients to the optimal control theory, Zeszyty Naukowe U. J. 12 (1968), p. 31-37.
- [7] J. Ligeza, On generalized solutions of some differential non-linear equations of order n, Ann. Polon. Math. 31 (1975), p. 115-120.
- [8] On generalized solutions of boundary value problem for linear differential equation of order II, Prace Matematyczne U. Śl. w Katowicach 4 (1973), p. 57-66.
- [9] K. Skórnik, Hereditarily periodic distributions, Studia Math. 43 (1972), p. 245-272.

Reçu par la Rédaction le 31. 7. 1972