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On generalized periodic solutions
of linear differential equations of order n
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Abstract. In this note the author proves the following theorems:

THEOREM 1. Let V(*=1) be the set of all distribulions whose derivatives (in the dis-
tributional sense) are functions of locally bounded variation in R'. Moreover, let p; be
periodic measures with the period w (0> 0) for 1 = 1,2,...,n+1 such that

19 p, is a locally integrable funclion in R},
20 ppe V=1 for r =1,2,...,0—1 (5> 2),

n
3 ¥ (- l)n_—ipg_n—f) >0,
i=1

@
4° [ pa()dt> 0, pr> 0,
0

50 for a fized ¢ > 0
wite n—1 .
max [ |p0ldt < (Y (o+en—i=1)-1.
1<i<n ¢ <o
Then there exists exactly one periodic solution with the period w of the equation
(B(‘n)+Pl(t)z(n_l)—|- cee +Pn(t)w+pn+l(t) = 0.

THeOREM 2. If p and q are periodic measures with the period w (w > 0) such that
w

1°p>0, [ p(thdt> 0,
0

o-te
2° for a fized e>0 [ p(t)di < (@+e)~nH),
0

3° p is a locally integrable function in R if n = 1, then there exists e:;motly one
periodic solution with the period w (w > 0) of the equation

o™ 4+ p(t)z+q(t) = 0.

THEOREM 3. If p and ¢ are periodic measures with the period w (w > 0) such that
(1] [ ]
p#£0, [p®Wat>0, [ip®ldt<16/o,
0 0

then there exists exactly one periodic solution with the period w of the equation

z”’+pt)z+q(t) = 0.
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The above theorems generalize some results for linear differential equations
(see [5], [6]). All the solutions of the equations are considered in the class V(r-1)
(n — order of equation). The principal rosults of this note are based on the sequential
theory of distributions (see [4]).

1. In this note we consider the equation
(*) ™+ p1 (D)2 V4 + P () &+ P (l) =0,

where p; for ¢t =1,2,...,n+1 are given periodic measures and p, is
a locally integrable function. The derivative is understood in the distri-
butional sense. By a solution of equation (*) we understand every distri-
bution (n —1) whose derivative (in the distributional sense) is a function
of locally bounded variation in R'. This class will be denoted by V-1,
We prove some theorems on the existence and the uniqueness of periodic
solutions of equation (*). Our results generalize some theorems for linear
differential equations (see [5], [6]). The sequential theory of the distri-
butions will be used (see [4]).

2. Our aim is now to show the principal results. We first introduce
some notations.

a0

A sequence of smooth, non-negative functions {4,} satisfying: [ 6,(t)dt

=1, 8,(t) = 8,(—1), 6,(t) =0 for [¢t| > a;, where {a,} is a sequence of
positive numbers with a,—0 is called a J-sequence (see [3], [4], P. 75).
By a regular sequence for a distribution « we mean any sequence of the

form ¢, (f) = (uxd,)(t) = j?u(t—s)ék(s)ds, where {d,} is a d-sequence

(see [4], p. 117, 153). If, for every regular sequence {¢,} of a distribution u,

b
the sequence { [¢,(t)dt} is convergent to some finite limit as k— oo, then
a

b
the limit lim [ @, (t)dt is called the definite integral of u and is denoted

k—o a

b
by [u(t)dt (see [3], [4]). We say that the product of distributions » and v
a

exists if the sequence {(u*d,)(vxd,)} is distributionally convergent for
every d-sequence {8,} (see [4], p. 242). If, for every regular sequence
{pe} for a distribution u, the sequence {|g,|} is distributionally conver-
gent, then we say that the modulus || of « exists and we put |u|= lim (d)lg,|.

k—oo

The consistency of the last definitions follows from the fact that
the interlaced sequence of two 4-sequences is also a d-sequence.

By a non-negative distribution we understand a distribution for
which there exists a fundamental sequence whose terms are non-negative
functions. A distribution  is a measure if there exists a function of locally
bounded variation @ such that @' = « (see [2]). We say that a distri-
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bution p is periodic with the period w (@ # 0) if p(f) = p(t+ w) (see [4],
p. 49).
Analogously to [53] (p. 72) we can prove (see [7]) the following

THEOREM 2.1. If p; are periodic measures with the period w for

i =1,2,...,n+1, p, is a locally integrable function in R' and zero-distri-
bution is the only periodic solution with the period w of the equation
(2.1) 2™ +p, ()" V+ ... +p, (D)@ =0,

then there exists exactly one periodic solution with the period o of
equation (*).
~ In the sequel we shall give some conditions which guarantee that
the trivial solution is the only periodic solution of equation (2.1).

Let ¢ and w be positive numbers. We put

(2.2) a(w, &) = [5‘ (w+3s)ﬂ-i—1]"‘.'

=0

THEOREM 2.2. Let p; (i =1,2,...,n) be perivdic measures with the
period o (w > 0) such that

(2.3)  p, is a locally integradle function in R',
(2.4) p,eV@ ™D for r =1,2,...,n—1 (n>2),

n
(2.5) D(—1)mipri >0,
i=1

(2.6) [p.ty@t>0, p,>0,

0

for a fized ¢ > 0

w+3e
(2.7) max [ ipi(t)ldt < a(w, £).
1<i<n
Then x = 0 is the unique w-periodic solution of equation (2.1).
From Theorems 2.1 and 2.2 we infer that if p,. , is a periodic
measure with the period o and p; (i =1, 2,...,n) satisfy the assump-

tions of the least theorem, then equation () has exactly one periodic sol-
ution with the period w.

A real function of a single real variable is of class C™ in R' if all its
derivatives of order < m exist and are continuous functions in R!. The-
orem 2.2 guarantees the existence and the uniqueness of periodic sol-
utions in the class C* of the equation

(2.8) ¢ (®)a™ +(e1(t) + 6 (1)@ + ... +(en(8) + a1 ()@ = C4(t)
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in some cases to which the theorems of A. Lasota and Z. Opial (see [5],
p. 81-85) cannot be applied.
ExAMPLE. Let p be a periodic function defined as follows:

0 for n—1+5, <t <n—3,
900(t—n+gy)  for n—g <t<m,

p(t) = —900(t—n—3) for n<t<m+s,
0 for ntg<t<n+l-%,

where n is an arbitrary integer number. We take the following equation
(2.9) o' +ix' +ip(t)e = 0.

Theorem 2.2 implies that # = 0 is the unique periodic solution with
the period 1 of equation (2.9). However, Theorem 4 of [5] cannot be
applied to (2.9) because A4,¢;+24;¢, > 1, where 4, =%, 1, =%, ¢, = 1,
¢, = 10.

THEOREM 2.3. Let p be a periodic measure with the period o (v > 0)
such that

(2.10) p=>0, [p@ar>o,
0

for a fizved ¢ > 0

o+-3e
(2.11) [ p)dt < (043¢,
0
P i8 a locally integrable function in R' if n = 1.

Then © = 0 is the unique periodic solution with the period w of the
equation

(2.12) g™ +p(t)z = 0.

By Theorem 2.1 we infer that if p and ¢ are periodic measure with
the period w and p satisfies the assumptions of the last theorem, then
the equation

(2.13) 4 pt)z+qt) =0

has exactly one periodic solution with the period w.

If p and ¢ are periodic locally integrable functions with the period w,
then the results of A. Lasota and Z. Opial (see [5]) guarantee the exist-
ence and uniqueness of periodic solutions of equation (2.13) in some
cases to which Theorem 2.3 cannot be applied.
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THEOREM 2.4. If p is a periodic measure with the period v (@ > 0)
such that

(2.14) [Ipdt <16jw, [ p®)d=0, p 0,
0 0

then © = 0 is the unique periodic solution with the period w of the equation

(2.15) ' +p(t)e = 0.

Let p and ¢ be periodic measures with the period w. Moreover, let p
satisfy the assumptions of Theorem 2.4. Then from Theorem 2.1 and 2.4
it follows that the equation

(2.16) " +p(t)e+q(t) =0

has exactly one periodic solution with the period w.
If p and ¢ are periodic locally integrable functions with the period o

and flp(t)ldtg 16/w,fp(t)dt> 0, p+# 0, then there exists exactly one
¢ 0 i

periodic solution with the period w of equation (2.16) (see [5]). In note [6]
there are considered non-trivial periodic and sign-changing solutions of
equation (2.15).

3. Before giving the proofs of Theorems 2.2, 2.3 and 2.4 we shall

formulate some properties of a definite integral and introduce the no-
tation of a smooth integral.

A distribution u takes the mean value a at a point ¢, if and only if
lim ¢,(%,) = a for each regular sequence {p,} of . Then we put u(f) = a

k—so0

(see [3]).
b
If u is a measure, then for all @ and b (a, beR') the integral [u(t)d¢
a
exists and
. b b
(3.1) ‘fumm} [ mia  (a<w),
£
(3.2) = [u(s)ds+ U(a),

where U’ = u (see [3]).
We write # > » if and only if the difference » —v is a non-negative
distribution (see [2]). Let # and v be measures and # > v; then

b b

(3.3) fmnm<fumm (< b).

a a
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Using (3.2), we obtain

b
(3.4) fuaya = U(d)q(b)—U(a)g f U(t)q(t)

a

where u is a measure, U’ = % and ¢ is an absolutely continuous function.
A periodic distribution p is called hereditarily periodic if and only
if there is a periodic distribution ¢ such that ¢ = p (see [9]). One can
show (see [9]) that for every hereditarily periodic distribution p there
exists a unique hereditarily periodic distribution g such that ¢' = p (see [9]).
Let £ be a positive number and let the carrier of a smooth, non-
(e <]
negative function ¢ equals [e, 2¢]. Moreover, let [ @(t)dt = 1/w (0 > 0)

-— 00

and let IT be the characteristic function of the interval [0, w]. We define

w+3e

(3.5) F . (t) = f ﬁ.(r——c)drffk(s )ds = ffk )ds,

0

where A = II*¢, ce(0,¢) and {f,} is a fundamental sequence of f. If ¢
and A are fixed, then integral (3.5) is a primitive function of f,. A primi-
tive function which is of the form (3.5) will be called a smooth integral of
fi- One can show that the sequence {F,} defined by (3.5) is also funda-
mental (see [9]). Hence we can define

{ t
(3.6) f f(s)ds = lim(d) f fu(8)ds.

The smooth integral of order n we define by induction, letting

4 14 t 8
(3.7) [f@yas =f, [fiordas" = | ( [ fryarm=)ds.

€2 €

One may prove (see [9]) that, for every hereditarily periodie distribution f,
f f(s)ds" is also a hereditarily periodic distribution which does not depend

on the choice of ¢ and A.

Proof of Theorem 2.2. Let « be a non-zero periodic solution with
the period w of equation (2.1). Then we consider two cases:

1° there exists a #,e[0, w] such that z(¢,) = 0,
° z(t) > 0 (x(t) <0) for all teR".
If n = 1, then Theorem 2.2 is obvious. We assume that » > 1. Then

/ 124

@', %", ...,V are hereditarily periodic distributions. Hence we have.

(3.8) @(t) = — f [ f (Zn‘p,.(s)min-“(s)) ds”“]dt.
tg 3 =1
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We put

(3.9) Pir = DPi* Oy, Pir = |Dil %6, Yip = b ™ 0,y

M; = sup @™ (1), M= DM, By =(p;a")xd,

e]|0, w)

where {4,} is a d-sequence. We take the sequence {F{?} defined as follows:

(3.10) FP(2) _—[f(Zcb,,, 9))ds"”, v =0,1,...,n-2.

1=1

By [9] we infer that F{” is a hereditarily periodic distribution and the
sequence {F{)} is convergent to the function #°*V. Since

(3.11) 1Dyl = UM (@ 9;,) % 8| < M Py,

r—oo

by (3.10) we have

o+ 3e

(3.12) \FP-9(t) < Mmax [ gy (t)dt.
1<i<n
Hence, we get
w438
(3.13) sup |F("-2>|(t)<Mmax f Ip,(t)|dt.
te[0, w] <i<n
Similarly
o+3e
(3.14) sup |[F| (1) < M(w+3¢)* *"? max f Ip:(2)|dt.
1[0, ] s I<i<n o
Using (3.8), (3.13) and (3.14), we obtain
@+ 38
(3.15) M < M(a(w, &))" max f 1p(t)|dt.
l€1<‘no

Having integrated by parts the product p,2™®~%, we obtain in case 2° the
inequality

(3.16) 0 = fm o™ (8)dt = | fm(ﬁ‘ 1)n-* (”“’(t)a:(t))dt‘

> min |2(?) prn(t)dt> 0,
te[0,0]

which is of course impossible. Thus the proof is complete.

2 — Annales Polonici Mathematici XXXIIL3
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Proof of Theorem 2.3. Suppose that there exists a mnon-zero
periodic solution # with the period o of equation (2.12). If there exists
a t, such that %[0, w] and #(f) = 0, then by (3.8) we can write

@w+3e
(3.17) max |#(t)] < max [a;(t)l(w+3e)"-1f p(t)de,
te[0, 0] tef0, 0] 0

which contradicts (2.11). In the second case Theorem 2.3 is obvious.
Thus our assertion follows.

Proof of Theorem 2.4. Let » be a non-zero periodic solution of
(2.15) with the period w. Then we consider three cases:

I z(t) >0 (x(t) <0) for all teR,
II. there exist ¢, %,,%; such that 0 <¢, <, <f; < o,

x(t) = ®(ty) = z(t3) = 0,
ITI. there exist only two point ¢, ¢,¢[0, @] such that
0<t1<t2<w, m(tl) =.’D(t2) =0.

By (2.15) and [1] we get in the case of I
r 1
(3.18) o E+p(t) = 0.

Since z(0) = #(w), #'(0) = #'(w), integrating by parts the left-hand
side of (3.18), we infer that '

[} ] 't 2 @
(3.19) f[z((t))]dt—i-fp(t)dt ~o0,
(1] 0

which contradicts (2.14).
In the case of II, we can write by [8]

fo ]
(3.20) lp(t)|dt > Ip(t)|dt > .
,{ P taty’ ,{ P ta—ts
Hence and from (2.14) we state that
16 < 1 1 16
3.21 — t)dt >4 - = —
(3.21) o > J 1P (t,—t1+t,—tz) —

which is of course impossible.
In the case of III, we can assume without loss of a generality

(3.22) ©(0) =m(w) =0, o()>0 (s(t)<0) for all teRL.
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If ' (0) = 0, then by [7] we have @ = 0. Let 2'(0) # 0 and let ¢, = p«4,,
v, = ®*6,. Then there exists a point ¢, in the interval [ —2q;, 2¢;] such

that y,(t,) = 0. Besides, the sequence {t,} converges to zero. Now we
consider the sequence {Y}"} defined as follows:

¢
(3.23) YO = —[f ¢—)pu(8) vils)ds + pe(t)]”,
t

v =0,1.
From Helly’s theorem it follows that a subsequence {¥{’} of {¥{}
is convergent to a function Y™ of locally bounded variation in R'. Without

loss of a generality we can assume that sequences {Y{”} are convergent
to Y™, Since

(3.24) Y (1) = —gr(t)pe(t),
* (3.25) Y(t) = o(t)+ct +d,

where ¢ and d are some constants. From the almost uniform convergence
of {Y,} we have

(3.26) 2(0) = limy,(t) =0, limY,(¢) = Y(0) =
k—oo k—oo
Hence, by (3.22) and (3.25), we get d = 0. We sha;ll prove that ¢ = 0.

In fact, let B, = Y'#4,. Then by (3.25) we obtain 8,(,) = c. On the other
hand, from the properties of convolution and (3.23) we have

t—-7
(3.27) 1B, ()] _[ lim f drf Pr(8) v, (8) ék(‘r)ds]]lslk
= —ayp t

< [ll“n((DrWr) * 6ki]¢=!k + llinl ¢||'(tr) V’r(trn +

r—00 r—o

+

lim f dtf D, () y,(8) b, (v)ds l]e 4

r—>00
—ay 1'

'
where ¢, = p*9d,, y, = a*6,, D,(t) = [¢@,(s)ds.
0

Consequently lim f,(t,) = 0. Hence it follows that the sequence

k—>o0

{Y,} is uniformly convergent to the function #. By (3.23) and Gronwall’s
inequality we get

(3.28) I¥(0)] < B M)exp [t~ f ?(s)ds
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where M is an arbitrary compact interval and

4
(3.29)  By(M) = max| [ (t=8)(pu(s) — Ya(s))pi(s)ds |+ lpe(to)]
€ tk

Evidently lim ¥, = 0. Thus our assertion follows.

k—oo
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