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The present paper deals with complete Boolean product of complete
Boolean algebras which is a natural extrapolation of the (m, 0)-product
considered in [3]. We show that, for each cardinal a greater than the
cardinality of the continuum, the collapse algebra Cola is a complete
product of two Cohen algebras or two random algebras. Thus, for Cohen
algebras or random algebras, respectively, complete Boolean products
form a proper class and the greatest complete product does not exist.

Another result answers a question which was arisen by the previous
problem. The theorem asserts that in the collapse algebra there is an
infinite decomposition which is independent of a countable independent
set of complete generators.

The complete Boolean product has been studied also in [1].

Before stating our results more precisely, let us introduce some no-
tions and notation. In general, we shall follow the terminology used in
[3] (however, the notation used here is not always strictly the same as
in [3], e.g. we shall use A, v, 0,1 for Boolean operations and bound
elements; for logical conjunction and disjunction we use A and v).

An ordinal £ will be considered as the set of all ordinals less than &,
a cardinal will be an initial ordinal. Thus, a natural number n is the set
{0,1,...,n—1}. For €2 we get ¢ =0 or ¢ =1, and so for an element A
in a Boolean algebra we have (—1)**4 =1-4 = A4 or (—1)*"4 = (—-1)-A
= —A, respectively. If f is a function from A to B, we write D(f)
= A and W(f) = B; the set of all such functions is denoted by 4B. Follow-
ing this definition, “2 is the set of all infinite sequences of 0, 1. The set
of all finite sequences of 0, 1 will be denoted by <“2.

The collapse algebra Cola is the complete Boolean algebra RO (“a)
of all regular open subsets of the topological space “a which is the usual
product of w copies of a with the discrete topology. (Thus, the base of the
topology in “a is formed by the sets w, = {f € “a; f 2 ¢} for all functions
¢ such that D(¢) is a finite subset of w and W(p) < a.)
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The Cohen algebra is the complete Boolean algebra of all Borel sets
of reals modulo the ideal of meager sets. The random algebra is the complete
Boolean algebra of all Borel sets of reals modulo the ideal of sets of measure
Zero.

Definition. A Boolean algebra € is a complete Boolean product
of Boolean algebras &, & if

(i) € is a complete Boolean algebra,
(i) &, # are regular subalgebras of €,

(iii) &/, # are independent in ¥,

(iv) &/ VU# completely generates €.

The main results of the paper can now be formulated as follows:

THEOREM A (Boolean two-Cohen theorem). Let a be a cardinal, a > 2°.
Then, in the collapse algebra € = Cola, there are regular subalgebras o/, #
isomorphic to the Cohen algebra and such that € is a complete Boolean product
of &, AB. '

THEOREM B (Boolean two-random theorem). Let a be a cardinal,
a > 2°. Then, in the collapse algebra € = Cola, there are reqular subalgebras
A, B isomorphic to the random algebra and such that € is a complete Boolean
product of <, A.

The proofs of the theorems are given in Sections 2 and 3, they use
the Boolean-valued models of set theory. In Section 1, a theorem on
independent generators and decompositions (Theorem 1.4) and its appli-
cation to the collapse algebra (Theorem 1.5) are proved.

Remark. The unpublished result called two-Cohen theorem was proved
by R. Solovay:

Assume that o} is countable and z i3 a real. Then there are Cohen reals
a, b such that x = a+b, i.e. x € L(a, b).

The analogous result is known for random reals.

The Boolean versions presented in this paper give information on
subalgebras generated by reals a, b.

1. Independent generators. The main results of this section are Theo-
rems 1.4 and 1.5. We start with reminding some definitions.

1.0. Definition. A subset D of a Boolean algebra is called a decom-
position (of unit element) if

(%) 0 # A for any A € D,

(il) AAB =0 for any A #B, A,BeD,

(iii) VD = 1.

1.1. Definition. A family (D;; ! € T') of decompositions in a Boolean

algebra is called independent if A\ {4,; k € n} # 0 holds true for any finite
subset {l,, l;,...,l,_,} € T and for any elements A, e D, , k€ n.
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. 1.2, Definition. We say that a subset S of a Boolean algebra is
independent if the set of decompositions {{4, —A}; A e 8} is independent.
To get an equivalent formulation, let us introduce the notation

f.= AN{(—-1)®f(k); ken} for any new, e€™2, fe™S.

Such an f, will be called a constituent over 8 if f is injective. Now, S is
independent if any constituent over S is non-zero.

1.3. Definition. We say that a decomposition D is independent
of a subset S of a Boolean algebra if, for any constituent f, over 8 and for
any A €D, f, # 0 implies AAf, # 0.

Remark. The implication in the defining condition is necessary, as
8 itself need not be independent. For an independent set 8 it is equivalent
to demand the set of decompositions {D, {4, —A}; A e 8} to be inde-
pendent.

1.4. THEOREM. Let # be a non-atomic Boolean algebra with countably
many generators and let % be a countable set generating B. Then there i3
a countable independent set X, generating B, such that any constituent over
X majorizes some mon-zero constituent over ¥.

COROLLARY. Let m be an infinite cardinal, # a non-atomic algebra,
and % a countable set m-generating (completely generating) #B. Then there
18 a countable independent set X, m-generating (completely gemerating) 2,
such that any decomposition independent of ¥ is also independent of & .

Proof. Let the assumptions of the corollary be fulfilled. We denote
by 2, the subalgebra of # generated by %. The algebra %, is non-atomic,
for if A € 8, were an atom in %,, then, forany Ye%, A< Yor A< —-Y
would be true, which implies that 4 would be an atom in # as well. Thus,
using the theorem we get an independent set %, generating %,, which
m-generates (completely generates) the algebra 4.

The condition concerning constituents enables us to prove independ-
ence of decompositions. Namely, let D be a decomposition independent
of ¥, let A € D and let f, be a constituent over . Then there is a constituent
g, over ¥ such that 0 # g, < f,, and therefore also 0 # g,AA <f,AA
holds true.

Proof of Theorem 1.4. Let # = {Y,; n € w} be a set of generators
in a non-atomic Boolean algebra #. For n € o we put

¥ = A {(-1)P X5 ken}; e "2} —{0},
¥y =U{Wnineaw}
Any y, is a decomposition in #. As # is non-atomie, we get
(%) (VYey,)@Am=n)[(YAY,) #0A(¥YA—-Y,) #0].
(Otherwise, ¥ would be an atom in %.)
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The set of independent generators ¥ = {X,; » € w} will be defined
by induction on n.

Induction assumption. To define generators {X,; k e n} we put
w, = {A{(—1)™X,; ken}; s em2}.

Then we have
(i) =, is a decomposition in %, i.e. X # 0 for any X ez,
(ii) wn = y’
(iii) «, is a refinement of y,, i.e.
(VX ez,)(Vken)[(XAY,) =0V (XA —-Y,) =0].

For any X € z,, let us denote by m(.X) the least natural number m the
existence of which follows from (#). The generator X,, is defined as follows:

X, = V{XAYyx; X €a,}.
It is easy to verify that.
—X, = VIZA = Ypx; X €3,}.
Evidently, for any X € z, we obtain
XAX, =XAY,xy, and XA-—-X,=XA—-Y,x.
Thus, we have
Z,, = {&XA Yoz XA — Yz X €,},

which implies that the gemerators X,, X,, ..., X, fulfill (i)-(iii) of the
induction assumption ((ii) and (iii) follow from the minimality of m(X)).
The definition of & by induction is therefore complete.

From (i) it follows that & is an independent set in %, (ii) gives the
condition on majorizing constituents, and (iii) implies that Z generates
a subalgebra containing all ¥, (n € w), thus & generates #.

Remark. Without the condition on majorizing constituents, the
theorem can be proved in a much simpler way. We can use the fact that
the only (up to isomorphism) non-atomic Boolean algebra with countably
many generators contains an independent set of generators.

1.5. THEOREM. Let a > B be cardinals, a being infinite. Then in the
collapse algebra € = Cola there are & countable independent set & of complete
generators and a decomposition 2, of cardinality B, independent of .

Proof. It is proved in [4] that the algebra ¥ is completely generated
by a countable set of generators % = {Y,,; », m € o}, where Y,,
= {f € ®a; f(n) < f(m)}. It is easy to show that the set 2 = {D,; & € f},
where D; = {f € “a; f(0) = £ (modp)}, is a decomposition in ¢ independ-
ent of . The rest follows from Theorem 1.4 and its corollary.
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2. Reducibility to Cohen algebras. In this section we give a proof
of Theorem A. First we present some notation and facts we shall need.

2.0. The functions from “2 will be considered as real numbers. The
base for a topology in “2 will be formed by the sets u, = {f € “2; f = ¢} for
all functions ¢ such that D(g¢) is a finite subset of w and W(gp) = 2. The
topological space defined in this way will be denoted by R.

We define a binary operation + on R as follows: for a, b, c € ®2 we
set a+b = ¢ if and only if a(n)+b(n) = ¢(n)(mod2) for any n € w. The
operation 4 is continuous in both variables.

Further, we define a o-additive measure x on E by setting u(u,)
= 27" if cardD(p) = n. Thus we get u(®2) = u(u,) = 1. Every Borel
get in R is u-measurable.

2.1. Steinhaus proved in [6] the following theorem:

Let A and B be subsets of R, u(A) > 0 and u(B) > 0. Then the set
H = {a+b; a € AAb e B} contains an interval u,,d € <“2.

We shall use the following modification of the Steinhaus theorem:

2.2. THEOREM. Let A and B be G,-sets in R, dense in intervals u, and u,,
@, p € <“2. Then the set H = {a+b; a € A Ab e B} contains an interval u,,
$ e <"2.

Proof. Let C be a dense subset of R. Then there is a ¢ € C such that
%, and u,+c¢ = {f+e¢; f €u,} have a non-empty intersection. That inter-
section is an interval w,, y € <“2. The sets Anwu, and (B+c¢)Nnu, are G,
and dense in u,. The Baire theorem implies that their intersection is @, and
dense in u, as well. Therefore, there exists an a € (4 nux)n((B+c) N,).
Here we have a =b+¢ and a+b = ¢ for some b e B. It means that
HNC # @ for any set O, dense in R. Therefore, the complement of H
cannot be dense in K, and so H contains an interval u,, ¢ € <“2.

2.3. In the proofs of Theorems A and B we shall use the method of
Boolean-valued models, which is presented in details, e.g., in [2]. The
terminology and notation introduced there will be used in Sections 2 and 3.

Thus, V denotes the universal class of all sets and for any complete
Boolean algebra ¥ we have a Boolean-valued model V¥. If ae V¥ is
a real number in the sense of the model, then a determines in € the elements
A, = la(n) =0, n € 0, and a complete subalgebra &/, completely gen-
erated by {4,; n € w}.

Solovay proved in [5] that . is isomorphic to the Cohen algebra if
and only if, in the sense of the model V¥, a belongs to any dense G,-subset
of R which belongs to V (then a is called the Cohen number over V). An
analogous result is valid for the random algebra, subsets of measure 1
and random number over V.
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In case of the collapse algebra € = Cola, there is a function fe V¥,
collapsing a to w, i.e. such that, in the sense of V¥, f is a surjection of w
onto a.

24. Proof of Theorem A. Let us fix a sequence (k;; £ € a) contain-
ing all open dense subsets of R. The existence of such a sequence follows
from the assumption a > 2“ (the sequence need not be injective). The
collapsing function in V¥ will be denoted by f. Let & = {X,; » € o} be
an independent set of complete generators in %, let 2 = {D,; n € w}
be a decomposition in ¢ independent of &. We denote by x a real number
in V¥ such that |z(n) =1i| = (—1)'X, = X! for i €2, » € .

CLATIM. For any ¢ € <2 there exists a real number a, € V¢, Cohen over
V, such that a, 2 ¢ and the number b, = a,+z i8 Cohen over V.

We prove the Claim in the model V¥. The intersection of open
dense sets hy,), " € w, is a dense G,,-subset in K. Denoting by 4 = B
its intersection with u, = 4, and using Theorem 2.2, we get an interval
ug, ¢ € <2, such tha.t Uy S {a—l—b aeAAbeBj}. There exists a rational
number r such that x+7r € uy, 80 we have a € A and b € B such that z+»
=a+b, # = a-+(b+r). Evidently, ¢ =a, and b+r = b, are Cohen
over V. The condition a, 2 ¢ is also fulfilled. The Claim is proved.

Now, let 0 = (o(n);n € w) be a sequence of all finite sequences belong-
ing to <“2. Using the notation introduced in the Claim, we define the real
numbers a, b e V¢ as follows:

"a = aa(n)" = 'Dn’ "b = bo(n)” = -D
For 1€2 and n e o we set

Al = |a(n) =i, B:=|bn) =il.

The subalgebras completely generated by {4%; n € } and {BJ; n € w}
or, which is the same, by {4,; » € 0} and {B,; n € o} will be denoted
by < and %, respectively.

We complete the proof of the theorem in the following steps:

(i) For any 2 €2 and 7 € o,

45, = V{DyAllagy () = ill;p € 0},
= V{Dp A gy (n) = ill; p € w}.
(ii) The equalities
Af‘ = —A::H’ st = —Biﬂr X:. = '—X::H’
X = (ALaBY)v (AP ABRYY), X = (ALA B (A A B
hold for any ¢, j € 2,n € w and for any permutation of A, B and X (the
addition of ¢ and j is made modulo 2).
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(iii) {4%;n € w}U{X%;n € w} for i €2 is an independent subset of €.
(iv) {4%;n € w}U{B!;n € w} for i €2 is an independent subset of ¥.

(v) o and # are isomorphic to the Cohen algebra.

(vi) &/ UZ completely generates €.
(vii) o and # are independent subalgebras of €.
Assertion (i) follows directly from the definitions of a, b, A%, B:.
Equalities (i) follow from (i) and from the fact that a,(n) 4 b,(n) = x(n)

(mod 2), and thus

(llag(m) = Sl lbg(m) = )V (lap(n) = s +1lA lIby(n) = j+1])
= |le(n) =1i+jl
for any i,j € 2,n € w, 9 € <2 and for any permutation of a,, b,, z.
To prove (iii), it suffices to show that, for any 7 € w, ¢, e €2,
NAZOAXI® B en} #0.
We have
AV Dy AllG (k) = @(B)ll; p € 0} A X5 & € n)
= N {D5A llag(k) = p(k)IAX{M; k e n},

where 7 € w is such that ¢(p) = ¢. Then |la (k) = ¢(k)|| =1 for any ken
and, since 2 is independent of %, we get

AN{D;AX Bk en} = Daa\N{XiP; ken} 0.

For the proof of (iv), let us choose n € w, ¢, y € "2. Using (ii) and (iii)
by direct computation we get

AN{AZPABI® ;s ken} = AN{ATPIAX®; L en} #0

if we set ¢ =@+y,ee™2.

Assertion (v) follows from Solovay’s result mentioned in 2.3 and from
the fact that, in V¥, ¢ and b are Cohen over V..

(vi) is an immediate consequence of (ii) and of the fact that & com-
pletely generates €.

Finally, to prove (vii)- we use (iv) and observe that, the algebras
& and # being isomorphic to the Cohen algebra, they contain dense
subsets of elements of the form A{df®;ken} and A{BI®;ken},
respectively, for ¢, y € "2, #n € w. Thus Theorem A is proved.

3. Reducibility to random algebras. This section is devoted to the
proof of Theorem B. As a consequence of the duality between measure
and category, the proofs of Theorems A and B are rather analogous.
However, a new approach is used for the independence of the subalgebras.

3.0. Let ¥ = (X,;n€w) be a family of complete generators in
a complete Boolean algebra € and let € V¢ be a real number in the sense
of the model V¥, such that |lz(n) = i|| = (—1)*X, for any i €2, n € w.

2 — Colloquium Mathematicum XLV.2
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Then, for any rational r € V¥, the number o' = z+r defines a family
Z' = (X,;n € o) (by setting |&'(n) = 0] = X,) completely generating %.
It is a consequence of the equality V(z) = V().

3.1. Proof of Theorem B. Similarly as in 2.4, let us fix a sequence
(he; & € a) containing all subsets of R which are of measure 1. Further
we take a sequence ¥ = (X,;n € w) independently generating ¢ and
a decomposition 2 = (D,; £ e a) in € independent of #. Assume that
elements f, x € V¥ have the same meaning as in 2.4.

CLAmM. For any A, B< R, u(A), u(B) > 0 there are real mumbers
a5, bip € V¢ random over V, and a rational number r 5 € V¢ such that
a,5€A,bpeB and a,5+b,p =2+7,5.

We prove the Claim in ¥¥. The intersection of all subsets h, nys M € @,
of measure 1 in R is a subset of measure 1. Its intersection with sets 4 and
B will be denoted by 4 and B, respectively. Using the Steinhaus theorem,
we get an interval u,, # e <°2, such that w, < {a+b;ae AAbe B}.
There exists a rational number r,, such that z+r,5 € u,, 50 we have
a,pedc A,byzeBc B,az+byp =2+7,5. It follows from 2.3 that
a,p and b,p are random over V, which completes the proof of the Claim.

Now, let v = (v(£); £ea) be a sequence containing all pairs (&)
= (4, B) such that A, B< R, u(4)> 0, u(B)> 0. The existence of
such a sequence follows again from the assumption a > 2”. The real
numbers a,b e V¥ are defined as follows: [a = Aygll = Dgy Ib = byl
= D, for any £ ea. For i € 2, n € w we set

Al = la(n) =il, B =|bn)=1il.

Since the reals a and b are, in V¥, random over V, we infer, using
again Solovay’s result mentioned in 2.3, that the subalgebras </ and %,
completely generated in ¢ by {4); n € o} and {B}; n € w}, respectively,
are isomorphic to the random algebra.

If we define r € V¥ by setting {r = . = D, for any & e a, we get
in V¥ the equality a+b = x+r. Here 7 is rational in V¥, and by 3.0 we
infer that the subalgebras </ and # completely generate €.

We complete the proof of Theorem B by showing the independence
of #and €. Let0 = 4 e o/ and 0 # B e #. Since o and & are isomorphic
to the random algebra, i.e. to the algebra of all Borel subsets in B modulo
the sets of measure 0, there exist subsets A and B of R such that
u(A)> 0, u(B)> 0 and such that 4 = |a e A|l, B = [|b € B|. We have

laeAll=lle =a 5l =D, and |beB|=|b =Db,gl =D,

for & such that 7(&) = (4, B). Consequently, we have AAB> D, # 0.
Thus Theorem B is proved.
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