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1. Introduction. Let ¢ = {smod L: se E}, where E denotes the real
numbers, be a simple closed curve. Let

(1.1) ¢: C—~E*

be an immersion of class C" (r>2) of O into the Euclidean plane E?
such that

L
(1.2) fk(s)ds = 2nn, where 1< n < oo and k(8) > 0 for n> 2,
0

k(8) denoting the curvature as a function of arc-length parameter s of ¢ (C).
In the case n = 1 the mapping (1.1) is supposed to be an imbedding of
class C"(r = 2). In the sequel (1.1) is called a closed plane curve.

The purpose of this paper is to give a construction of a homotopy
of class C" if ¢ is an immersion (resp. an isotopy of the same class if ¢
is an imbedding) with the following properties: if

(1.3) ®(8y 7) =((L‘(8, ), Y (8, T))7 0<7< o,

denotes this homotopy (resp. isotopy), then

(1.4) ?(8,0) = ¢(s)
is the immersion (resp. imbedding) (1.1) and

L 2nn L . 2nn
(1:5) (8, ) = (a+ T cos 17 8,b+ py— sin 7 s)
and
(1.6) (s, 7)| =1

for every 7, 0 < v < oo, where ¢(s, t) = 0p/0s.
A homotopy (1.3) which satisfies (1.6) is called length-preserving.
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By
A t t(s, 7) = ‘i’(s’ 1), n($1) = (_?)a z)

we denote the unit tangent and unit normal vec-
tor field of immersion (resp. imbedding) ¢.(s)
= ¢ (8, 7). For s fixed we denote by a(s, 7), f(8, 7)
0 x_ coordinates of the vector ¢,(r) = ¢’(s, T) tangent
to the curve ¢,(7) = ¢(8, ) with respect to the
moving frame ¢, n (Fig. 1). Hence we have

Fig. 1

(1.7) @' (8 T) = a(s, T)i(s, ) +B(s, T)N(S 7).

2. Length-preserving homotopies. In coordinates, system (1.7) has
the form

z = aa.""ﬂ?./’

(2.1) , .

Yy =pitay.
The homotopy (1.3) is called regular if
(2.2) T4yt =a2+42> 0.
From (2.1) we have

a = da’ +yy',

B =y —ya'
Using (2.3) and the Frenet formulas # = —ky, y = k&, we get for
a length-preserving homotopy

(2.3)

(2.4) a = kB,
(2.5) K = (B+aky.

A vector field (a, §) which satisfies (2.4) and (2.5) is called length-
preserving.

In section 3 we prove that for every length-preserving vector field
(a, B) there exists a solution ¢(s, 7) of (1.6) for which k(s, r) is the curva-
ture function and, therefore, ¢(s, 7) is length-preserving. Thus (2.4) and
(2.5) are necessary and sufficient conditions for a deformation to be length-
preserving.

If k(s, t) # 0, then it follows from (2.4) and (2.5) that

8
(2.6) ak—ak+ak* — ¥ [k do =0,
0

(2.7) Bk — Bk +BK* — k' +% [ ¥ do = 0.
0
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If k(s, 7) is a periodic function of s with the period L and
L
(2.8) [¥do =0,
0

then, since a and g appear explicitly in (2.6) and (2.7), their solutions
are also periodic functions of s with the period L. General solutions of
(2.6) and (2.7) can be written in an explicit form. Namely, homogeneous
equations assigned to (2.6) and (2.7) have partial solutions

8 8
a = —f; = cosfk(a, T)do, a3 =f; = sinfk(a, 7)do.
0 0

Since

QG a

B B
B Be
the special solution of equation (2.6) can be written in the form (after
dividing (2.6) by k)

=k,

ay Gg

g 8 (4

(2.9) ay = azf(alfk’dn)da—alf(asz'dn)do.
0 0 0 0

We have

0y = k(alf(alfk'dn)do—l—azf(azfk’dn)dc).
o 0 o 0

We write

8 c

(2.10) Bo=a, [ (a1 L dn) do +a, fs (22 f k’dn) do.
0 0 0 (1}

Immediate verification shows that (2.9) and (2.10) is a solution of
the system (2.4) and (2.5). Instead of (2.6) we can start with (2.7) to get
a solution of the system (2.4), (2.5). Formulas (2.9) and (2.10) are defined
also if k(s,r) = 0 for some s and, therefore, define a solution of (2.4)
and (2.5) also in this case. Thus the assumption k(s, ) # 0 can be neg-
lected. '

It follows that if k(s, t) is a periodic function with respect to s with
the period L, then there exist periodic solutions with respect to s of (2.4)
and (2.5). Periodicity of g, follows from that of a4, k(s, 7) and (2.4).

Let us suppose that k(s, ) changes with respect to r according to
the law :

2r

(2.11) K (s,7) =

n—k(s, 1),
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where % denotes the integer defined by (1.2). We consider the special
solution of (2.11)

27 2% —r
(2.12) k(s 7) = —n+\|k(s)——n]e™", 0<<7< o0,
L L
The solution (2.12) satisfies (1.2) and (2.8). We also have
27
’G(_S, 0) = k(S), k(s, 00) = T'n.

Thus, applying the existence theorem of section 3, we have the
following theorems:

THEOREM 1 (the homotopy theorem). If ¢ is an immersion for which
(1.2) s satisfied, then there exists a regular length-preserving homotopy
@ (8, 7) of class C” with the curvature function (2.12) such that (1.4) and (1.5)
are satisfied.

THEOREM 2 (the isotopy theorem). If ¢ is an imbedding of class C'
(r > 2), then there exists a regular length-preserving isotopy ¢(s, ) of class C”
for which (2.12) is the curvature function and ¢(8,0) = ¢(s), p(s, ) 18
a circle of length L.

As an immediate consequence of Theorem 1 and (2.12) we have

THEOREM 3. If k(s) is the curvature function of a closed curve with
the property (1.2), then for every 7,0 <1 <1,

k(s, ) = (Q1—1)k(s) —1-12—;—%

18 a curvature function of a closed (plane) curve.
Theorem 2 will follow from Theorem 1 if we prove

LEMMA 1. For n = 1, (2.12) is the curvature function of an imbedded
closed plane curve provided k(s) is the curvature function of such a curve.

Proof. Let us write

1
ky = max |k(8)], & =—.
0<s<L k,

Then the mapping
(2.13) P(s,8) = @ (8) +ne, le] < &y,

where n denotes the unit normal vector to ¢(C) at ¢(s), is an immersion
as follows from the equality

Ip(s, 2)2 = (1—ek)2.

Let 0 < & < &, denote a number such that, for [¢| < &, (2.13) is an
imbedding. Since C is compact, ¢, exists.
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We write
D = {zeB*: 2z = p(s', L&) = p(s8, +&), 8,8 C}.

To every point xeD there correspond exactly two points 8’ = s'(z)
and 8’ = 8"'(x) of C. The tangent lines of ¢(C) at ¢(s’) and ¢(s’’) are
parallel. The points ¢’, s” C divide C into two parts C,, C; with the property

01U02 :0’ 01n02 ={8’, 8”}.
It follows that

(2.14) length (C,), length(C,) = =s,.
Indeed, we have
o
f k(oc)do = =.

’

8

If we suppose to the contrary that |s'’ —s’| < me,, then, for some
ge(s,8"), k(o)(s’—8) == and, therefore, k(o) > l/e, contrary to
the definition of &,.

Let us observe that if we change ¢ on C,, keeping ¢ unchanged on C,,
in a way that the resulting mapping ¢* is again an imbedding of C for which

(2.15) L, = [ Ip(o)lds = [ |p*(0)ldo = length of Cj,
8 8

then the curvature functions k(s) and k*(s) of ¢ and ¢* respectively,
coincide on C, and, therefore, the curves ¢,(C) and ¢} (C) with the cur-
vature functions

27 27 27 27
THEo-F)e Fe(ro-F)en osica
coincide on C, provided ¢.(s’) = ¢7(s') and ¢,(s') = @2 (s’) (Fig. 2). For
instance, the number
y

(2.16) 9:(8") = . (8")] (Cy) 0(Cy)
is independent of the choice of p on O, if ¢

remains unchanged on C,. Thus for the deter- N~ X
"mination of (2.16) it suffices to change ¢ to a Fig. 2

form convenient for calculations.
Let us suppose that s = 0 and s’’ = L,, where L, is defined by (2.15).
We choose a coordinate system in E? such that

9(0) =(0,0), ¢(0) =(1,0).
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We define a subsidiary imbedding ¢: C—E? of class C' by the follow-
ing formulas:

L.—
(s, 0) for 0 <8< szg,
Lz - 1':80 28 - Lz . 28 —La

——— +¢g,C08 y € + &SN

2 2¢g, &

@(8) = for L, — me, <s< L2+7wo,
2 2
L

(8, 2¢) for z";"tso <8< L,,
®(8) for L,<s< L.

It follows from (2.14) that ¢ can be always defined. The curvature
function of ¢ is defined by the formulas

L,— L
(0 for 0 <8< 22m°, 2'12'“80<8<L2’
£ 2 2 "’

\%k(s) for Ly<s< L.

Using the formula

7.(8) = (fs[cosfk(n,r)dn]da,fs[sinfak(n, r)dn]dor),

where
~ ~ 2
k(s, ) = ——I—(k(s)——;—)e", 0<8s<<L,and 0<1t< o0,
we get
] 1
2sin [— QA—e ")+ —e —] e
~ ~ L £
](pt(L2)_(Pr(.0)| = o ’
— 1—e ")+ "
L 0
(2.167)

9 (L2) — ¢ (0)] = 2ey = lp(Ls) —9(0)].

For every a> 0, the imbedding ¢ can be approximated by an imbed-
ding ¢*: C—E* of class C" (r > 2) such that

lp*(s)—¢(8)l<a for L—a<s<L and 0<s8< L,+a,
*(8) = @(s) for Iy+a<s<L—a.
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This can be achieved by smoothing ¢ in sufficiently small neigh-
bourhoods of the points 0, L,— wey/2, L, + 1ey/2, Ly. It follows that the
absolute value of the difference of numbers (2.16) and |¢r(L;) —or(0)]
can be made arbitrarily small and therefore

l‘;’z(Lz) - &)t(o)l = |¢7(L2) —'(pt(o)l .
Hence, by (2.16), we have for every 7, 0 < v < oo,
|z (Le) — - (0)| = 2¢,

i.e., the number & (¢, (C)) evaluated for ¢,(C) is a non-decreasing function
of 7. This proves our lemma.

From (2.16) it follows that if £(v) = &(p,(C)) is defined, then

| 1 4, 1
sin [f (1 —6_‘“) + —2—8—A m] 7'58(1')
(2.17) e(r+4r) =
2_7'C (1 _ e—A‘r) +6—A1___
L e(7)
From (2.17) it follows that
de . &(r+4r)—¢e(7) 27
% =£1H10 A.r = ——-—L—82(1)+8(T)o
The solution of the differential equation
de 2=
Er—+—1782—8=0, 8(0) = &gy
has the form
1
2. = <1< .
(2.18) e(1) om A 1 om _.,’ 0<7< @
Z \a I)°

Formula (2.18) has the following geometrical meaning:

THEOREM 4. If a circle of radius e, can be freely rolled in a simple
closed plane curve ¢(C) with the curvature funmction k(s), then a circle of
radius e(t), defined by (2.18), can be freely rolled in the simple closed curve
@.(C), whose curvature function is defined by (2.12), where n = 1.

Using theorem 3 we also have
THEOREM 5 (the four-vertex theorem). Ewery imbedded closed plane
- curve ¢ (C) admits at least four vertices, i.e., points s; such that k(si) = 0,
i=1,2,3,4. '
Proof. If k(s) denotes the curvature function of ¢(C), then

9
k(s,7) = (1—7)k(s) +1—, O0<t<1,
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is positive for r sufficiently close to 1 and hence it is a curvature function
of a convex closed curve. Since %(s, ) and %(s) have the same stationary
points, the theorem follows from the vertex theorem for convex closed
curves.

3. THEOREM 6 (the existence theorem for the system (1.7)). Let
(ay B) be a length-preserving vector field with the curvature function k(s, 1),
0<7< oo. Then there exists a function ¢(8, 1) defined on C X [0, oo],
which satisfies (1.7) and whose curvature function is k(s, v). The solution
with the initial condition (1.4) is unique.

First we prove this theorem under the assumption that k(s, ) is
of class C®, hence also a(s,7) and f(s,7) are of class C®, and that
all derivatives of k(s, ), a(s, t), f(8, ) are uniformly bounded by a
constant A. The proof is carried out in the following parts. We do not
assume that k(s, 7) is periodic with respect to s.

a. The closed interval [0, o] can be endowed with the topology of
the interval [0,1]. Let P, denote a division of [0, 1] by the points k/n,
k=0,1,...,n. We write

(3.1) @o(8, 0) = @(38), (s, 0) =1(s), (s, 0) = n(s),
(3.2) 91(8) h) = @o(8, 0) +(a(s, 0)% +B (s, 0)no) b,
where 0 < h << 1/n throughout this section.
If
k—2

Pr—1 (8, " +h)
is a smooth function with respect to s and

E—1 . k—1
(3.3) be—1|8) " = Pr-1{8 " ’

E—1 . .

(3.4) Np_1(8) = (—Yr-1) Tp—1)s

where @;_; = (¥4_1, Yz—1), then

1 E—1
+h) = @Pr—1 (37 " )+

s o

k-1

(35) @ (s, -

We write
(3.6) P (8 T) = @y (8,

for v = (k—1)/n +h.

+h), n=1,2,...,
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b. In this part we evaluate

. k-1
‘Pk(81 " +h)'

We write

We have
. . 1
@1 =1, =1+ (B +aoko)”o;1

. 1
Ny = N— (Bo+ aoko)to“n—

Using (2.5) and definition (3.5), we get

. . 1 1 1
(3.8) @2 =ty =1+ [(Bo + aoko) (51‘*'017“1 ]”o ta;— n? +bzﬁ = Ozﬁ’
1
C; = Gy +b2’;b‘7
where
@y = [—(B1+arke)to + (2, — By ko no](ﬂo‘{'aoko)
1, 1
b2=—k’(8, 0—)(ﬂ1t0"“a1no)’ O<0<1’
2 n
1
(3.9) Ny = [(ﬂo + ag ko) +(ﬂ1 +ak ]to +°2
and where C, 18 a vector such that cy;¢, = 0, |c;] = |C4], and (ca, C;) defines

the positive orientation of EZ.

Inductively we have
k—2
. : . , 1 1
610) i =t =g st i (Bt D K)oy
=0

+(2—1— Br—1Ko) [§ (ﬂa‘ +a; ki)] Mo
i=0

Ul 1
+ [ﬂk-l + (ko‘l' 2 k;;) alc—l] Mo~
im0
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— (/ék—1 + ag_1 ko) [kz—z (ﬂ: + aiki)]t"% +
i=0

. . - . 1
+(@g—1Cx—1 + %1651+ Br_1Ck—1 +Br_1Cr_1) pry)

where ¢, and ¢, are defined in (3.8) and (3.9), and if ¢,_, is defined, then

1 . . . . 1
(3.11) ¢, = ay +bk7b-+ (ak—lck—l_l_ak—lck—l—'_ﬂk—lck—l+ﬁk—]ck-—1);’

where
k-2

O = [— (Beos + o sko) o+ (dx s — Brako)na] D) (Bi+auk),
k-1

k—1
ﬂk—l ";'—1 1 ak_l ";_1 1
k'’ 6, —| — ’” 0, —
2 ;1 A +‘fn 2 Zk 517 +‘n’

i=1

bk =

0<b,<1, +=1,2,...,k—-1.
Formula (3.10) can be written in the form
© 1 1\
(3.12) B =t =tot D (Bitaddng-"+ = e

n?
1=0 i=2

For the complementary vector to ?,, we have

k-1 k
. 1 1 -
(3.13) mo=m— D Btk —+— D5
i=0 =2
where |[c;| = |¢;], ¢;C; = 0, and (¢;, ;) defines the positive orientation
of E*.

c. A combinatorial formula. For the estimation of £, the following
combinatorial facts are useful. Symbol L is called a linear scheme on the
indeterminate x if the symbols

(3.14) L(Ivr+L») and L*'z+Lit'y
are identified, where

L'z =LL...Ly, L'z =ux.

© times
LEMMA 2. Let L be a linear scheme on the symbol x. If P,(x) = x and
P, (z) =Pn—1(a7)+L(P —l(m))’ n=2,3,...,

then
P,(x) = (1L+L)"x.
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The proof of the lemma is a simple verification.
Remark. If L is as in Lemma 2, P,(z) =« and

P, (x) =Pn—l($)+nx+L(Pn—l(m))’ n=2,3,..
then

(3.15) P,(x) =1+L" 'e+20+L)*" 22+ ... +nz.
Formula (3.15) follows immediately by Lemma 2.

k
d. The estimation of n~* ) ¢;. We have
i=

1 1
A % < KA3%, A pory < SKASF,
where K denotes a constant.

In the estimation of ¢, we use the fact that if the product of m functions
is estimated by A™, then the derivative of this product is estimated by mA™,
provided all these functions and their derivatives are uniformly bounded
by A.

For ¢; we have

1 1 1 1 1
o3 — < 2K A= +2AKA*— +24-3KA4°— < 2KA®— 444 -3KA° .
n n n na nz na

k
If Y a;A* is a polynomial in A, then we define the linear operation

=0

(3.16) L, (Zk‘ a,.A") - Zk:'iaiA‘“.
=0

T=0

Hence
1
Py

1 1 1
lez +e5| — < KA®— 4+ 2KA*— +4-3KA*
n n2 n2 n

. 1 1 4
=KA*—+2KA*—+ —L, KA3i .
n? nt  n n?
k+1
By induction, if »7* ) ¢; is estimated by a polynomial P,(4,1/n)
i=2
of degree k+2 with respect to A and %k +1 with respect to 1/n, then

k+2
3
C;
i=2

13.17)

1 1 1 1 1
‘where

1 1 1
PI(A, ;) - K&, PO(A, ;) =0.
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Using formula (3.15), we can represent the right-hand member of
(3.17) in the form

1 1 1 1\\/ 1
Pk+1(A, ;) =P,,(A, ?)+(k+1)KA3F+4LA(Pk(A, —f;))—n—
k+1 .
K . 4 k—i+1 3 4
=FZ@(1+WLA) A°, whereL:—y—b—LA.
For k =n we get

n

1\ E \.[ 4\t
Pn(A,-;)=;2—Zz(1+—;LA) A3,

i=1

Let us take
(3.18) n > 2kl,
where ! is an integer such that
(3.19) %A <1.

Then we have

k+1

1 K 4 \kiH
2 P4 - Vili+—1L 4.
(3.20) "“( ’2kl) (2K1)? ‘élﬂ( tom A)

For a fixed summand of (3.20) we have

4 k—1+1 .
1+ —1L 4
'( Y A)

(2K1)*

K i"‘i“ 1 44 +o)
@R) ' £ 251 (2R

(k—i+1)... (k—i—j+2)

k—i+1

K43
20Kl Y
j=0

X

(j +2)? (4A )f

)

Since (j +2)%/2’ (j = 0,1, 2,...) is bounded by a constant M we get,
using (3.19),

k—i+1

K 4\ RASM 44\ KA'M 1
o . ——L A3 < - . - < . .
(2l)? z(l tom “) 2 (2K go: ( 1 ) ' 22k 44

l
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Thus for (3.20) we have the estimation
1 ) KA’M  k(k+1)
<

) ( 4A) (2K1)? °
W

If k— oo, then from k(k +1)/k* < 2 we get

Pery (A

1 KA’M
(3.21) Pk+l(A, 2kl) < Sl(—44) where n > 2kl.
e. Let {0,1/2]] < [0,1]. Then from (3.12) and (3.21) we have
KMA?

(3.22) gl = It <1+AL+ —

1
810 —44) for every te [0, 2—1] .

Thus the sequence (@), 1 <k < oo, is uniformly bounded on the
segment [0, 1/21].
Formula (3.5) can be written in the form

(3.23) qvk(é, k1 +h)

n
=
= @o($, 0) + —""—Zo‘ (@t +Bimyg) + (a1t +Br_1Mp—1) b

Since |t;] = |n;], we get by the use of (3.22) the estimation
k-1

q)k(s, +h)‘<A—|—2AG for n > 2kl

where G denotes the right-hand member of inequality (3.21). Hence

the sequence (3.6) is uniformly bounded on the interval [0, 1/21].
Functions (3.6) are equicontinuous with respect to r¢[0, 1/21]. If we

evaluate (3.23) for

k-1 -1

+h”, 7 = +h', kn>kr’
n n

r

T

and take the difference of these values, we get

2
Z (@it + Bimy)

i=k'—1
+ (a1 +.Bk”—1nk"—l)h” —(ap_1tp 1+ ﬂk'—lnk'—-l) b
E'—k -1

1
9" (s, ) —9"(8, TN < +

< 246G N N ¥ | < 4AG [ —7'|.
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By the theorem of Ascoli, there exists a subsequence
(3.24) (™ (s,7), r=1,2,...
of the sequence (3.6), uniformly convergent with respect to v[0,1/21].
We write
(3.25) @(8, ) = limg™(s, 7).

r—>00

The sequence (3.24) can be supposed to converge uniformly also with
respect to seC. Indeed, we have

g™ (s", D) —g™(s’, DI< [ 19"(s, T)ds < Gls" —5'].
;

Moreover, since ¢™(8, 7) is a smooth function with respect to s, there
exists a constant H such that

@™ (8" ) =" (s, )| < HIs” —§'|.

Hence we may assume that (¢"r(s, 7)), r =1, 2, ..., converges uni-
formly with respect to s. By induction, it follows that the function (3.24)
is smooth with respect to s.

Let us write

: 1
(3.26) (s, ) = lim ¢ (s, 7) = lim (s, 7), n[o, g]’
and
(3.27) n(s, ) = lim »™(s, 7),

where n" is the complementary vector to t"r, of the same length as ¢"r.
We prove that ¢(s, t), defined by (3.25), is differentiable with respect
to 7 and that ¢(s, 7) satisfies system (1.7).
We have

(s, 7")—g@(s, ') = lim (¢”r(8, 7"’) _q,"-r(s’ TI))

Hlm_[z ( (- :,))wz(m—n(s’%:))]

1= k,-—l

= } (at +pn)dr
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The last equality follows from (3.26), (3.27) and the definition of
the integral, where

k' —1 , kl—1
T’ = r'n ', 1 = rn +h,
r r
and
4] ’
lim — = ¢ lim—=— = ¢ lima. = limh. = 0.
b ) r r
r—>00 'n,. r—>00 ’n,. r—00 r—»00

Hence we have

8 II_ 8 ’
9’(77,)' (P,(’T)=at—|—‘3’n,
T —7T

where the right-hand member is evaluated at (s, ' +6(z"' —7')), 0 < 6 < 1,
and therefore

1

o' (8, 7) = al+pn, 16[0,?{].

It follows that ¢(s, 7), defined by (3.25), is a solution of (1.7). Since

a, § is a length-preserving vector field, the curvature function of ¢(s, 1)

is k(8, ). Therefore s is the arc-length parameter of ¢(s, r) for a fixed 7,

0 < 7 < 1/21, and ¢, n are unit vectors. Since k(s, ) is the curvature func-

tion of any solution ¢(s, ) of (1.7), it follows that this solution is
uniquely determined by the initial condition (1.4).

We repeat the construction, which led us to the solution ¢(s, 7)

on C x[0,1/21], for the segment [1/21,1 +1/2]] with the initial condi-

tion
@ 8 =@\8
R N 21 ’ 21 )

Functions a, g are defined on C x [0, 1]. However, they can be extend-
ed to the segment [0, 2] by setting, for instance,

a(8,1+7) =a(8,1—-1), BB1+7)=p361—17), 0<r<1.

Then, since the estimations of ¢, a, 8, ¥ and its derivatives do not
change, we get a solution of (1.7) on C x [0, 1/{]. Thus, after a finite number
of steps, we get a solution on the whole set ¢ x [0, 1].

f. In the general case, if ¢ is an immersion of class C", r > 2, then
from the Weierstrass approximation theorem it follows that there exist
polynomials 8, % such that

’ ‘V=1,2,...

-~ 1 -1
B—Bl<—y I|k—kl<—
14 4
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We write
@ = [kpds and K = (B+ak).
Then (a, /§) is a length-preserving vector field of class C* such that

a, ﬂ~, k and their derivatives are uniformly bounded. Therefore there exists

a solution ¢, (s, 7) of (1.7), where a, # are replaced by a, 5, respectively.
If v— oo, then ¢, (8, 7) tends uniformly to a solution of (1.7). This completes
the proof.

Regu par la Rédaction le 3. 1. 1972



