FASC. 2

LENGTH-PRESERVING DEFORMATIONS OF CLOSED PLANE CURVES

BY

MAREK ROCHOWSKI (KATOWICE)

1. Introduction. Let $C = \{s \mod L : s \in E\}$, where E denotes the real numbers, be a simple closed curve. Let

$$\varphi \colon C \to E^2$$

be an immersion of class C^r $(r \ge 2)$ of C into the Euclidean plane E^2 such that

$$(1.2) \quad \int\limits_0^L k(s)\,ds \,=\, 2\pi n\,, \quad \text{ where } \, 1\leqslant n<\,\infty \, \text{ and } \, k(s)>0 \, \text{ for } \, n\geqslant 2\,,$$

k(s) denoting the curvature as a function of arc-length parameter s of $\varphi(C)$. In the case n=1 the mapping (1.1) is supposed to be an imbedding of class $C^r(r \ge 2)$. In the sequel (1.1) is called a closed plane curve.

The purpose of this paper is to give a construction of a homotopy of class C^r if φ is an immersion (resp. an isotopy of the same class if φ is an imbedding) with the following properties: if

$$(1.3) \varphi(s,\tau) = (x(s,\tau), y(s,\tau)), 0 \leqslant \tau \leqslant \infty,$$

denotes this homotopy (resp. isotopy), then

$$\varphi(s,0) = \varphi(s)$$

is the immersion (resp. imbedding) (1.1) and

(1:5)
$$\varphi(s, \infty) = \left(a + \frac{L}{2\pi n}\cos\frac{2\pi n}{L}s, b + \frac{L}{2\pi n}\sin\frac{2\pi n}{L}s\right)$$

and

$$|\dot{\varphi}(s,\tau)| = 1$$

for every τ , $0 \leqslant \tau \leqslant \infty$, where $\varphi(s, \tau) = \partial \varphi / \partial s$.

A homotopy (1.3) which satisfies (1.6) is called length-preserving.

By

y

o

x

Fig. 1

$$t(s, \tau) = \dot{\varphi}(s, \tau), \quad n(s, \tau) = (-\dot{y}, \dot{x})$$

we denote the unit tangent and unit normal vector field of immersion (resp. imbedding) $\varphi_{\tau}(s) = \varphi(s, \tau)$. For s fixed we denote by $\alpha(s, \tau)$, $\beta(s, \tau)$ coordinates of the vector $\varphi'_s(\tau) = \varphi'(s, \tau)$ tangent to the curve $\varphi_s(\tau) = \varphi(s, \tau)$ with respect to the moving frame t, n (Fig. 1). Hence we have

$$\varphi'(s,\tau) = \alpha(s,\tau)t(s,\tau) + \beta(s,\tau)n(s,\tau).$$

2. Length-preserving homotopies. In coordinates, system (1.7) has the form

$$(2.1) x' = \alpha \dot{x} - \beta \dot{y}, \\ y' = \beta \dot{x} + \alpha \dot{y}.$$

The homotopy (1.3) is called regular if

$$(2.2) x'^2 + y'^2 = \alpha^2 + \beta^2 > 0.$$

From (2.1) we have

(2.3)
$$a = \dot{x}x' + \dot{y}y',$$
$$\beta = \dot{x}y' - \dot{y}x'.$$

Using (2.3) and the Frenet formulas $\dot{x} = -k\dot{y}$, $\dot{y} = k\dot{x}$, we get for a length-preserving homotopy

$$\dot{a}=k\beta,$$

$$(2.5) k' = (\dot{\beta} + ak).$$

A vector field (α, β) which satisfies (2.4) and (2.5) is called *length-preserving*.

In section 3 we prove that for every length-preserving vector field (a, β) there exists a solution $\varphi(s, \tau)$ of (1.6) for which $k(s, \tau)$ is the curvature function and, therefore, $\varphi(s, \tau)$ is length-preserving. Thus (2.4) and (2.5) are necessary and sufficient conditions for a deformation to be length-preserving.

If $k(s,\tau) \neq 0$, then it follows from (2.4) and (2.5) that

(2.6)
$$\ddot{a}k - \dot{a}\dot{k} + ak^3 - k^2 \int_0^s k' d\sigma = 0,$$

(2.7)
$$\ddot{\beta}k - \dot{\beta}\dot{k} + \beta k^3 - kk' + \dot{k} \int_0^s k' d\sigma = 0.$$

If $k(s, \tau)$ is a periodic function of s with the period L and

$$(2.8) \qquad \qquad \int_{0}^{L} k' d\sigma = 0,$$

then, since α and β appear explicitly in (2.6) and (2.7), their solutions are also periodic functions of s with the period L. General solutions of (2.6) and (2.7) can be written in an explicit form. Namely, homogeneous equations assigned to (2.6) and (2.7) have partial solutions

$$a_1 = -\beta_2 = \cos \int_0^s k(\sigma, \tau) d\sigma, \quad a_2 = \beta_1 = \sin \int_0^s k(\sigma, \tau) d\sigma.$$

Since

$$egin{array}{c|c} a_1 & a_2 \ \dot{a}_1 & \dot{a}_2 \end{array} = egin{array}{c|c} eta_1 & eta_2 \ \dot{eta}_1 & \dot{eta}_2 \end{array} = k,$$

the special solution of equation (2.6) can be written in the form (after dividing (2.6) by k)

(2.9)
$$a_0 = a_2 \int_0^s \left(a_1 \int_0^\sigma k' d\eta \right) d\sigma - a_1 \int_0^s \left(a_2 \int_0^\sigma k' d\eta \right) d\sigma.$$

We have

$$\dot{a}_0 = k \left(a_1 \int_0^s \left(a_1 \int_0^\sigma k' d\eta \right) d\sigma + a_2 \int_0^s \left(a_2 \int_0^\sigma k' d\eta \right) d\sigma \right).$$

We write

(2.10)
$$\beta_0 = a_1 \int_0^s \left(a_1 \int_0^\sigma k' \, d\eta \right) d\sigma + a_2 \int_0^s \left(a_2 \int_0^\sigma k' \, d\eta \right) d\sigma.$$

Immediate verification shows that (2.9) and (2.10) is a solution of the system (2.4) and (2.5). Instead of (2.6) we can start with (2.7) to get a solution of the system (2.4), (2.5). Formulas (2.9) and (2.10) are defined also if $k(s,\tau)=0$ for some s and, therefore, define a solution of (2.4) and (2.5) also in this case. Thus the assumption $k(s,\tau)\neq 0$ can be neglected.

It follows that if $k(s, \tau)$ is a periodic function with respect to s with the period L, then there exist periodic solutions with respect to s of (2.4) and (2.5). Periodicity of β_0 follows from that of α_0 , $k(s, \tau)$ and (2.4).

Let us suppose that $k(s, \tau)$ changes with respect to τ according to the law

(2.11)
$$k'(s, \tau) = \frac{2\pi}{L} n - k(s, \tau),$$

where n denotes the integer defined by (1.2). We consider the special solution of (2.11)

$$(2.12) k(s,\tau) = \frac{2\pi}{L}n + \left(k(s) - \frac{2\pi}{L}n\right)e^{-\tau}, 0 \leqslant \tau \leqslant \infty.$$

The solution (2.12) satisfies (1.2) and (2.8). We also have

$$k(s, 0) = k(s), \quad k(s, \infty) = \frac{2\pi}{L} n.$$

Thus, applying the existence theorem of section 3, we have the following theorems:

THEOREM 1 (the homotopy theorem). If φ is an immersion for which (1.2) is satisfied, then there exists a regular length-preserving homotopy $\varphi(s,\tau)$ of class C^r with the curvature function (2.12) such that (1.4) and (1.5) are satisfied.

THEOREM 2 (the isotopy theorem). If φ is an imbedding of class C^r $(r \ge 2)$, then there exists a regular length-preserving isotopy $\varphi(s, \tau)$ of class C^r for which (2.12) is the curvature function and $\varphi(s, 0) = \varphi(s)$, $\varphi(s, \infty)$ is a circle of length L.

As an immediate consequence of Theorem 1 and (2.12) we have THEOREM 3. If k(s) is the curvature function of a closed curve with the property (1.2), then for every τ , $0 \le \tau \le 1$,

$$k(s, \tau) = (1-\tau)k(s) + \tau \frac{2\pi}{L}n$$

is a curvature function of a closed (plane) curve.

Theorem 2 will follow from Theorem 1 if we prove

LEMMA 1. For n = 1, (2.12) is the curvature function of an imbedded closed plane curve provided k(s) is the curvature function of such a curve.

Proof. Let us write

$$k_0 = \max_{0 \leqslant s \leqslant L} |k(s)|, \quad \epsilon_1 = \frac{1}{k_0}.$$

Then the mapping

$$(2.13) \overline{\varphi}(s, \varepsilon) = \varphi(s) + n\varepsilon, |\varepsilon| < \varepsilon_1,$$

where n denotes the unit normal vector to $\varphi(C)$ at $\varphi(s)$, is an immersion as follows from the equality

$$|\dot{\overline{\varphi}}(s,\,\varepsilon)|^2=(1-\varepsilon k)^2.$$

Let $0 < \varepsilon_0 \le \varepsilon_1$ denote a number such that, for $|\varepsilon| < \varepsilon_0$, (2.13) is an imbedding. Since C is compact, ε_0 exists.

We write

$$D = \{x \in E^2 : x = \overline{\varphi}(s', \pm \varepsilon_0) = \overline{\varphi}(s'', \pm \varepsilon_0), s', s'' \in C\}.$$

To every point $x \in D$ there correspond exactly two points s' = s'(x) and s'' = s''(x) of C. The tangent lines of $\varphi(C)$ at $\varphi(s')$ and $\varphi(s'')$ are parallel. The points s', $s'' \in C$ divide C into two parts C_1 , C_2 with the property

$$C_1 \cup C_2 = C$$
, $C_1 \cap C_2 = \{s', s''\}$.

It follows that

(2.14)
$$\operatorname{length}(C_1), \operatorname{length}(C_2) \geqslant \pi \varepsilon_0.$$

Indeed, we have

$$\int\limits_{s'}^{s''}k(\sigma)d\sigma=\pi$$
 .

If we suppose to the contrary that $|s''-s'|<\pi\varepsilon_0$, then, for some $\overline{\sigma}\,\epsilon(s',s''),\ k(\overline{\sigma})(s''-s')=\pi$ and, therefore, $k(\overline{\sigma})>1/\varepsilon_0$, contrary to the definition of ε_0 .

Let us observe that if we change φ on C_2 , keeping φ unchanged on C_1 , in a way that the resulting mapping φ^* is again an imbedding of C for which

(2.15)
$$L_2 = \int_{s'}^{s''} |\dot{\varphi}(\sigma)| d\sigma = \int_{s'}^{s''} |\dot{\varphi}^*(\sigma)| d\sigma = \text{length of } C_2,$$

then the curvature functions k(s) and $k^*(s)$ of φ and φ^* , respectively, coincide on C_1 and, therefore, the curves $\varphi_{\tau}(C)$ and $\varphi_{\tau}^*(C)$ with the curvature functions

$$rac{2\pi}{L} + \left(k(s) - rac{2\pi}{L}
ight)e^{- au}, \quad rac{2\pi}{L} + \left(k^*(s) - rac{2\pi}{L}
ight)e^{- au}, \quad 0 \leqslant au \leqslant \infty$$

coincide on C_2 provided $\varphi_{\tau}(s') = \varphi_{\tau}^*(s')$ and $\dot{\varphi}_{\tau}(s') = \dot{\varphi}_{\tau}^*(s')$ (Fig. 2). For instance, the number

$$(2.16) \qquad |\varphi_{\tau}(s^{\prime\prime}) - \varphi_{\tau}(s^{\prime})|$$

is independent of the choice of φ on C_2 if φ remains unchanged on C_1 . Thus for the determination of (2.16) it suffices to change φ to a form convenient for calculations.

Let us suppose that s'=0 and $s''=L_2$, where L_2 is defined by (2.15). We choose a coordinate system in E^2 such that

$$\varphi(0) = (0,0), \quad \dot{\varphi}(0) = (1,0).$$

We define a subsidiary imbedding $\tilde{\varphi}: C \rightarrow E^2$ of class C^1 by the following formulas:

$$ilde{arphi}(s,0) \qquad ext{for } 0\leqslant s\leqslant rac{L_2-\piarepsilon_0}{2}, \ \left(rac{L_2-\piarepsilon_0}{2}+arepsilon_0\cosrac{2s-L_2}{2arepsilon_0},\, arepsilon_0+arepsilon_0\sinrac{2s-L_2}{2arepsilon_0}
ight) \ ext{for } rac{L_2-\piarepsilon_0}{2}\leqslant s\leqslantrac{L_2+\piarepsilon_0}{2}, \ (s,2arepsilon_0) \qquad ext{for } rac{L_2+\piarepsilon_0}{2}\leqslant s\leqslant L_2, \ arepsilon_0(s) \qquad ext{for } L_2\leqslant s\leqslant L. \end{cases}$$
 It follows from (2.14) that $ilde{arphi}$ can be always defined. The curv

It follows from (2.14) that $\tilde{\varphi}$ can be always defined. The curvature function of $\tilde{\varphi}$ is defined by the formulas

$$ilde{k}(s) = egin{dcases} 0 & ext{ for } 0 \leqslant s \leqslant rac{L_2 - \pi arepsilon_0}{2}, rac{L_2 + \pi arepsilon_0}{2} \leqslant s \leqslant L_2, \ & \ rac{1}{arepsilon_0} & ext{ for } rac{L_2 - \pi arepsilon_0}{2} < s < rac{L_2 + \pi arepsilon_0}{2}, \ & \ k(s) & ext{ for } L_2 < s < L. \end{cases}$$

Using the formula

$$\tilde{\varphi}_{\tau}(s) = \left(\int_{0}^{s} \left[\cos \int_{0}^{\sigma} k(\eta, \tau) d\eta\right] d\sigma, \int_{0}^{s} \left[\sin \int_{0}^{\sigma} k(\eta, \tau) d\eta\right] d\sigma\right),$$

where

we get

$$egin{align} | ilde{arphi}_{ au}(L_2)- ilde{arphi}_{ au}(0)|&=rac{2\sin\left[rac{\pi}{L}(1-e^{- au})+rac{1}{2}\,e^{- au}rac{1}{arepsilon_0}
ight]\piarepsilon_0}{rac{2\pi}{L}(1-e^{- au})+e^{- au}rac{1}{arepsilon_0}},\ | ilde{arphi}(L_2)- ilde{arphi}(0)|&=2arepsilon_0=|arphi(L_2)-arphi(0)|. \end{gathered}$$

For every a>0, the imbedding $\tilde{\varphi}$ can be approximated by an imbedding $\varphi^*: C \rightarrow E^2$ of class C^r $(r \ge 2)$ such that

$$|arphi^*(s) - \tilde{arphi}(s)| < a \quad ext{ for } L - a < s \leqslant L ext{ and } 0 \leqslant s < L_2 + a,$$
 $arphi^*(s) = arphi(s) \quad ext{ for } L_2 + a \leqslant s \leqslant L - a.$

This can be achieved by smoothing $\tilde{\varphi}$ in sufficiently small neighbourhoods of the points 0, $L_2 - \pi \varepsilon_0/2$, $L_2 + \pi \varepsilon_0/2$, L_2 . It follows that the absolute value of the difference of numbers (2.16) and $|\varphi_{\tau}^*(L_2) - \varphi_{\tau}^*(0)|$ can be made arbitrarily small and therefore

$$|\tilde{\varphi}_{\tau}(L_2) - \tilde{\varphi}_{\tau}(0)| = |\varphi_{\tau}(L_2) - \varphi_{\tau}(0)|.$$

Hence, by (2.16), we have for every τ , $0 \leqslant \tau \leqslant \infty$,

$$|\varphi_{\tau}(L_2) - \varphi_{\tau}(0)| \geqslant 2\varepsilon_0$$

i.e., the number $\varepsilon_0(\varphi_{\tau}(C))$ evaluated for $\varphi_{\tau}(C)$ is a non-decreasing function of τ . This proves our lemma.

From (2.16) it follows that if $\varepsilon(\tau) = \varepsilon_0(\varphi_{\tau}(C))$ is defined, then

$$(2.17) \qquad \varepsilon(\tau + \Delta \tau) = \frac{\sin\left[\frac{\pi}{L}(1 - e^{-\Delta \tau}) + \frac{1}{2}e^{-\Delta \tau} \frac{1}{\varepsilon(\tau)}\right]\pi\varepsilon(\tau)}{\frac{2\pi}{L}(1 - e^{-\Delta \tau}) + e^{-\Delta \tau} \frac{1}{\varepsilon(\tau)}}.$$

From (2.17) it follows that

$$rac{darepsilon}{d au} = \lim_{\Delta au o 0} rac{arepsilon(au + \Delta au) - arepsilon(au)}{\Delta au} = -rac{2\pi}{L} \, arepsilon^2(au) + arepsilon(au).$$

The solution of the differential equation

$$\frac{d\varepsilon}{d\tau} + \frac{2\pi}{L} \varepsilon^2 - \varepsilon = 0, \quad \varepsilon(0) = \varepsilon_0,$$

has the form

(2.18)
$$\varepsilon(\tau) = \frac{1}{\frac{2\pi}{L} + \left(\frac{1}{\varepsilon_0} - \frac{2\pi}{L}\right)e^{-\tau}}, \quad 0 \leqslant \tau \leqslant \infty.$$

Formula (2.18) has the following geometrical meaning:

THEOREM 4. If a circle of radius ε_0 can be freely rolled in a simple closed plane curve $\varphi(C)$ with the curvature function k(s), then a circle of radius $\varepsilon(\tau)$, defined by (2.18), can be freely rolled in the simple closed curve $\varphi_{\tau}(C)$, whose curvature function is defined by (2.12), where n=1.

Using theorem 3 we also have

THEOREM 5 (the four-vertex theorem). Every imbedded closed plane \cdot curve $\varphi(C)$ admits at least four vertices, i.e., points s_i such that $k(s_i) = 0$, i = 1, 2, 3, 4.

Proof. If k(s) denotes the curvature function of $\varphi(C)$, then

$$k(s, \tau) = (1-\tau)k(s) + \tau \frac{2\pi}{L}, \quad 0 \leqslant \tau \leqslant 1,$$

is positive for τ sufficiently close to 1 and hence it is a curvature function of a convex closed curve. Since $k(s, \tau)$ and k(s) have the same stationary points, the theorem follows from the vertex theorem for convex closed curves.

3. THEOREM 6 (the existence theorem for the system (1.7)). Let (α, β) be a length-preserving vector field with the curvature function $k(s, \tau)$, $0 \le \tau \le \infty$. Then there exists a function $\varphi(s, \tau)$ defined on $C \times [0, \infty]$, which satisfies (1.7) and whose curvature function is $k(s, \tau)$. The solution with the initial condition (1.4) is unique.

First we prove this theorem under the assumption that $k(s, \tau)$ is of class C^{∞} , hence also $\alpha(s, \tau)$ and $\beta(s, \tau)$ are of class C^{∞} , and that all derivatives of $k(s, \tau)$, $\alpha(s, \tau)$, $\beta(s, \tau)$ are uniformly bounded by a constant A. The proof is carried out in the following parts. We do not assume that $k(s, \tau)$ is periodic with respect to s.

a. The closed interval $[0, \infty]$ can be endowed with the topology of the interval [0, 1]. Let P_n denote a division of [0, 1] by the points k/n, k = 0, 1, ..., n. We write

$$(3.1) \varphi_0(s,0) = \varphi(s), t_0(s,0) = t(s), n_0(s,0) = n(s),$$

(3.2)
$$\varphi_1(s,h) = \varphi_0(s,0) + (\alpha(s,0)t_0 + \beta(s,0)n_0)h,$$

where $0 \leqslant h \leqslant 1/n$ throughout this section.

If

$$\varphi_{k-1}\left(s,\frac{k-2}{n}+h\right)$$

is a smooth function with respect to s and

$$(3.3) t_{k-1}\left(s,\frac{k-1}{n}\right) = \dot{\varphi}_{k-1}\left(s,\frac{k-1}{n}\right),$$

(3.4)
$$n_{k-1}\left(s,\frac{k-1}{n}\right)=(-\dot{y}_{k-1},\dot{x}_{k-1}),$$

where $\varphi_{k-1} = (x_{k-1}, y_{k-1})$, then

$$(3.5) \varphi_k\left(s, \frac{k-1}{n} + h\right) = \varphi_{k-1}\left(s, \frac{k-1}{n}\right) + \left[a\left(s, \frac{k-1}{n}\right)t_{k-1} + \beta\left(s, \frac{k-1}{n}\right)n_{k-1}\right]h.$$

We write

(3.6)
$$\varphi^{n}(s,\tau) = \varphi_{k}\left(s,\frac{k-1}{n}+h\right), \quad n=1,2,\ldots,$$

for $\tau = (k-1)/n + h$.

b. In this part we evaluate

$$\dot{\varphi}_k\left(s,\frac{k-1}{n}+h\right).$$

We write

$$egin{aligned} \dot{arphi}_i &= \dot{arphi}_iigg(s,rac{i}{n}igg), \quad lpha_i &= lphaigg(s,rac{i}{n}igg), \ k_i &= kigg(s,rac{i}{n}igg), \quad t_i &= t_iigg(s,rac{i}{n}igg), \quad n_i &= n_iigg(s,rac{i}{n}igg), \quad 1\leqslant i\leqslant n\,. \end{aligned}$$

We have

(3.7)
$$\dot{\varphi}_1 = t_1 = t_0 + (\dot{\beta}_0 + \alpha_0 k_0) n_0 \frac{1}{n},$$

$$n_1 = n_0 - (\dot{\beta}_0 + \alpha_0 k_0) t_0 \frac{1}{n}.$$

Using (2.5) and definition (3.5), we get

$$(3.8) \ \dot{\varphi}_2 = t_2 = t_0 + [(\dot{\beta}_0 + a_0 k_0) + (\dot{\beta}_1 + a_1 k_1)] n_0 \frac{1}{n} + a_2 \frac{1}{n^2} + b_2 \frac{1}{n^2} = c_2 \frac{1}{n^2},$$

$$c_2 = a_2 + b_2 \frac{1}{n},$$

where

$$a_{2} = \left[-(\dot{\beta}_{1} + a_{1}k_{0})t_{0} + (\dot{a}_{1} - \beta_{1}k_{0})n_{0}\right](\dot{\beta}_{0} + a_{0}k_{0}),$$

$$b_{2} = \frac{1}{2}k''\left(s, \theta \frac{1}{n}\right)(\beta_{1}t_{0} - a_{1}n_{0}), \quad 0 < \theta < 1,$$

$$(3.9) \qquad n_{2} = n_{0} - \left[(\dot{\beta}_{0} + a_{0}k_{0}) + (\dot{\beta}_{1} + a_{1}k_{1})\right]t_{0}\frac{1}{n} + \bar{c}_{2}\frac{1}{n^{2}},$$

and where \bar{c}_2 is a vector such that $c_2\bar{c}_2=0$, $|c_2|=|\bar{c}_2|$, and (c_2,\bar{c}_2) defines the positive orientation of E^2 .

Inductively we have

$$(3.10) \quad \dot{\varphi}_{k} = t_{k} = \dot{\varphi}_{k-1} + \left[\dot{\alpha}_{k-1} - \left(k_{0} + \sum_{i=0}^{k-2} k'_{i} \frac{1}{n}\right) \beta_{k-1}\right] t_{0} \frac{1}{n} + \\ + (\dot{\alpha}_{k-1} - \beta_{k-1} k_{0}) \left[\sum_{i=0}^{k-2} (\dot{\beta}_{i} + \alpha_{i} k_{i})\right] n_{0} \frac{1}{n^{2}} + \\ + \left[\dot{\beta}_{k-1} + \left(k_{0} + \sum_{i=0}^{k-2} k'_{i} \frac{1}{n}\right) \alpha_{k-1}\right] n_{0} \frac{1}{n} -$$

$$-(\dot{\beta}_{k-1}+a_{k-1}k_0)\left[\sum_{i=0}^{k-2}(\dot{\beta}_i+a_ik_i)\right]t_0\frac{1}{n^2}+\\+(\dot{a}_{k-1}c_{k-1}+a_{k-1}\dot{c}_{k-1}+\dot{\beta}_{k-1}\bar{c}_{k-1}+\beta_{k-1}\dot{\bar{c}}_{k-1})\frac{1}{n^3},$$

where c_2 and \bar{c}_2 are defined in (3.8) and (3.9), and if c_{k-1} is defined, then

$$(3.11) \quad c_k = a_k + b_k \frac{1}{n} + (\dot{a}_{k-1}c_{k-1} + a_{k-1}\dot{c}_{k-1} + \dot{\beta}_{k-1}\bar{c}_{k-1} + \beta_{k-1}\dot{\bar{c}}_{k-1}) \frac{1}{n},$$

where

$$egin{aligned} a_k &= [\,-\,(\dot{eta}_{k-1} + a_{k-1}k_0)t_0 + (\dot{a}_{k-1} - eta_{k-1}k_0)n_0] \sum_{i=0}^{k-2} (\dot{eta}_i + a_ik_i), \ b_k &= rac{eta_{k-1}}{2} \sum_{i=1}^{k-1} k^{\prime\prime} \Big(s, rac{i-1}{n} + heta_i rac{1}{n}\Big) - rac{a_{k-1}}{2} \sum_{i=1}^{k-1} k^{\prime\prime} \Big(s, rac{i-1}{n} + heta_i rac{1}{n}\Big), \ 0 &< heta_i < 1, \qquad i = 1, 2, \ldots, k-1. \end{aligned}$$

Formula (3.10) can be written in the form

(3.12)
$$\dot{\varphi}_k = t_k = t_0 + \sum_{i=0}^{k-1} (\dot{\beta}_i + \alpha_i k_i) n_0 \frac{1}{n} + \frac{1}{n^2} \sum_{i=2}^{k} c_i.$$

For the complementary vector to t_k , we have

(3.13)
$$n_k = n_0 - \sum_{i=0}^{k-1} (\dot{\beta}_i + a_i k_i) t_0 \frac{1}{n} + \frac{1}{n^2} \sum_{i=0}^{k} \bar{c}_i,$$

where $|c_i| = |\bar{c}_i|$, $c_i\bar{c}_i = 0$, and (c_i, \bar{c}_i) defines the positive orientation of E^2 .

c. A combinatorial formula. For the estimation of t_k the following combinatorial facts are useful. Symbol L is called a *linear scheme on the indeterminate* x if the symbols

(3.14)
$$L(L^{i}x + L^{j}x)$$
 and $L^{i+1}x + L^{j+1}x$

are identified, where

$$L^i x = \underbrace{LL \dots L}_{i \text{ times}} x, \quad L^0 x = x.$$

LEMMA 2. Let L be a linear scheme on the symbol x. If $P_1(x) = x$ and

$$P_n(x) = P_{n-1}(x) + L(P_{n-1}(x)), \quad n = 2, 3, ...,$$

then

$$P_n(x) = (1+L)^n x.$$

The proof of the lemma is a simple verification.

Remark. If L is as in Lemma 2, $P_1(x) = x$ and

$$P_n(x) = P_{n-1}(x) + nx + L(P_{n-1}(x)), \quad n = 2, 3, ...,$$

then

$$(3.15) P_n(x) = (1+L)^{n-1}x + 2(1+L)^{n-2}x + \ldots + nx.$$

Formula (3.15) follows immediately by Lemma 2.

d. The estimation of $n^{-2} \sum_{i=2}^{k} c_i$. We have

$$|c_2| rac{1}{n^2} \leqslant KA^3 rac{1}{n^2}, \quad |\dot{c_2}| rac{1}{n^2} \leqslant 3KA^3 rac{1}{n^2},$$

where K denotes a constant.

In the estimation of \dot{c}_2 we use the fact that if the product of m functions is estimated by A^m , then the derivative of this product is estimated by mA^m , provided all these functions and their derivatives are uniformly bounded by A.

For c_3 we have

$$|c_3|rac{1}{n^2}\leqslant 2KA^3rac{1}{n^2}+2AKA^3rac{1}{n^3}+2A\cdot 3KA^3rac{1}{n^3}\leqslant 2KA^3rac{1}{n^2}+4A\cdot 3KA^3rac{1}{n^3}.$$

If $\sum_{i=0}^{k} a_i A^i$ is a polynomial in A, then we define the linear operation

(3.16)
$$L_{A}\left(\sum_{i=0}^{k}a_{i}A^{i}\right)=\sum_{i=0}^{k}ia_{i}A^{i+1}.$$

Hence

$$|c_2+c_3| rac{1}{n^2} \leqslant KA^3 rac{1}{n^2} + 2KA^3 rac{1}{n^2} + 4 \cdot 3KA^4 rac{1}{n^3}$$

$$= KA^3 rac{1}{n^2} + 2KA^3 rac{1}{n^2} + rac{4}{n} L_A \left(KA^3 rac{1}{n^2}
ight).$$

By induction, if $n^{-2} \sum_{i=2}^{k+1} c_i$ is estimated by a polynomial $P_k(A, 1/n)$ of degree k+2 with respect to A and k+1 with respect to 1/n, then

$$(3.17) \quad \Big| \sum_{i=2}^{k+2} c_i \Big| \frac{1}{n^2} \leqslant P_k \left(A, \frac{1}{n} \right) + (k+1) K A^3 \frac{1}{n^2} + 4 L_A \left(P_k \left(A, \frac{1}{n} \right) \right) \frac{1}{n},$$

where

$$P_1\left(A, \frac{1}{n}\right) = KA^3 \frac{1}{n^2}, \quad P_0\left(A, \frac{1}{n}\right) = 0.$$

Using formula (3.15), we can represent the right-hand member of (3.17) in the form

$$egin{aligned} P_{k+1}igg(A\,,rac{1}{n}igg) &= P_kigg(A\,,rac{1}{n}igg) + (k+1)KA^3rac{1}{n^2} + 4L_Aigg(P_kigg(A\,,rac{1}{n}igg)igg)rac{1}{n} \ &= rac{K}{n^2}\sum_{i=1}^{k+1}iigg(1+rac{4}{n}\,L_Aigg)^{k-i+1}A^3, \quad ext{where } L=rac{4}{n}\,L_A. \end{aligned}$$

For k = n we get

$$P_n\left(A, \frac{1}{n}\right) = \frac{K}{n^2} \sum_{i=1}^n i \left(1 + \frac{4}{n} L_A\right)^{n-i} A^3.$$

Let us take

$$(3.18) n \geqslant 2kl,$$

where l is an integer such that

$$(3.19) \frac{4}{l}A < 1.$$

Then we have

(3.20)
$$P_{k+1}\left(A, \frac{1}{2kl}\right) = \frac{K}{(2kl)^2} \sum_{i=1}^{k+1} i \left(1 + \frac{4}{2kl} L_A\right)^{k-i+1} A^3.$$

For a fixed summand of (3.20) we have

$$egin{aligned} rac{K}{(2kl)^2} \, i \left(1 + rac{4}{2kl} \, L_A
ight)^{k-i+1} A^3 \ &= rac{K}{(2kl)^2} \, i \, \sum_{j=0}^{k-i+1} rac{1}{2j\,!} \, rac{4^j A^j (j+2)\,!}{(2kl)^j} \, (k-i+1) \ldots (k-i-j+2) \ &\leqslant rac{KA^3}{2 \, (2kl)^2} \, i \, \sum_{j=0}^{k-i+1} rac{(j+2)^2}{2^j} \left(rac{4A}{l}
ight)^j. \end{aligned}$$

Since $(j+2)^2/2^j$ (j=0,1,2,...) is bounded by a constant M we get, using (3.19),

$$rac{K}{\left(2kl
ight)^{2}}i\left(1+rac{4}{2kl}\,L_{A}
ight)^{k-i+1}A^{3}\leqslantrac{KA^{3}M}{2\left(2kl
ight)^{2}}i\sum_{j=0}^{k-i+1}\left(rac{4A}{l}
ight)^{j}\leqslant i\,rac{KA^{3}M}{2\left(2kl
ight)^{2}}\,rac{1}{1-rac{4A}{l}}\,.$$

Thus for (3.20) we have the estimation

$$P_{k+1}\left(A, rac{1}{2kl}
ight) \leqslant rac{KA^3M}{4\left(1-rac{4A}{l}
ight)} rac{k(k+1)}{(2kl)^2}.$$

If $k\to\infty$, then from $k(k+1)/k^2 \leq 2$ we get

$$(3.21) P_{k+1}\left(A, \frac{1}{2kl}\right) \leqslant \frac{KA^3M}{8l(l-4A)}, \text{where } n \geqslant 2kl.$$

e. Let $[0, 1/2l] \subset [0, 1]$. Then from (3.12) and (3.21) we have

$$(3.22) \quad |\dot{\varphi}_k| = |t_k| \leqslant 1 + AL + \frac{KMA^3}{8l(l-4A)} \quad \text{ for every } \tau \in \left[0, \frac{1}{2l}\right].$$

Thus the sequence $(\dot{\varphi}_k)$, $1 \leqslant k < \infty$, is uniformly bounded on the segment [0, 1/2l].

Formula (3.5) can be written in the form

(3.23)
$$\varphi_{k}\left(s, \frac{k-1}{n} + h\right) = \varphi_{0}(s, 0) + \frac{1}{n} \sum_{i=0}^{k-2} (\alpha_{i}t_{i} + \beta_{i}n_{i}) + (\alpha_{k-1}t_{k-1} + \beta_{k-1}n_{k-1})h.$$

Since $|t_i| = |n_i|$, we get by the use of (3.22) the estimation

$$\left| \left| arphi_k \left(s, rac{k-1}{n} + h
ight)
ight| \leqslant A + 2AG \quad ext{ for } n \geqslant 2kl,$$

where G denotes the right-hand member of inequality (3.21). Hence the sequence (3.6) is uniformly bounded on the interval [0, 1/2l].

Functions (3.6) are equicontinuous with respect to $\tau \in [0, 1/2l]$. If we evaluate (3.23) for

$$au'' = rac{k''-1}{n} + h'', \quad au' = rac{k'-1}{n} + h', \quad k'' > k',$$

and take the difference of these values, we get

$$\begin{split} |\varphi^{n}(s,\tau'') - \varphi^{n}(s,\tau')| &\leq \frac{1}{n} \left| \sum_{i=k'-1}^{k''-2} (a_{i}t_{i} + \beta_{i}n_{i}) \right| + \\ &+ |(a_{k''-1}t_{k''-1} + \beta_{k''-1}n_{k''-1})h'' - (a_{k'-1}t_{k'-1} + \beta_{k'-1}n_{k'-1})h'| \\ &\leq 2AG \left| \frac{k'' - k' - 1}{n} + h'' + h' \right| \leq 4AG |\tau'' - \tau'|. \end{split}$$

By the theorem of Ascoli, there exists a subsequence

$$(3.24) (\varphi^{n_r}(s,\tau)), r=1,2,...$$

of the sequence (3.6), uniformly convergent with respect to $\tau \in [0, 1/2l]$. We write

(3.25)
$$\varphi(s,\tau) = \lim_{r\to\infty} \varphi^{n_r}(s,\tau).$$

The sequence (3.24) can be supposed to converge uniformly also with respect to $s \in C$. Indeed, we have

$$|\varphi^n(s^{\prime\prime},\, au)-\varphi^n(s^\prime,\, au)|\leqslant \int\limits_{s^\prime}^{s^{\prime\prime}}|\dot{\varphi}^n(s,\, au)|\,ds\leqslant G\,|s^{\prime\prime}-s^\prime|\,.$$

Moreover, since $\dot{\varphi}^n(s,\tau)$ is a smooth function with respect to s, there exists a constant H such that

$$|\dot{arphi}^n(s^{\prime\prime},\, au)-\dot{arphi}^n(s^\prime,\, au)|\leqslant H\,|s^{\prime\prime}-s^\prime|$$
 .

Hence we may assume that $(\dot{\varphi}^{n_r}(s,\tau))$, $r=1,2,\ldots$, converges uniformly with respect to s. By induction, it follows that the function (3.24) is smooth with respect to s.

Let us write

(3.26)
$$t(s,\tau) = \lim_{r\to\infty} \dot{\varphi}^{n_r}(s,\tau) = \lim_{r\to\infty} t^{n_r}(s,\tau), \quad \tau \in \left[0,\frac{1}{2l}\right],$$

and

$$(3.27) n(s,\tau) = \lim_{r\to\infty} n^{n_r}(s,\tau),$$

where n^{n_r} is the complementary vector to t^{n_r} , of the same length as t^{n_r} .

We prove that $\varphi(s, \tau)$, defined by (3.25), is differentiable with respect to τ and that $\varphi(s, \tau)$ satisfies system (1.7).

We have

$$\begin{split} \varphi(s,\tau'') - \varphi(s,\tau') &= \lim_{r \to \infty} \left(\varphi^{n_r}(s,\tau'') - \varphi^{n_r}(s,\tau') \right) \\ &= \lim_{r \to \infty} \frac{1}{n_r} \left(\sum_{i=k_r'-1}^{k_r''-2} a_i t \left(s, \frac{i}{n_r} \right) + \beta_i n \left(s, \frac{i}{n_r} \right) \right) + \\ &+ \lim_{r \to \infty} \frac{1}{n_r} \left[\sum_{i=k_r'-1}^{k_r''-2} a_i \left(t_i - t \left(s, \frac{i}{n_r} \right) \right) + \beta_i \left(n_i - n \left(s, \frac{i}{n_r} \right) \right) \right] \\ &= \int_{\cdot}^{\tau''} (at + \beta n) \, d\tau \,. \end{split}$$

The last equality follows from (3.26), (3.27) and the definition of the integral, where

$$au'' = rac{k''_r - 1}{n_r} + h''_r, \quad au' = rac{k'_r - 1}{n_r} + h'_r$$

and

$$\lim_{r\to\infty}rac{k_r^{\prime\prime}}{n_r}= au^{\prime\prime},\quad \lim_{r\to\infty}rac{k_r^{\prime}}{n_r}= au^{\prime},\quad \lim_{r\to\infty}h_r^{\prime\prime}=\lim_{r\to\infty}h_r^{\prime}=0\,.$$

Hence we have

$$\frac{\varphi(s,\tau'')-\varphi(s,\tau')}{\tau''-\tau'}=at+\beta n,$$

where the right-hand member is evaluated at $(s, \tau' + \theta(\tau'' - \tau'))$, $0 < \theta < 1$, and therefore

$$\varphi'(s,\tau) = \alpha t + \beta n, \quad \tau \in \left[0, \frac{1}{2l}\right].$$

It follows that $\varphi(s, \tau)$, defined by (3.25), is a solution of (1.7). Since a, β is a length-preserving vector field, the curvature function of $\varphi(s, \tau)$ is $k(s, \tau)$. Therefore s is the arc-length parameter of $\varphi(s, \tau)$ for a fixed τ , $0 \le \tau \le 1/2l$, and t, n are unit vectors. Since $k(s, \tau)$ is the curvature function of any solution $\varphi(s, \tau)$ of (1.7), it follows that this solution is uniquely determined by the initial condition (1.4).

We repeat the construction, which led us to the solution $\varphi(s,\tau)$ on $C \times [0, 1/2l]$, for the segment [1/2l, 1+1/2l] with the initial condition

$$arphi_{1/2l}\left(s,rac{1}{2l}
ight)=arphi\left(s,rac{1}{2l}
ight).$$

Functions α , β are defined on $C \times [0, 1]$. However, they can be extended to the segment [0, 2] by setting, for instance,

$$a(s, 1+\tau) = a(s, 1-\tau), \quad \beta(s, 1+\tau) = \beta(s, 1-\tau), \quad 0 \leqslant \tau \leqslant 1.$$

Then, since the estimations of φ , α , β , k and its derivatives do not change, we get a solution of (1.7) on $C \times [0, 1/l]$. Thus, after a finite number of steps, we get a solution on the whole set $C \times [0, 1]$.

f. In the general case, if φ is an immersion of class C^r , $r \ge 2$, then from the Weierstrass approximation theorem it follows that there exist polynomials $\tilde{\beta}$, \tilde{k} such that

$$|oldsymbol{eta} - ilde{oldsymbol{eta}}| < rac{1}{oldsymbol{
u}}, \hspace{0.5cm} |k - ilde{k}| \leqslant rac{1}{oldsymbol{
u}}, \hspace{0.5cm} oldsymbol{
u} = 1, 2, \ldots$$

We write

$$ilde{a} = \int k ilde{eta} \, ds \quad ext{ and } \quad k' = (\dot{ ilde{eta}} + ilde{a} ilde{k})'.$$

Then $(\tilde{a}, \tilde{\beta})$ is a length-preserving vector field of class C^{∞} such that $\tilde{a}, \tilde{\beta}, \tilde{k}$ and their derivatives are uniformly bounded. Therefore there exists a solution $\varphi_{\nu}(s, \tau)$ of (1.7), where a, β are replaced by $\tilde{a}, \tilde{\beta}$, respectively. If $\nu \to \infty$, then $\varphi_{\nu}(s, \tau)$ tends uniformly to a solution of (1.7). This completes the proof.

Reçu par la Rédaction le 3. 1. 1972