ON EXTENDING OF PARTIAL BOOLEAN ALGEBRAS
TO PARTIAL *-ALGEBRAS

BY

JANUSZ CZELAKOWSKI (WROCLAW)

Kochen and Specker introduced and examined in [3] and [4] the concepts of a partial Boolean algebra (PBA) and of a partial algebra over an arbitrary field K. As to the second name, perhaps the term "partial (commutative) linear algebra" would be more suitable. A very general concept of "partial algebra" has been presented for years in algebra. In [4] it is noticed that the set of all idempotents of a partial algebra (in the sense of Kochen and Specker) forms a PBA.

In this note the concept of a partial *-algebra is examined. This notion is a slight modification of that of a partial algebra; namely, by a partial *-algebra we mean any partial algebra equipped with an operation of involution. We prove that any PBA can be extended to a partial *-algebra, which is equivalent to the proposition that the converse of the result by Kochen and Specker holds.

Definition 1. A system $\mathcal{A} = \langle A; \cdot; +, \cdot, *; 1 \rangle$ is said to be a partial *-algebra over the field of complex numbers C if the following conditions are satisfied:

1. $\cdot \subseteq A \times A$ is a non-empty symmetric and reflexive relation. \cdot is called the relation of commeasurability.
2. $+$ and \cdot are partial binary operations whose domains and ranges satisfy the connections $\text{Dom}(+) = \text{Dom}(\cdot) = \cdot$, $\text{Rg}(+) = \text{Rg}(\cdot) = A$.
3. $*: A \mapsto A$.
4. 1 is a distinguished element in A. 1 is the unit of the partial *-algebra \mathcal{A}.
5. $a \cdot 1$ for every $a \in A$.
6. If $a \cdot b$, then $a \cdot b^*$ and $\lambda a \cdot b$ for any complex number λ.
7. If a, b, c are pairwise in the relation \cdot, then $a + b \cdot c$ and $a \cdot b \cdot c$.
(8) If \(a, b, c \) are pairwise in the relation \(\circ \), then the set \(\{a, b, c\} \) generates in \(\mathcal{A} \) a commutative linear algebra with the involution \(* \) and the unit \(1 \).

Condition (8) may be replaced by the following system of axioms:

(8') If \(a, b, c \) are mutually in the relation \(\circ \), then:

\[(L1)\ a + b = b + a,
\[(L2)\ (a + b) + c = a + (b + c),
\[(L3)\ \text{if } a + c = b + c, \text{ then } a = b,
\[(L4)\ \lambda(a + b) = \lambda a + \lambda b,
\[(L5)\ (\lambda_1 + \lambda_2)a = \lambda_1 a + \lambda_2 a,
\[(L6)\ (\lambda_1 \lambda_2)a = \lambda_1 (\lambda_2 a),
\[(L7)\ 1a = a, \text{ where } 1 \in C;\]

\[(A1)\ a \cdot b = b \cdot a,
\[(A2)\ (a \cdot b) \cdot c = a \cdot (b \cdot c),
\[(A3)\ (a + b) \cdot c = a \cdot c + b \cdot c,
\[(A4)\ (\lambda a) \cdot b = \lambda (a \cdot b) = a \cdot (\lambda b) \text{ for any complex number } \lambda,
\[(A5)\ 1 \cdot a = a = a \cdot 1, \text{ where } 1 \text{ is the unit of } \mathcal{A};\]

\[(A^*1)\ (a + b)^* = a^* + b^*,
\[(A^*2)\ (\lambda a)^* = \overline{\lambda} a^*,
\[(A^*3)\ (a \cdot b)^* = b^* \cdot a^*,
\[(A^*4)\ (a^*)^* = a.\]

Recall that (L1)-(L7), (A2)-(A5), and (A^*1)-(A^*4) are axioms of linear algebras with involution.

Notice that every commutative linear algebra \(\mathcal{A} = \langle A; +, \cdot, \ast; 1 \rangle \) with involution becomes a partial \(\ast \)-algebra provided \(\circ = A \times A \).

Here we write some simple properties of partial \(\ast \)-algebras:

1.1. \(0a = 01 \) for any \(a \in A \) (\(0 \in C \)).

The element \(0a \) (\(a \) arbitrary) is the zero of a partial \(\ast \)-algebra and is denoted by \(0 \).

1.2. For any \(a \in A \) and \(\lambda \in C \),

\[a \circ 0, \quad a + 0 = a, \quad 0a = 0, \quad \lambda 0 = 0.\]

Let \(-a = (-1)a \) and \(a - b = a + (-1)b \), where \(a \circ b \).

1.3. Let \(a \circ b \). Then the equation \(a + x = b \) has exactly one solution \(x \) such that \(x \circ b \), namely \(x = b - a \).

A partial Boolean algebra \(\mathcal{B} = \langle B; \circ, \lor, \land, 1 \rangle \) is given by a non-empty set \(B \), a binary relation \(\circ \subseteq B \times B \), a unary function \(\neg \) from \(B \) into \(B \), a partial binary function \(\lor \) from \(B \times B \) into \(B \), and an element \(1 \in B \) called the unit of \(\mathcal{B} \). The domain of \(\lor \) is a subset of \(B \times B \). The properties of \(\mathcal{B} \) are the following:
1. The relation \triangleleft (called also the relation of commeasurability) is symmetric and reflexive.
2. For all $a \in B$, $a \triangleleft 1$.
3. The partial function \lor is defined exactly on \triangleleft.
4. If $a \triangleleft b$, then $a \triangleleft \neg b$.
5. If a, b, c are mutually commeasurable, then $a \lor b \triangleleft c$.
6. If a, b, c are mutually commeasurable, then the Boolean polynomials in a, b, c form a Boolean algebra.

Let \mathbf{PBA} denote the class of all partial Boolean algebras.

Basic properties of partial Boolean algebras can be found in [1], [3], and [4].

Let $\mathcal{A} = \langle A; \triangleleft, +, \cdot, \ast; 1 \rangle$ be a partial \ast-algebra. An element $a \in A$ is said to be a Hermitian idempotent if $a = a \cdot a = a \ast$. Let B be the set of all Hermitian idempotents in \mathcal{A}. Notice that $1 \in B$. Let $a, b \in B$. We put

$$\neg a = 1 - a,$$

$$a \lor b = (a + b) - (a \cdot b) \quad \text{if} \quad a \triangleleft b.$$

The system $\mathcal{B} = \langle B; \triangleleft, \lor, \neg; 1 \rangle$ is a partial Boolean algebra (here \triangleleft is a restriction of the relation of commeasurability to the set $B \times B$).

In what follows we admit the following convention: algebraic objects are denoted by capital script letters (eventually, with subscripts) and their underlying sets are denoted by the same italic letters (with the same subscripts).

Let $\mathcal{A} \in \mathbf{PBA}$ and let $\{\mathcal{A}_k\}_{k \in A}$ be the indexed family of all maximal Boolean subalgebras contained in \mathcal{A}. Let X_A denote the Stone space of all maximal filters in \mathcal{A}_A and let \mathcal{F}_A be the Stone field of all simultaneously open and closed subsets of X_A. Let i_A be the Stone isomorphism of \mathcal{A}_A onto \mathcal{F}_A.

Let

$$X = \prod_{k \in A} X_A.$$

For every $A \subseteq X_A$ let A^\ast be the set of all functions $\varphi \in X$ such that $\varphi(\lambda) \in A$, and let \mathcal{F}_A^\ast be the field of subsets of X formed from all sets A^\ast, where $A \in F_A$.

Let \mathcal{F}_A^\ast be the least field of subsets of X containing all algebras \mathcal{F}_A^\ast. The fields $\{\mathcal{F}_A^\ast\}_{k \in A}$ are independent in \mathcal{F}_A^\ast.

A function $h_A: \mathcal{A} \mapsto \mathcal{F}_A^\ast$, where $h_A a = (i_A a)^\ast$, maps \mathcal{A} isomorphically onto \mathcal{F}_A^\ast.

It is easy to show that the set

$$B^\ast = \bigcup_{k \in A} F_k^\ast \subseteq 2^X,$$
equipped with the relation of commeasurability \triangleleft, where $A_1^* \triangleleft A_2^*$ iff there exists a $\lambda \in A$ such that $A_1^*, A_2^* \in B^*_\lambda$ ($A_1^*, A_2^* \in B^*$), and with the usual set-theoretical operations of join restricted to \triangleleft and complementation, is a partial Boolean algebra. This partial Boolean algebra is denoted by B^*.

We define the following equivalence relation \sim in B^*:

$$A_1^* \sim A_2^* \iff A_1^* = h_{\lambda_1} a \text{ and } A_2^* = h_{\lambda_2} a$$

for a certain (and unique) $a \in B$.

Let $|A_1^*|, |A_2^*| \in B^*/\sim$. Then we define

$$|A_1^*| \uparrow |A_2^*| \iff A_1^* = h_{\lambda_1} a_1, A_2^* = h_{\lambda_2} a_2, \text{ and } a_1 \triangleleft a_2.$$

The function \neg is defined by

$$\neg|A^*| = |X - A^*|.$$

Notice that if $|A_1^*| \uparrow |A_2^*|$, then there exists B_{λ_0} such that $a_1, a_2 \in B_{\lambda_0}$, where $A_1^* = h_{\lambda_1} a_1, A_2^* = h_{\lambda_2} a_2$ (B_{λ_0} is the carrier of B_{λ_0}). Let $A_3^* = h_{\lambda_0}(a_1 \lor a_2)$. Then we define the function \lor as follows:

$$|A_1^*| \lor |A_2^*| = |A_3^*|.$$

THEOREM 1 (see [3] and [4]). Let $B \in PBA$. Then

(i) $B^*/\sim \in PBA$.

(ii) A mapping $\varphi(A^*) = |A^*|$ maps B^* homomorphically onto B^*/\sim.

(iii) B^*/\sim and B are isomorphic.

Let X be a non-empty set and let F be any fixed field of subsets of X. Then $f : X \rightarrow C$ is a simple function (over F) if f equals a finite linear combination of characteristic functions of sets from F. Let W_F be a commutative linear algebra of all simple functions over F with the usual addition and multiplication of complex functions and with conjugation as an involution.

LEMMA 1. Let F and W_F be as above. Then each element $w \in W_F (w \neq 0)$ has a unique representation of the form

$$(*) \quad w = \sum_{i=1}^{n} a_i \chi_{A_i} \quad (A_i \in F, \ n < \omega)$$

up to a permutation of the numbers $\{1, 2, \ldots, n\}$, where $a_i \neq 0$, $a_i \neq a_j$ for $i \neq j$, and $A_i \neq \emptyset$, $A_i \cap A_j = \emptyset$ for $i \neq j$.

The proof is straightforward. $(*)$ is called the canonical representation of w.

Our aim is to prove the following theorem:

THEOREM 2. Every partial Boolean algebra is isomorphic to the partial Boolean algebra of all Hermitian idempotents of a certain partial $*$-algebra.
In a shortened form this theorem can be expressed as follows:

Every partial Boolean algebra is embeddable into a certain partial *-algebra.

Proof. Let $\mathcal{B} = \langle B; \cup, \cap, 1 \rangle \in \text{PBA}$. Let $X_A, \mathcal{F}_i, \mathcal{U}, X, \mathcal{F}_i^*, h_i, \mathcal{F}^*, \mathcal{B}^*, \mathcal{B}^*/\sim$ be defined as above. Let $\mathcal{W}_{i \lambda}$ denote a commutative *-algebra of simple functions, spanned over characteristic functions of sets from \mathcal{F}_i^*. Let

$$W^* = \bigcup_{A^* \lambda} W_{i \lambda}^*.$$

Let w_1, w_2 be in W^* and let

$$w_1 = \sum_{i=1}^m a_i \chi_{A_i^*} \quad \text{and} \quad w_2 = \sum_{j=1}^n \beta_j \chi_{B_j^*}$$

be canonical representations of w_1 and w_2.

Let \approx be defined in W^* as follows:

$w_1 \approx w_2$ iff $m = n$ and there exists a permutation σ of the numbers $\{1, 2, \ldots, m\}$ such that $A_i^* \sim B_{\sigma(i)}$ for every $1 \leq i \leq m$ and $a_i = \beta_{\sigma(i)}$ for every $1 \leq i \leq m$.

\approx is an equivalence relation in W^*. Let $\langle w \rangle, \langle u \rangle \in W^*/\approx$. Define $\langle w \rangle \hat{\ast} \langle u \rangle$ iff for the canonical representations of the elements w and u,

$$w = \sum_{i=1}^m a_i \chi_{A_i^*} \quad \text{and} \quad u = \sum_{j=1}^n \beta_j \chi_{B_j^*},$$

we have $|A_i^*| \hat{\ast} |B_j^*|$ for each $i (1 \leq i \leq m)$ and for each $j (1 \leq j \leq n)$.

The definition of $\hat{\ast}$ does not depend on the choice of representatives of $\langle w \rangle$ and $\langle u \rangle$. Notice that $\langle w \rangle \hat{\ast} \langle u \rangle$ iff there exist a $\lambda_0 \in A$ and elements $w_1 \in \langle w \rangle$, $u_1 \in \langle u \rangle$ such that $w_1, u_1 \in W_{\lambda_0}^*$.

Let $\langle w \rangle \hat{\ast} \langle u \rangle$. Then there are a $\lambda_0 \in A$ and elements $w_1 \in \langle w \rangle$, $u_1 \in \langle u \rangle$ such that $w_1, u_1 \in W_{\lambda_0}^*$. Then $w_1 + u_1 \in W_{\lambda_0}^*$ and $w_1 \cdot u_1 \in W_{\lambda_0}^*$. We put

$$\langle w \rangle + \langle u \rangle = \langle w_1 + u_1 \rangle \quad \text{and} \quad \langle w \rangle \cdot \langle u \rangle = \langle w_1 \cdot u_1 \rangle.$$

The definitions of $+$ and \cdot are correct. Notice that classes $\langle u \rangle, \langle w \rangle, \langle v \rangle$ are mutually in the relation $\hat{\ast}$ iff there are a $\lambda_0 \in A$ and elements $u_1 \in \langle u \rangle$, $w_1 \in \langle w \rangle$, $v_1 \in \langle v \rangle$ such that $u_1, w_1, v_1 \in W_{\lambda_0}^*$.

An involution \ast is defined in W^*/\approx by

$$\langle w \rangle^* = \langle \overline{w} \rangle,$$

where \overline{w} is conjugate to w.

The unit element in W^*/\approx is an equivalence class determined by the characteristic function of the whole set

$$X = \prod_{i \in A} X_i.$$
It is easy to check that the system
\[W^*_{/\omega} = \langle W^*_{/\omega}; \text{\; \textcircled{\,\textdagger}\, \; +, \cdot, \; \text{\; \textasteriskcentered}\, \; 1 \rangle \]
satisfies all the axioms of partial \(*\)-algebras.

Let
\[A_1^* \subseteq B^* = \bigcup_{\lambda \in A} F^*_1. \]

Notice that
\[A_1^* \sim A_2^* \text{ \; iff \; } \chi_{A_1^*} \approx \chi_{A_2^*}. \]

Each Hermitian idempotent in \(W^*_{/\omega} \) is of the form \(\langle \chi_A \rangle \), where \(A^* \subseteq B^* \). Let \(\mathcal{L} \) be a partial Boolean algebra of all Hermitian idempotents in \(W^*_{/\omega} \). A function \(\psi: B^*_{/\omega} \rightarrow \mathcal{L} \) defined by \(\psi(|A^*|) = \langle \chi_A \rangle \) maps \(B^*_{/\omega} \) isomorphically onto \(\mathcal{L} \). By Theorem 1, the partial Boolean algebra \(\mathcal{B} \) is isomorphic to \(B^*_{/\omega} \). Hence \(\mathcal{B} \) and \(\mathcal{L} \) are isomorphic. Thus the proof is completed.

Thus, with any partial Boolean algebra \(\mathcal{B} \) we can associate, in a unique way, a partial \(*\)-algebra \(W^*_{/\omega} \) constructed as above. This particular partial \(*\)-algebra will be denoted by \(W_{\mathcal{B}} \).

Let \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) be partial \(*\)-algebras. A mapping \(h: \mathcal{A}_1 \rightarrow \mathcal{A}_2 \) is said to be a homomorphism if the following conditions are fulfilled:

(i) if \(a \cdot b \), then \(ha \cdot hb \) \(\text{\; \textcircled{\,a\,\textdagger\, \; (a, b \in A_1)} \}
(ii) if \(a \cdot b \), then \(h(a + b) = ha + hb \) and \(h(a \cdot b) = ha \cdot hb \);
(iii) \(h(\lambda a) = \lambda ha \);
(iv) \(h(a^*) = (ha)^* \);
(v) \(h1 = 1 \).

A one-to-one homomorphism is called a monomorphism.

Theorem 3. Let \(\mathcal{A}_1, \mathcal{A}_2 \in PBA \). Let \(h_0: \mathcal{A}_1 \rightarrow \mathcal{A}_2 \) be a homomorphism (see [3]). Then \(h_0 \) can be extended to a homomorphism \(h: W_{\mathcal{A}_1} \rightarrow W_{\mathcal{A}_2} \).

If \(h_0 \) is an epimorphism (a monomorphism), then \(h \) is an epimorphism (a monomorphism).

Proof. It suffices to notice that any element \(w \in W_{\mathcal{A}} \) \((w \neq 0) \), where \(\mathcal{A} \in PBA \), has a unique representation of the form

\[w = \sum_{i=1}^{n} a_i p_i \]

up to a permutation of the set \(\{1, 2, ..., n\} \), where \(p_i \) is a Hermitian idempotent, \(p_i \neq 0 \) \((i = 1, 2, ..., n) \), \(p_i \cdot p_j = 0 \) for \(i \neq j \), and \(a_i \neq 0 \) \((i = 1, 2, ..., n) \), \(a_i \neq a_j \) for \(i \neq j \).

\((***) \) is called the canonical representation of \(w \).
\(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) can be identified with partial Boolean algebras of Hermitian idempotents in \(\mathcal{W}_{\mathcal{A}_1} \) and \(\mathcal{W}_{\mathcal{A}_2} \), respectively. We put

\[
\mathcal{h} \left(\sum_{i=1}^{n} a_i p_i \right) = \sum_{i=1}^{n} a_i h_0 p_i.
\]

Thus we obtain a function \(\mathcal{h} \) which maps \(\mathcal{W}_{\mathcal{A}_1} \) into \(\mathcal{W}_{\mathcal{A}_2} \). The function \(\mathcal{h} \) is well defined, since representation (**) is unique. \(\mathcal{h} \) is also an extension of \(h_0 \). Simple computations show that \(\mathcal{h} \) is a homomorphism.

In case where \(h_0 \) is a monomorphism we need some comments. If (**) is the canonical representation of \(\mathcal{w} \), then the sum

\[
\sum_{i=1}^{n} a_i h_0 p_i
\]

is the canonical representation of \(\mathcal{h}\mathcal{w} \). It follows that if \(\mathcal{w}_1 \neq \mathcal{w}_2 \), then \(\mathcal{h}\mathcal{w}_1 \neq \mathcal{h}\mathcal{w}_2 \).

Corollary 1. A partial Boolean algebra \(\mathcal{A} \) is embeddable into a Boolean algebra iff \(\mathcal{W}_{\mathcal{A}} \) is embeddable into a commutative linear algebra with involution.

Indeed, \(\mathcal{W}_{\mathcal{A}} \) is a commutative algebra with involution iff \(\mathcal{A}' \) is a Boolean algebra.

There exist partial Boolean algebras which cannot be even homomorphically mapped into a Boolean algebra (see [2] and [3]). Hence there exist partial \(\ast \)-algebras which cannot be extended to commutative linear algebras with involution.

A partial Boolean algebra \(\mathcal{A} \) is transitive if the relation \(\leq \) defined in \(\mathcal{A} \) by

\[
a \leq b \quad \text{iff} \quad a \ast b \quad \text{and} \quad a \lor b = b
\]

is a partial order in \(\mathcal{A} \).

If \(\mathcal{A} = \langle A; +, \cdot, \ast; 1 \rangle \) is a linear algebra (not necessarily commutative) with the involution *, then the set \(L_{\mathcal{A}} \) of all Hermitian idempotents in \(\mathcal{A} \) forms a transitive partial Boolean algebra \(L_{\mathcal{A}} \), where

\[
a \ast b \quad \text{iff} \quad a \cdot b = b \cdot a \quad (a, b \in L_{\mathcal{A}}).
\]

The remaining operations in \(L_{\mathcal{A}} \) are defined as in case of partial \(\ast \)-algebras.

Let \(\mathcal{A} \) be a linear algebra with involution and with a unit 1. Let \(\{\mathcal{A}_i\}_{i \in I} \) be the family of all maximal, with respect to the inclusion, commutative algebras with involution, contained in \(\mathcal{A} \). Let

\[
\mathcal{A}_0 = \bigcup_{i \in I} \mathcal{A}_i.
\]
Let
\[a \leftrightarrow b \text{ iff there is a } \lambda \in A \text{ such that } a, b \in A_\lambda (a, b \in A_\mu). \]

It is easy to check that the system
\[A_\mu = (A_\mu; \leftrightarrow; +, \cdot, *, 1), \]
with operations inherited from \(A \), is a partial *-algebra.

Corollary 2. A partial Boolean algebra \(B \) is embeddable into a partial Boolean algebra of Hermitian idempotents of a certain linear algebra with involution iff \(W_B \) can be extended to a linear algebra with involution.

Indeed, let \(A \) be a linear algebra with involution and let \(h_0 \) be an embedding of \(B \) into \(L_A \). Let
\[w = \sum_{i=1}^{m} a_i p_i \quad \text{and} \quad u = \sum_{j=1}^{n} \beta_j q_j \quad (w \neq u) \]
be elements of \(W_B \) in their canonical representations. Easy computations show that
\[\sum_{i=1}^{m} a_i h_0 p_i \neq \sum_{j=1}^{n} \beta_j h_0 q_j. \]

A mapping \(h \),
\[h w = \sum_{i=1}^{m} a_i h_0 p_i, \]
is well defined. Moreover, \(h \) is an embedding of \(W_B \) into \(A \).

There exist partial Boolean algebras not embeddable into transitive ones (see [3]). Hence there exist partial *-algebras which cannot be extended to linear algebras with involution.

Let \(B \in \text{PBA} \). We define a **finitely additive spectral measure** as a homomorphism of the algebra \(B(C) \) of Borel sets of complex numbers into \(B \). A spectral measure \(E: B(C) \mapsto B \) has a **finite carrier** iff there exists a finite set \(\Delta = \{a_1, a_2, \ldots, a_n\} (\Delta \subset C) \) such that \(E(\Delta) = 1 \).

Theorem 4. Let \(B \in \text{PBA} \). Then there is a one-to-one correspondence between elements of a partial *-algebra \(W_B \) and finitely additive spectral measures with finite carriers and values in \(B \).

Proof. Let
\[w = \sum_{i=1}^{n} a_i p_i \]
be the canonical representation of \(w \) (\(w \in W_B \)). We have to consider two cases.

(1) \[\sum_{i=1}^{n} p_i \neq 1. \]
Let
\[a_{n+1} = 0 \in C \text{ and } p_{n+1} = 1 - \sum_{i=1}^{n} p_i. \]

We define a spectral measure \(E_w \) corresponding to \(w \) as follows. Let \(A \) be a Borel set (\(A \subseteq C \)). Put
\[\{a_{i_1}, a_{i_2}, \ldots, a_{i_k}\} = A \cap \{a_1, a_2, \ldots, a_n, a_{n+1}\}. \]
Then
\[E_w(A) = p_{i_1} + p_{i_2} + \ldots + p_{i_k}. \]
(II)
\[\sum_{i=1}^{n} p_i = 1. \]

Let \(A \) be a Borel set and put
\[\{a_{i_1}, a_{i_2}, \ldots, a_{i_k}\} = A \cap \{a_1, a_2, \ldots, a_n\}. \]
Then
\[E_w(A) = p_{i_1} + p_{i_2} + \ldots + p_{i_k}. \]

It is clear that \(w_1 \neq w_2 \) implies \(E_{w_1} \neq E_{w_2} \) (\(w_1, w_2 \in W_\mathcal{A} \)).

Now, let \(E \) be any finitely additive spectral measure with a finite carrier \(\Delta_0 \) (\(E: \mathcal{A}(C) \to \mathcal{A} \)). Let \(\Delta_0 = \{a_1, a_2, \ldots, a_n\} \). We put
\[w = \sum_{i=1}^{n} a_i E(\{a_i\}). \]
Then \(w \in W_\mathcal{A} \) and the formula for \(w \) is the canonical representation of \(w \) iff \(0 \notin \Delta_0 \). Moreover, \(E = E_w \).

REFERENCES

Reçu par la Rédaction le 20. 4. 1976; en version modifiée le 26. 2. 1977