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ON TOPOLOGICAL TYPES
OF THE SIMPLEST INDECOMPOSABLE CONTINUA

BY

W. DEBSKI (KATOWICE)

Indecomposable (metric) continua of the simplest type are those, by the
degnitigm, . which can be obtained as inverse limits of sequences
11213 . where I are the unit intervals, I =[0,1]={r: 0<t <1},
and pi*! are open continuous maps, i.e. continuous maps which are strictly
monotone on intervals and have local extrema equal to 0 and 1; the number of
intervals of monotonicity will be called the degree of such a map.

Rogers, Jr. [3] proved that each continuum of the simplest type can be
mapped onto another one.

The aim of this paper* is to show that, in contrast to Rogers’ result,
there exist 2" continua of the simplest type such that no one is the open
continuous image of the other. In particular: there exist o topologically
different continua of the simplest type. It is shown how the topological type
depends on the sequence of degrees of maps p3, p3,... in the inverse
sequence. This dependence is similar to that of Cook’s topological classifi-
cation of solenoids [1].

1. Preliminaries. For each positive integer n we consider the standard
open (continuous) map w,: I -1 on the unit interval I = {t: 0<t <1},
namely a map defined by

v i\ _ 0 if iis even,
"\n) |1 ifiis odd,
which is linear on closed intervals [(i—1)/n, i/n].
We have w,ow,, = w,,.
LEmMA 1. If p: I — 1 is an arbitrary open map on the unit interval, then

there exist a number n and a sequence 0 =ay <a; <... <a, =1 such that p
restricted to the closed interval [a;_,, a;] is a homeomorphism onto I.

* This paper is a part of the author’s doctoral dissertation [2].
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The number n, uniquely determined by p, will be called the degree of p;
we write n = degp.

Let us observe that if p and q are open maps from I onto I, then
deg pogq = (deg p)(deg q).

Clearly, degw, = n.

LemMA 2. If open maps p and q on I are such that |p(x)—q(x)| < % for
each x, then degp = deggq.

Proof. Let us consider maximal intervals, with respect to inclusion, on
which p and q are both increasing or both decreasing. It is easy to see that
the number of those intervals is equal to degp and to deggq.

Using Lemma 1 we get the following

LEMMA 3. If open maps p and q on I are such that degp = degq and
p(x) = q(y), where x and y are taken from the set of ends of I, then there exists
a unique homeomorphism h: I — I such that poh =q and x = h(y).

P2 P3 P4 ‘12 43 ‘14

Lemma 4. Let 1, 41,21, ...and I, 41,21, ..., where I, =1, be
inverse sequences consisting of open maps on I such that degpi*! = degqi*!
for each i. Then there exists a homeomorphism between the limits of those
Sequences.

Proof. Let x;, x,, ... be a sequence consisting of ends of I such that
x; = pi*'(x;,,) for each i; let y,, y,,... be a sequence for the maps ¢:*!
defined analogously. We define inductively homeomorphisms h;: I; = I; as
follows.

Put hy(t)=t if x, =y, and h,(t)=1—1t if x; # y,.

If h;: I, > I, is given, then h; . is uniquely determined by the conditions
pitloh,; =hogq*! and x;,, = h;,;(yi+1), according to Lemma 3. Now,
the homeomorphisms h; induce a homeomorphism between limits.

From Lemma 4 it follows that a space obtained as an inverse limit of
the sequence of closed intervals and open maps is homeomorphic to an
inverse limit of an appropriate sequence consisting of standard open maps.

Lemmas 1 and 4 can be found also in [3].

2. Approximation lemma. We begin with a lemma concerning maps on
the interval.

LEMMA 5. Let ¢, 0 <e <1, be given. Let m,,...,m,, M,, ..., M, be
numbers from I = [0, 1] such that
Al. m; < M;;

A2. m; < M;,, and M; > m;,, (this means that the .atersection of seg-
ments [m;, M;] and [m;,,, M;, ] is non-empty);

A3. M, < ¢ for some i,

Ad4. m; > 1—¢ for some i,

A5. My <¢eor m > 1—¢g;

A6. M, <egor m,>21—¢g;
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Al. if M; >¢ and m; < 1—g¢, then

Mi_y <M; <M,y and m_; <m<my,
or
My, >M;>M;,y and m_,>m>my,.
Then there exists an open map g: I — I such that if xe[(i—1)/n, i/n],
the
" g <e if Mi<e, g >1-zif m>1-¢,
m<gx)S M, if Mi>¢and m; <1—s¢.

Proof. Let ¢; be the center of the interval [m;, M,]Jn[m;,,, M;;,]
mentioned in A2.

If M; > ¢ and m; < 1 —¢, then we define g on [(i—1)/n, i/n] to be a linear
function such that g((i—1)/n) =c¢;_, and g(i/n) = c;.

Now we define g on those segments [(i—1)/n, i/n] where m; and M, are
both less than ¢ or both greater than 1—e¢.

If M; <e¢, then take k such that M; <¢ for i<k and M,,, >¢ We
define g on [0, k/n] to be a linear map such that g(0) = 0 and g(k/n) = c,.

If m >1—¢, then take k such that m;>1—¢ for i<k and m,,,
< 1—¢. We define g on [0, k/n] to be a linear map such that g(0) = 1 and
g(k/n) = ¢.

If M, <e¢, then take k such that M; <¢ for i> k and M,_; > ¢ We
define g on [(k—1)/n, 1] to be a linear map such that g((k—1)/n) = ¢,_, and
g(1)=0.

If m, > 1—¢, then take k such that m; > 1—¢fori>kand m,_, <1-—¢.
We define g on [(k—1)/n, 1] to be a linear map such that g((k—1)/n) = ¢, -,
and g(1) = 1.

If Kk and | are such that k<!, M;<e if k<i<I, M,_; >¢ and
M,,, > ¢, then we define g on the segment [(k—1)/n, l/n] to be a linear map
on each half of that segment such that

k—1 l+k—-1 l
g(——n )=c,‘_1, g( ™ )=0, and g(;)=c,.

If kand I are such that k < I, m>1—-¢efork<i<l,m_; <1—¢ and
m;,, <g¢, then we define g on the segment [(k—1)/n, I/n] to be a linear map
on each half of that segment such that

k—1Y) k=1\_ . (1)_
g n =Cx-1> g n - L g n =q.

Thus, we have defined a map g: I — I which, by A3-A7, is increasing or
decreasing on the intervals, and at the ends of those intervals admits the
different values 0 and 1. Therefore, g is open. It follows from the construction
that g satisfies the remaining conditions.
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LEMMA 6. Let &, 0 <¢ <4, be given. Let my,...,m,, M,, ..., M, be
numbers from I = [0, 1] such that

Bl. 0<M;—m; <¢;

B2. m; < M,y and M; 2 m;,,;

B3. if M; > M; for indices j adjacent to i, then M; = 1;

B4. if m; < my for indices j adjacent to i, then m; = 0.

Then conditions A1-A7 (from Lemma 5) are satisfied.

Proof. Conditions A1 and A2 are consequences of Bl and B2.

If m; < m; for each j (ie, if m; is the minimum of m,, ..., m,), then, by
B4, m; =0 and, by Bl, M, <& This means that condition A3 is satisfied.

Analogously, condition A4 is satisfied.

Now we show that

BS. there exists no i such that

(®) Mi>e m<l—g M;<M,;,,, and m = m,,
and

B6. there exists no i such that

(**) M‘ >E m; < 1—g M,'_l = M,-, and m_, <sm.

By symmetry, it suffices to show BS only.

Suppose (*¥) holds for some i. We have m;,, < 1—¢. Since, by BI,
M, ,—m,, <g we get M;,, <1. Analogously, m;., > 0. If i+ 1 < n, then
M;,, < M,,,, since otherwise M;,, should be a local maximum, and
therefore, by B3, we would have M, ,, = 1; analogously, m;,, = m,, , and, as
before, M;,, <1 and m;,, > 0. By induction, we get

Mi<M, <..<M,<l and m2=2m,,>...2m,>0,

which contradicts B3 and B4.

Suppose M; >¢ and m; < 1—e¢. Since, by B3, M, < M, and, by B4,
m, = m,, we get a contradiction by BS. This means that condition AS is
satisfied.

Analogously, condition A6 is satisfied.

Condition A7 is implied by the fact that if M; >¢ and m; < 1—¢, then
the following four possibilities are excluded by B3-B6:

Mi_ <SMi2My, m_,Z>2m<my,,
M; <M, and m;2m,,, M,_;>M; and m;_, <m.
APPROXIMATION LEMMA. Let K be the inverse limit of the sequence

2 3 4
I, f-‘-lz 5313 3 .., where I; =1, consisting of continuous maps of I onto I. Let
p;: K —=1I; be the projections. Let f: K — 1 be an open and continuous map
onto the closed interval 1. Then for every ¢ > 0 there exists l, such that if
1> ly, then there exists an open and continuous map g: I, — 1 such that

lf (x)—g (P:(x))l < ¢ for each x.
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Proof. Assume that ¢ > 4. There exists u > 0 such that if g(x,, x,) < 4,
then |f (x;)—f(x;)| < & (here g is a metric inducing the topology on K). Let I,
be an integer such that if I > I,, then the diameters of p; ! (x) are less than u.
Hence, for each | > [, there exists 6 = 6 (]) > 0 such that if |p,(x;)— p;(x,)|
< d, then g(x,, x;) < u. Thus, if |p;(x;)— pi(x3)| <, then |f(x,)—f(x,)| <e.

Let I, 1 > 1y, and 6 = &(]) be chosen for a given ¢ > 0 so that the above
conditions are satisfied.

Let n be such that 1/n<d. Let O0<l/n< ... <(n—1)/n<1 be a
partition of the unit interval I,.

For 0 <i<n we put

w5 el (5-2))

Now we show that the assumptions of Lemma 6 are satisfied. By
Lemma 6, the assumptions of Lemma 5 will be also satisfied.

Obviously, 0 < M;—m; <e. Since the set A4 =f(p/ ' ([(i—1)/n, i/n]))
contains the open and non-empty set f (p,‘ Y@ =1y, i/n))), the map p, is onto
and continuous and f is open, we infer that A consists of more than one point
and 0 < M;—m;. This means that condition Bl is satisfied.

Since p;(x) = i/n for some x, we have m; < f(x) < M;,, and M; = f(x)
> m;,,. Thus, condition B2 is satisfied.

Let M; > M; for indices j adjacent to i. Then the supremum M; of the
compact non-empty set A belongs to A. Since A is contained in the set

SR

and M; > M; for indices j adjacent to i, it follows that M; = sup B belongs to
B, which is possible only in the case where M; =1 as B is open in I. This
means that condition B3 is satisfied.

Analogously, condition B4 is satisfied.

The function g, whose existence is assured by Lemma 5, is the desired
one. . . ¥ p3 .}

Let K be the inverse limit of the sequence I, &1, ¢ ... Let p;:
K — I; denote the projection. Let f: K — I and f;: I; - I. If f;op; is uniformly
convergent to f, then we say that f; is an approximating sequence for f.

The following corollary is a consequence of the Approximation Lemma.
2 3 4
CoroLLARY. Let K be the inverse limit of the sequence I, ag 2 2] 351...

consisting of continuous maps of I; =1 onto I. Let f: K —1I be an open and
continuous map onto I. Then there exist open and continuous maps f;: I, - I
such that f; is an approximating sequence for f.

3. Open maps from inverse limits. Let p be an inverse system

[}9)

3 4
1,9 1,%21,% | consisting of standard open maps of the interval I = [0, 1]

5 — Colloquium Mathematicum XLIX.2
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into itself. Let P be the limit of p. By p;: P — I; we denote the projections.
LemMMA 7. Let h: I; > 1 and-g: 1; > 1 be open maps such that

(P (x))—g(p;(0)| <% for all xeP.
Then
degh  degg
deg p} _ degpi

Proof. Assume that j>i. We have [h(p/(x))—g(x)|<} for xel,.
By Lemma 2, deghop/ =degg. Since deghopi = (degh)(degp)) and
deg p} = (deg p})(deg pl), we have the desired equality.

Let f: P— I be open. Let f;: I, » I be an approximating sequence for f.
By Lemma 7, the numbers

deg f;
deg p}
are equal for almost all i (as |f(x)—f;(p:(x))| < § for sufficiently large i). By
the same lemma, the stabilized value of (x##) is independent of the choice of
the approximating sequence.
Define deg f, the degree of f with respect to the given expansion p, to be
the common stabilized value of (+) for approximating sequences of f.
From the definition it follows that (deg f)(degp}) is an integer if i is
sufficiently large.

LEMMA 8. Let f: P—1 and g: I - 1 be open maps. Then
degg of = (deg g)(deg f).

LEMMA 9. Let f: P—1 and g: P — I be open maps and let |f(x)—g(x)|
<} if xeP. Then deg f=degg.

Let g be an inverse system I, ﬁ I, ﬁ I, ﬁ ... consisting of standard open
maps of the interval I into itself. Let Q be the limit of q. By ¢;: Q — I; we
denote the projections.

Let f: P> Q be an open map. The map g, of is also open.

We define the degree of f as the degree of g, of.

LEMMA 10. Let f: P — Q be an open map. Then

deg p!

degqi

is an integer if i is sufficiently large (n fixed).
ProoF. Since

" degf = degq, of = deg g’ 04, 0f = (degq?)(deg 4, 0f)

(#%x)

deg f
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'

(which follows from Lemma 8) and (degp))(degq,of) is an integer for
sufficiently large i, we have the thesis.

THEOREM. There exist 2™° continua of the simplest type not homeomorphic
to each other. "

Proof. Observe that if the degrees of open standard maps pi*! and
gi*! are prime numbers, deg p;*' = degg/*! only for a finite number of pairs
of indices i and j, degpj*' # degpi* ! if i # j and degg;*' # degq/™' if i #j,
then there exists no open map between the limits P and Q.

Since there exist 2" infinite subsets of prime numbers such that the
intersection of each two of them is a finite set, there exist 2" continua of the
simplest type which cannot be mapped by an open map one onto another
and which, in consequence, are not homeomorphic.

4. Classification of continua of the simplest type. We start with some
lemmas concerning the degree of open maps.

LemMmA 11. degidp = 1.
2 3 4
Let u be an inverse system I, 41,21, 3 .. consisting of standard

open maps of the interval I into itself. Let U be the limit of u. By u;: U — I,
we denote the projections.

LemMma 12. Let f: P—»Q and g: Q - U be open maps. Then
degg of = (degg)(degf).

Proof. Let g;: I, »1 be an approximating sequence for u,og. By
Lemmas 8 and 9, we have

deggof=degu, ogof =degg;0q;0f = (degg;)(degq; of)

degg; degg;
= - —de of = (de deg/).
degq. degq gq, of = (degg)(degf)

1

degqi0g;0f=

LEmMMA 13. If f: P> Q is a homeomorphism, then
(deg f)(deg f~') =1.

LEmMA 14. If f: P> Q is a homeomorphism, then

deg pi
deg f
®/ degq]
is an integer if i is sufficiently large (n fixed) and
1 degqi

deg f degp)
is an integer if n is sufficiently large (i fixed).
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]
By Lemma 14, if P and Q are homeomorphic, then there exists a real
number r > 0 such that

(1) rdegp:,. is an integer if i is sufficiently large (n fixed),
degq] .

(2 1deg qi is an integer if n is sufficiently large (i fixed)
rdeg p} 8 y arg '

Remark. The condition “there exists a real number r > 0 such that (1)
holds” is equivalent to the condition “degq?, degq3, ... is a factorant of
deg p?, degp3, ...” and the condition “there exists a real number r > 0 such
that (2) holds” is equivalent to the condition “deg p?, deg p3, ... is a factorant
of degq?, degq3,...” (see [1], p. 236).

Now, we shall show that the converse is also true.

If iy <i, <i; < ..., then the inverse sequence

i2 i3 iq

21212

is said to be a consolidation of an inverse sequence p.

LEMMA 15. Let p and q be inverse sequences consisting of standard open
maps of the interval I such that

(A) there exists r > 0 such that (1) and (2) hold.

Then there exists an inverse sequence v consisting of standard open maps
of the interval I such that p and v, as well as q and v, have common
consolidations.

Proof. Let m; <m, < ... and n; <n, < ... be sequences of natural

numbers such that
_ 1deggy**!

deg pi*
r-——gp—f, and b, —
deg q;* r degp;"
are integers, where r is the positive number whose existence is assumed in
(A); the sequences m; <m, < ... and n, <n, < ... can be defined in-
ductively according to (A).

We have
3 a b, = deg ‘1::+ !
and
4 biay+y =degp::“.

Consider the inverse sequence v as in the diagram

Yay Wby o Ma3 Vb
Iy — Iy — I3 — 1, «— ...



The consolidation

WaIOWbl Wazo\vbz W430Wb3

I, < 3¢ Is «

of v is, by (3), also a consolidation of q.
The consolidation

Wblowaz szowaa Wb3owa4
12 < 4 € 6 ¢

of v is, by (4), also a consolidation of p.

Obviously, the inverse limit of a sequence and the inverse limit of a
consolidation of this sequence are homeomorphic.

Since each standard open map can be decomposed into standard open
maps having prime numbers as the degrees, we can restrict our consider-
ations, without loss of generality, to the case where inverse sequences consist
of standard open maps having prime numbers as the degrees.

THEOREM. Let p and q be inverse sequences consisting of standard open
maps of the interval I having prime numbers as the degrees. Then the limits P
and Q are homeomorphic if and only if the following conditions hold:

(a) for each prime number k the set [i: degpi*' = k} is finite if and only if
the set {i: degqi*! = k) is finite;

(b) the number of elements in {i: degpi*' =k} and [i: degq}*' =k}
is the same for all but a finite number of prime numbers k.
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