Sur les solutions de l'équation de translation sur les groupes L_1^2 et L_1^3 . Quelques remarques sur les sous-groupes des groupes L_1^2 et L_1^3

par S. MIDURA (Rzeszów)

- 1. Introduction. Dans ce travail nous nous proposons de résoudre par des méthodes algébriques, dans une certaine classe de fonctions, les équations fonctionnelles (2) et (2.2) (théorèmes 1 et 2). Ces équations ont été résolues dans [4] et, par d'autres méthodes, dans [1], p. 38 et 42. Les hypothèses (b) et (d) que nous admettons dans les théorèmes 1 et 2 sont plus faibles que les hypothèses correspondantes des théorèmes de [1]. Nous donnons aussi les solutions générales des équations fonctionnelles (12) et (2.5) (corollaires 1 et 3). Ces équations se sont présentées dans l'étude des équations (2) et (2.2). Dans le travail nous avons déterminé tous les sous-groupes du groupe Z_r et L_1^3 qui satisfont à certaines conditions (lemme 2, corollaire 4). Dans les démonstrations des théorèmes nous profitons souvent de [3].
- 2. Désignons par Z_r l'ensemble de tous les couples $\langle a_1, a_r \rangle$ de nombres réels pour lesquels $a_1 \neq 0$. Dans l'ensemble Z_r nous introduisons l'opération suivante:

$$\langle \beta_1, \beta_r \rangle \cdot \langle \alpha_1, \alpha_r \rangle = \langle \beta_1 \alpha_1, \beta_1 \alpha_r + \beta_r \alpha_1^r \rangle,$$

où r est un nombre entier fixé et r > 1. L'ensemble Z_r avec l'opération définie par la formule (1) est un groupe (v. [1], p. 23, 24 et 34).

Pour r=2 le groupe Z_r est désigné par L_1^2 dans la théorie des objets géométriques (v. [2], p. 19).

Nous établirons le

THÉORÈME 1. Si

(a) la fonction f vérifie l'équation fonctionnelle

$$(2) f[f(x,\langle a_1,a_r\rangle),\langle \beta_1,\beta_r\rangle] = f(x,\langle \beta_1a_1,\beta_1a_r+\beta_ra_1^r\rangle)$$

sur le produit cartésien de l'ensemble A et du groupe Z_{τ} , où A est l'intervalle ouvert (a_1, b_1) ou la somme de deux intervalles ouverts disjoints (a_1, b_1) et (a_2, b_2) $(f: A \times Z \to A)$,

- (b) pour tout x de l'ensemble A la fonction $f(x, \langle 1, a_r \rangle)$ de la variable a_r est continue et non constante,
- (c) pour tout $x \in A$: $f(x, \langle 1, 0 \rangle) = x$, alors, dans le cas où $A = (a_1, b_1)$, il existe une fonction g_1 , continue et fortement monotone, représentant l'ensemble des nombres réels sur l'intervalle (a_1, b_1) , telle que

(3)
$$f(x, \langle a_1, a_r \rangle) = g_1 \left[\frac{g_1^{-1}(x)}{a_1^{r-1}} + \frac{a_r}{a_1^r} \right],$$

tandis que dans le cas où $A = (a_1, b_1) \cup (a_2, b_2)$ et

- (d) pour un $x_0 \in (a_1, b_1)$ fixé: $f(x_0, \langle a_1, 0 \rangle) \in (a_1, b_1)$ pour tout $a_1 > 0$,
- (e) pour tout x de l'intervalle (a_1, b_1) on a $f(x, \langle -1, 0 \rangle) \in (a_2, b_2)$, il existe des fonctions g_1 et g_2 , continues et fortement monotones, représentant l'ensemble des nombres réels respectivement sur les intervalles (a_1, b_1) et (a_2, b_2) , telles que

(4)
$$f(x,\langle a_1,a_r\rangle)=g_k\left[\frac{g_i^{-1}(x)}{a_i^{r-1}}+\frac{a_r}{a_i^r}\right],$$

où i = k si $x \in (a_i, b_i)$, $a_1 > 0$ et i = 1, 2, tandis que $k \neq i$ si $x \in (a_i, b_i)$, $a_1 < 0$ et k, i = 1, 2.

Nous établirons d'abord trois lemmes.

LEMME 1. Si la fonction f satisfait aux hypothèses du théorème 1, alors:

- 1. pour tout x de l'intervalle (a_i, b_i) la fonction $f(x, \langle 1, a_r \rangle)$ de la variable a_r est continue et fortement monotone et l'ensemble de ses valeurs est l'intervalle (a_i, b_i) pour i = 1 lorsque $A = (a_1, b_1)$ ou i = 1, 2 lorsque $A = (a_1, b_1) \cup (a_2, b_2)$,
- 2. pour un x_0 fixé de l'intervalle (a_1, b_1) et pour tout $a_1 \neq 0$ la fonction $f(x_0, \langle a_1, a_r \rangle)$ de la variable a_r est fortement monotone et l'ensemble des valeurs de cette fonction (de la variable a_r) est:
 - 2_1 . l'intervalle (a_1, b_1) lorsque $A = (a_1, b_1)$ ou bien,
- 2₂. l'intervalle (a_1, b_1) ou l'intervalle (a_2, b_2) respectivement lorsque $a_1 > 0$ ou $a_1 < 0$, si $A = (a_1, b_1) \cup (a_2, b_2)$.

Démonstration du lemme. Posons

(5)
$$f_1(x, a_r) \stackrel{\mathrm{df}}{=} f(x, \langle 1, a_r \rangle).$$

En vertu de l'hypothèse (a) et de (5) on obtient

(6)
$$f_1[f_1(x, a_r), \beta_r] = f_1(x, a_r + \beta_r).$$

En vertu des hypothèses (a), (b) et (c) et de (5) pour tout x de l'intervalle (a_i, b_i) l'ensemble des valeurs de la fonction $f_1(x, a_r)$ (de la variable

 a_r) est contenu dans l'intervalle (a_i, b_i) pour i = 1 lorsque $A = (a_1, b_1)$ ou pour i = 1, 2 lorsque $A = (a_1, b_1) \cup (a_2, b_2)$. En tenant compte de (6) et des hypothèses (b), (c) et en s'appuyant sur le théorème 6 de [3] on obtient ainsi la première partie de la conclusion du lemme.

En vertu de l'hypothèse (d) on a pour tout $a_1 > 0$ $x_1 \stackrel{\text{df}}{=} f(x_0, \langle a_1, 0 \rangle)$ $\epsilon(a_1, b_1)$. Par conséquent les hypothèses (a) et (e) entrainent

$$f(x_0,\langle -a_1,0\rangle)=f[f(x_0,\langle a_1,0\rangle),\langle -1,0\rangle]=f(x_1,\langle -1,0\rangle)\epsilon(a_2,b_2).$$

En tenant compte de l'hypothèse (d) on a donc

(7)
$$\overline{x} = f(x_0, \langle a_1, 0 \rangle) \epsilon \begin{cases} (a_1, b_1) & \text{pour tout } a_1 > 0, \\ (a_2, b_2) & \text{pour tout } a_1 < 0. \end{cases}$$

De l'hypothèse (a) et de (7) il résulte

$$(8) f(\bar{x},\langle 1,\beta_r\rangle) = f[f(x_0,\langle a_1,0\rangle),\langle 1,\beta_r\rangle] = f(x_0,\langle a_1,\beta_ra_1^r\rangle).$$

Comme la fonction $f(\bar{x}, \langle 1, \beta_r \rangle)$ de la variable β_r est fortement monotone, il résulte de (8) qu'il en est de même de la fonction $f(x_0, \langle a_1, a_r \rangle)$ de la variable a_r pour $a_r = \beta_r a_1^r$ (a_1 fixé). En tenant compte de (7) et (8) et de la première partie de la conclusion du lemme on obtient la seconde partie de cette conclusion. Le lemme est ainsi démontré.

Posons $R \stackrel{\mathrm{df}}{=} (-\infty, \infty)$ et

(9)
$$Z(\overline{R}_0) \stackrel{\text{df}}{=} \{\langle a_1, \psi(a_1) \rangle\}_{a_1 \in \overline{R}_0},$$

où \overline{R}_0 désigne un sous-groupe multiplicatif quelconque du groupe des nombres réels et la fonction ψ représente l'ensemble \overline{R}_0 sur l'ensemble R. Nous allons démontrer le

LEMME 2. Les seuls sous-groupes du groupe Z_r de la forme (9) sont les sous-groupes

$$\{\langle a_1, c(a_1^r - a_1) \rangle\}_{a_1 \in \overline{R}_0},$$

où c est un nombre réel quelconque.

Démonstration. Comme l'ensemble $Z(\overline{R}_0)$ est un groupe, on a

$$(11) \qquad \langle \beta_1, \psi(\beta_1) \rangle \cdot \langle a_1, \psi(a_1) \rangle = \langle \beta_1 a_1, \beta_1 \psi(a_1) + \psi(\beta_1) \cdot a_1^r \rangle \epsilon Z(\overline{R}_0).$$

De (11) et (9) il résulte que

$$\langle \beta_1 a_1, \beta_1 \psi(a_1) + \psi(\beta_1) a_1^r \rangle = \langle \beta_1 a_1, \psi(\beta_1 a_1) \rangle.$$

De cette dernière égalité on tire

(12)
$$\beta_1 \psi(a_1) + \psi(\beta_1) a_1^r = \psi(\beta_1 a_1).$$

Considérons maintenant deux cas:

1.
$$\overline{R}_0 = \{1\},$$

2.
$$\overline{R_0} \neq \{1\}$$
.

Ad 1. De (12) il résulte que $\psi(1)=0$. Par conséquent $Z(\bar{R}_0)$ pour $\bar{R}_0=\{1\}$ est de la forme (10).

Ad 2. Le second membre de (12) étant symétrique, on tire de (12)

$$\beta_1 \psi(a_1) + \psi(\beta_1) a_1^r = a_1 \psi(\beta_1) + \psi(a_1) \beta_1^r$$
.

De cette égalité il résulte que

$$\psi(a_1)\lceil \beta_1^r - \beta_1 \rceil = \psi(\beta_1)\lceil a_1^r - a_1 \rceil.$$

En posant dans la dernière égalité $\beta_1 \stackrel{\text{df}}{=} \overline{\beta_1} \neq 1$, $\overline{\beta_1}$ fixé, et

$$c \stackrel{\mathrm{df}}{=} \frac{\psi(\overline{\beta}_1)}{\overline{\beta}_1^r - \overline{\beta}_1},$$

on aura

(13)
$$\psi(a_1) = c(a_1^r - a_1).$$

Tout sous-groupe de $Z(\bar{R}_0)$ est donc de la forme (10). On vérifie aisément que pour tout c (et \bar{R}_0 fixé) l'ensemble (10) est un sous-groupe du groupe Z_r . Le lemme est ainsi démontré.

Remarquons que pour c réel quelconque la fonction (13) est une solution de l'équation (12). On obtient ainsi le

COROLLAIRE 1. Les seules solutions de l'équation (12) sont les fonctions de la forme (13) pour c quelconque $(\psi \colon \overline{R}_0 \to R)$.

Pour x_0 fixé posons

$$\vec{Z} \stackrel{\text{df}}{=} [\langle a_1, a_r \rangle \epsilon Z_r : f(x_0, \langle a_1, a_r \rangle) = f(x_0, \langle 1, 0 \rangle) = x_0].$$

En vertu du théorème 4 de [3] l'ensemble \overline{Z} est un sous-groupe du groupe Z_r . Posons encore

$$R_0 \stackrel{\mathrm{df}}{=} (-\infty, \infty) \setminus \{0\}, \qquad R_0^+ \stackrel{\mathrm{df}}{=} (0, \infty).$$

L'ensemble \bar{Z} est déterminé par le

LEMME 3. Si la fonction f satisfait aux hypothèses du théorème 1, l'ensemble \overline{Z} est l'ensemble

(14)
$$\{\langle a_1, p(a_1^r - a_1) \rangle\}_{a_1 \in R_0}$$
 pour $A = (a_1, b_1)$

ou l'ensemble

(15)
$$\{\langle a_1, p(a_1^r - a_1) \rangle\}_{a_1 \in R_0^+} \quad pour \ A = (a_1, b_1) \cup (a_2, b_2),$$
 où p est un nombre réel.

Démonstration. Soit $A=(a_1,b_1)$. En vertu du lemme 1 pour $a_1 \neq 0$ quelconque la fonction $f(x_0,\langle a_1,a_r\rangle)$ de la variable a_r est fortement monotone et l'ensemble de ses valeurs est l'intervalle (a_1,b_1) . Par conséquent, pour un $a_1 \neq 0$ arbitrairement fixé, à l'ensemble Z il n'appartient qu'un seul couple de l'ensemble des couples $\{\langle a_1,a_r\rangle\}_{a_r\in R}$; nous le désignerons par $\langle a_1,\overline{a_r}\rangle$. Par conséquent $\overline{a_r}$ est une fonction de a_1 . Nous désignerons cette fonction par φ $(\overline{a_r}=\varphi(a_1))$. Donc

(16)
$$\overline{Z} = \{\langle a_1, \varphi(a_1) \rangle\}_{a_1 \in R_0} \quad \text{pour } A = (a_1, b_1).$$

De même que dans le cas où $A = (a_1, b_1)$ on peut prouver que

(17)
$$\overline{Z} = \{\langle a_1, \varphi(a_1) \rangle\}_{a_1 \in R_0^+} \quad \text{pour } A = (a_1, b_1) \cup (a_2, b_2).$$

Comme l'ensemble \overline{Z} est un sous-groupe du groupe Z_r , les formules (16) et (17) entraînent, en vertu du lemme 2, la conclusion du lemme 3.

Démonstration du théorème 1. Désignons les ensembles (14) et (15) respectivement par Z_1 et Z_2 . Pour un élément quelconque $\langle \beta_1, \beta_r \rangle$ du groupe Z_r et pour le nombre p il existe un nombre t tel que

$$\beta = t\beta_1^r - p\beta_1.$$

La classe à gauche du groupe Z_r par rapport au sous-groupe Z_1 resp. Z_2 pour le couple $\langle \beta_1, t\beta_1^r - p\beta_1 \rangle$ est l'ensemble

$$\{\langle a_1, ta_1^r - pa_1 \rangle\}_{a_1 \in R_0}$$

respectivement l'ensemble

$$\left.\left\{\left\langle a_{1},\,ta_{1}^{r}-pa_{1}\right\rangle \right\} _{a_{1}\in R_{0}^{+}}\quad\text{ si }\beta_{1}>0\,,$$

ou

(21)
$$\left\{ \left\langle a_{1},\,ta_{1}^{r}-pa_{1}\right\rangle \right\} _{a_{1}\in R_{0}^{-}} \quad \text{ si } \beta_{1}<0\,,$$

où
$$R_0^- = (-\infty, 0)$$
.

Dans nos raisonnements n'interviendront que les classes à gauche du groupe Z par rapport au sous-groupe Z_1 ou Z_2 ; nous omettrons dorénavant l'attribut "à gauche".

On voit aisément que l'ensemble Z_r/Z_1 est l'ensemble

$$\{\{\langle a_1, ta_1^r - pa_1\rangle\}_{a_1 \in R_0}\}_{t \in R},$$

et que l'ensemble Z_r/Z_2 est la somme des ensembles

(23)
$$\left\{\left\{\left\langle a_{1},ta_{1}^{r}-pa_{1}\right\rangle\right\}_{a_{1}\in R_{0}^{+}}\right\}_{t\in R},$$

(24)
$$\left\{ \left\{ \left\langle a_{1},\,ta_{1}^{r}-p\,a_{1}\right\rangle \right\} _{a_{1}\in R_{0}^{-}}\right\} _{t\in R}.$$

Posons

$$G(\langle a_1, a_r \rangle) = f(x_0, \langle a_1, a_r \rangle).$$

En vertu du lemme 1 l'ensemble des valeurs de la fonction G est l'ensemble A. Du théorème 5 de [3] il résulte que sur l'ensemble $A \times Z$ on a

(26)
$$f(x,\langle a_1,a_r\rangle) = G[\langle a_1,a_r\rangle \cdot G_1^{-1}(x)]$$
 (où $G_1^{-1}\colon A\to Z$ et $G_1^{-1}(x)\in G^{-1}(\{x\})$).

(où
$$G_1^{-1}: A \to Z$$
 et $G_1^{-1}(x) \in G^{-1}(\{x\})$).

En vertu du théorème 4 de [3] la fonction G admet les mêmes valeurs pour les éléments appartenant à la même classe, tandis que pour des éléments de classes différentes elle admet des valeurs différentes. Par conséquent

$$(27) \begin{cases} G(\langle a_1, ta_1^r - pa_1 \rangle) = f(x_0, \langle (-1)^{i+1}, t(-1)^{(i+1)r} - p(-1)^{i+1} \rangle), \\ \text{où } i = 1 \text{ pour } A = (a_1, b_1) \text{ et } a_1 \neq 0, \text{ tand is que si } A = \\ (a_1, b_1) \cup (a_2, b_2) \text{ et } a_1 > 0, \text{ on a } i = 1, \text{ et pour } a_1 < 0 \text{ on a } i = 2. \end{cases}$$

Posons

(28)
$$g_i(t) = f(x_0, \langle (-1)^{i+1}, t(-1)^{(i+1)r} - p(-1)^{i+1} \rangle).$$

En vertu du lemme 1 et de (27) les fonctions g_1 et g_2 sont continues et fortement monotones et représentent l'ensemble R respectivement sur les intervalles (a_1, b_1) et (a_2, b_2) .

Le couple $\langle a_1, a_r \rangle$ appartient à la classe du groupe Z_r par rapport au sous-groupe Z_1 (Z_2), correspondant au nombre t, si et seulement si

$$(29) t = \frac{a_r}{a_1^r} + \frac{p}{a_1^{r-1}}.$$

De (27), (28) et (29) il résulte que

(30)
$$\begin{cases} G(\langle a_1, a_r \rangle) = g_k \left[\frac{a_r}{a_1^r} + \frac{p}{a_1^{r-1}} \right] \\ \text{où } k = 1 \text{ pour } A = (a_1, b_1), \text{ tandis que pour } A = (a_1, b_1) \cup \\ \cup (a_2, b_2), k = 1 \text{ pour } a_1 > 0 \text{ et } k = 2 \text{ pour } a_1 < 0. \end{cases}$$

De (27) et (28) on tire

(31)
$$\begin{cases} G^{-1}(\{x\}) = \{\langle a_1, g_i^{-1}(x) a_1^r - p a_1 \rangle\}_{a_1 \in K}, \\ \text{où } K = R_0 \text{ et } i = 1 \text{ pour } A = (a_1, b_1) \text{ tandis que si } A = (a_1, b_1) \cup \\ \cup (a_2, b_2) \text{ et } x \in (a_1, b_1) \text{ on a } i = 1 \text{ et } K = R_0^+, \text{ alors que si } x \in (a_2, b_2) \\ \text{on a } i = 2 \text{ et } K = R_0^-. \end{cases}$$

Posons

(32)
$$\begin{cases} G_1^{-1}(x) = \langle (-1)^{i+1}, g_i^{-1}(x)(-1)^{r(i+1)} - p(-1)^{i+1} \rangle, \\ \text{où pour } A = (a_1, b_1), i = 1, \text{ et pour } A = (a_1, b_1) \cup (a_2, b_2), \\ i = 1, \text{ si } x \in (a_1, b_1) \text{ et } i = 2 \text{ si } x \in (a_2, b_2). \end{cases}$$

De (26) et (32) il résulte que

$$f(x,\langle a_1,a_r\rangle) = G[\langle a_1,a_r\rangle \cdot \langle (-1)^{i+1},g_i^{-1}(x)(-1)^{r(i+1)} - p(-1)^{i+1}\rangle],$$
 done

done
$$(33) \quad f(x, \langle a_1, a_r \rangle) = G[\langle a_1(-1)^{i+1}, a_1 g_1^{-1}(x)(-1)^{r(i+1)} - p(-1)^{i+1} a_1 + a_r(-1)^{r(i+1)} \rangle].$$
Do (30) (32) at (33) il s'ensuit que

De (30), (32) et (33) il s'ensuit que

(34)
$$\begin{cases} f(x, \langle a_1, a_r \rangle) = g_k \left[\frac{g_i^{-1}(x)}{a_1^{r-1}} + \frac{a_r}{a_1^r} \right], \\ \text{où pour } A = (a_1, b_1), k = i = 1, \text{ et pour } A = (a_1, b_1) \cup (a_2, b_2) \\ \text{et } x \in (a_i, b_i), a_1 > 0, i = 1, 2, \text{ on a } k = i, \text{ tandis que si } x \in (a_i, b_i) \\ \text{et } a_1 < 0, k, i = 1, 2, \text{ on a } k \neq i. \end{cases}$$

De (28) et (34) et en vertu du lemme 1 on obtient la conclusion du théorème 1. La démonstration du théorème 1 est ainsi achevée.

Du théorème 1 résulte le

COROLLAIRE 2. Si la fonction f satisfait aux hypothèses du théorème 1, elle est continue.

A cause de l'hypothèse (c) du théorème 1 l'hypothèse (d) dans le théorème 1 peut être remplacée par une hypothèse plus forte:

(d') pour un x_0 fixé de l'intervalle (a_1, b_1) la fonction $f(x_0, \langle a_1, 0 \rangle)$ est continue par rapport à la variable $a_1 > 0$.

Les auteurs de la monographie [1] considèrent aux p. 34-38 l'équation de translation sur l'ensemble $A \times Z_0$, où Z_0 est le groupe dont les éléments sont les suites de r nombres réels $\langle a_1, 0, ..., 0, a_r \rangle$ et $a_1 \neq 0, r > 1$, et dans lequel l'opération est définie comme il suit:

$$\langle \beta_1, 0, \ldots, 0, \beta_r \rangle \langle \alpha_1, 0, \ldots, 0, \alpha_r \rangle = \langle \beta_1 \alpha_1, 0, \ldots, 0, \beta_1 \alpha_r + \beta_1 \alpha_1^r \rangle.$$

La fonction $I(\langle a_1, a_r \rangle) = \langle a_1, 0, ..., 0, a_r \rangle$ est un isomorphisme du groupe Z_r sur Z_0 . Par conséquent les solutions de l'équation de translation sur les ensembles $A \times Z_{\tau}$ et $A \times Z_{0}$ satisfaisant aux hypothèses du théorème 1 sont identiques (si l'on identifie les éléments $\langle a_1, a_r \rangle$ et $\langle a_1, 0, \ldots, 0, a_r \rangle$).

Dans [1], p. 38, se trouve établi le

THÉORÈME 1'. Si:

(a') la fonction f est la solution de l'équation fonctionnelle

(2')
$$f[f(x, \langle a_1, 0, ..., 0, a_r \rangle), \langle \beta_1, 0, ..., 0, \beta_r \rangle] = f(x, \langle a_1 \beta_1, 0,, 0, \beta_1 a_r + \beta_r a_1^r \rangle)$$

sur l'ensemble $A \times Z_0$, où A est un intervalle ouvert (a_1, b_1) ou la somme de deux intervalles ouverts disjoints (a_1, b_1) et (a_2, b_2) ,

- (b') la fonction f est continue sur l'ensemble $A \times Z_0$ et pour tout $a_1 \neq 0$ la fonction $f(x, \langle a_1, 0, ..., 0, a_r \rangle)$ n'est pas constante par rapport à la variable a_r ,
- (c') pour tout x de l'ensemble A: $f(x, \langle 1, 0, ..., 0 \rangle) = x$, la fonction f est de la forme (3) ou (4), où g_1 et g_2 sont des fonctions continues et fortement monotones représentant l'ensemble R respectivement sur les intervalles (a_1, b_1) et (a_2, b_2) .

On voit aisément que les hypothèses (b), (c) et (d) du théorème 1 sont plus faibles que les hypothèses (b') et (c') du théorème 1'.

Il est facile de vérifier que la fonction

(35)
$$f(x, \langle a_1, 0, ..., 0, a_r \rangle) = g_i \left[\frac{g_i^{-1}(x)}{a_1^{r-1}} + \frac{a_r}{a_1^r} \right]$$

$$\text{pour } x \in (a_i, b_i), \ i = 1, 2.$$

où g_1 et g_2 sont des fonctions continues et fortement monotones, représentant l'ensemble R respectivement sur les intervalles (a_1, b_1) et (a_2, b_2) , vérifie les hypothèses du théorème 1'. La conclusion du théorème 1' ne fait donc pas intervenir la fonction de la forme (35) (1). Pour la fonction (35) il n'y a que l'hypothèse (e) du théorème 1 qui ne soit pas vérifiée. Par conséquent, pour que le théorème 1' soit vrai, il suffit, en vertu du corollaire 2 et de la remarque que le suit, d'adjoindre aux hypothèses de ce théorème l'hypothèse (e) du théorème 1.

La solution (35) de l'équation (2') (hypothèse (a') du théorème 1') a été éliminée dans la démonstration du théorème 1' dans le travail [1], p. 36, lignes 12 et 13.

Dans [4] nous avons admis, outre l'hypothèse (b) du théorème 1, la suivante:

- (b") pour tout x de l'ensemble A la fonction $f(x, \langle a_1, a_r \rangle)$ est continue par rapport à la variable $\langle a_1, a_r \rangle$,
- et nous avons rejeté l'hypothèse (e) du théorème 1. Les autres hypothèses sont les mêmes. Dans la conclusion du théorème ainsi modifié interviennent, outre les solutions (3) et (4), les solutions de la forme (35).
 - 3. Désignons par H l'ensemble des triples de nombres réels $\langle a_1, a_2, a_3 \rangle$,

⁽¹⁾ La solution (35) est exclue par la condition T (transitives) dans [1], p. 28.

dans lesquels $a_1 \neq 0$. Dans l'ensemble H nous définissons l'opération suivante:

$$(2.1) \quad \langle \beta_1, \beta_2, \beta_3 \rangle \cdot \langle a_1, a_2, a_3 \rangle = \langle \beta_1 a_1, \beta_1 a_2 + \beta_2 a_1^2, \beta_1 a_3 + 3\beta_2 a_1 a_2 + \beta_3 a_1^3 \rangle.$$

L'ensemble H avec l'opération " " est un groupe (v. [1], p. 23, 24 et 40). Dans la théorie des objets géométriques l'ensemble H est désigné par L_1^3 (v. [2], p. 19).

Nous allons démontrer le

THÉORÈME 2. Si

(a) la fonction f est une solution de l'équation fonctionnelle

(2.2)
$$f[f(x, \langle a_1, a_2, a_3 \rangle \langle \beta_1, \beta_2, \beta_3 \rangle)] = f(x, \langle a_1\beta_1, \beta_1 a_2 + \beta_2 a_1^2, \beta_1 a_3 + 3\beta_2 a_1 a_2 + \beta_3 a_1^3 \rangle)$$

sur l'ensemble $A \times H$, où A est l'ensemble ouvert (a_1, b_1) ou la somme de deux ensembles ouverts disjoints (a_1, b_1) et (a_2, b_2) ,

- (b) pour tout x de l'ensemble A la fonction $f(x, \langle 1, 0, a_r \rangle)$ de la variable a, est continue et non constante,
- (c) pour tout x de l'ensemble $A: f(x, \langle 1, 0, 0 \rangle) = x$, alors, dans le cas où $A = (a_1, b_1)$, il existe une fonction g_1 , continue et fortement monotone, représentant l'ensemble R sur l'intervalle (a1, b1), telle que

(23)
$$f(x,\langle a_1,a_2,a_3\rangle) = g_1 \left[\frac{g_1^{-1}(x)}{a_1^2} + \frac{a_3}{a_1^3} - \frac{3}{2} \frac{a_2^2}{a_1^4} \right],$$

tandis que dans le cas où $A = (a_1, b_1) \cup (a_2, b_2)$ et

- (d) pour $x_0 \in (a_1, b_1)$ fixé $f(x_0, \langle a_1, 0, 0 \rangle) \in (a_1, b_1)$ pour tout $a_1 > 0$,
- (e) pour tout $x \in (a_1, b_1) f(x, \langle -1, 0, 0 \rangle) \in (a_2, b_2)$, il existe des fonctions g_1 et g_2 continues et fortement monotones, représentant

Vensemble R respectivement sur les intervalles (a_1, b_1) et (a_2, b_2) , telles que

(2.4)
$$f(x,\langle a_1,a_2,a_3\rangle) = g_k \left[\frac{g_i^{-1}(x)}{a} + \frac{a_3}{a_1^3} - \frac{3}{2} \frac{a_2^2}{a_1^4} \right],$$

où pour $x \in (a_i, b_i)$ et $a_1 > 0$, i = 1, 2, on a k = i, tandis que si $x \in (a_i, b_i)$ et $a_1 < 0, k, i = 1, 2, on a k \neq i$.

Nous établirons d'abord deux lemmes.

LEMME 4. Si la fonction $h: R_0 \times R \to R$ ou $h: R_0^+ \times R \to R$ et si elle vérifie l'équation fonctionnelle

(2.5)
$$\beta_1 h(a_1, a_2) + 3\beta_2 a_1 a_2 + h(\beta_1, \beta_2) a_1^3 = h(\beta_1 a_1, \beta_1 a_2 + \beta_2 a_1^2),$$

on a

(2.6)
$$h(a_1, a_2) = p(a_1^3 - a_1) + \frac{3}{2} \frac{a_2^2}{a_1},$$

où p est un nombre réel.

Démonstration. Posons

$$(2.7) h_0(\alpha_1) \stackrel{\mathrm{df}}{=} h(\alpha_1, 0).$$

De (2.5) et (2.7) on tire

$$\beta_1 h_0(a_1) + h_0(\beta_1) a_1^3 = h_0(\beta_1 a_1).$$

De (2.8) et du corollaire 1 pour r=3 il résulte qu'il existe un nombre réel p tel que

$$(2.9) h_0(a_1) = p(a_1^3 - a_1) = h(a_1, 0).$$

En posant dans (2.5) $\beta_2 = 0$ et $\alpha_2 = \alpha_1$, on obtient

$$(2.10) \beta_1 h(\alpha_1, \alpha_1) + h(\beta_1, 0) \alpha_1^3 = h(\beta_1 \alpha_1, \beta_1 \alpha_1).$$

Le second membre de (2.10) étant symétrique par rapport à β_1 et α_1 , il résulte de (2.10) que

$$(2.11) \beta_1 h(a_1, a_1) + h(\beta_1, 0) a_1^3 = a_1 h(\beta_1, \beta_1) + h(a_1, 0) \beta_1^3.$$

De (2.11), en y posant $\beta_1 = 1$, et de (2.9) on obtient

$$(2.12) h(a_1, a_1) = p(a_1^3 - a_1) + a_1h(1, 1).$$

Dans (2.5) posons $a_2 = a_1$ et $\beta_2 = \beta_1$; alors

$$(2.13) h(\beta_1 a_1, \beta_1 a_1 + \beta_1 a_1^2) = \beta_1 h(a_1, a_1) + 3\beta_1 a_1^2 + h(\beta_1, \beta_1) a_1^3.$$

Remarquons que si $u \neq 0$ et $v \neq u$ sont arbitraires, le système d'équations

(2.14)
$$\beta_1 a_1 = u, \quad \beta_1 a_1 + \beta_1 a_1^2 = v,$$

avec les inconnues $a_1 \neq 0$ et $\beta_1 \neq 0$ admet la solution

(2.15)
$$a_1 = \frac{v-u}{u}, \quad \beta_1 = \frac{u_2}{v-u}.$$

De (2.13) on tire, en faisant les substitutions (2.14) et (2.15) et en tenant compte de (2.12),

$$(2.16) h(u,v) = p(u^3-u) + h(1,1) \frac{v^2}{u} + (u-v)[2h(1,1)-3].$$

Dans (2.16) posons v = 0; de (2.9) on obtient pour $u \neq 0$ quelconque

$$p(u^3-u) = p(u^3-u)+u[2h(1,1)-3],$$

d'où

$$(2.17) h(1,1) = 3/2.$$

De (2.12), (2.16) et (2.17) il résulte que

(2.18)
$$h(a_1, a_2) = p(a_1^3 - a_1) + \frac{3}{2} \frac{a_2^2}{a_1},$$

ce qui donne la conclusion du lemme sur l'ensemble $R_0 \times R$.

Considérons maintenant le cas où $h: R_0^+ \times R \to R$. Remarquons que le système d'équations (2.14) avec les inconnues $a_1 > 0$ et $\beta_1 > 0$ admet la solution (2.15) pour 0 < u < v. Par conséquent la formule (2.16) a lieu pour 0 < u < v. Posons $a_1 = \beta_1 = 1$ et $a_2 = \beta_2 = 2$ dans (2.5); alors

$$(2.19) 2h(1,2)+12 = h(1,4).$$

Déterminons h(1, 2) et h(1, 4) à partir de (2.16) et mettons les valeurs obtenues dans (2.19); nous aurons

$$h(1,1) = 3/2.$$

On déduit de là et de (2.12) que la formule (2.18) a lieu pour $0 < a_1 \le a_2$. Pour un couple quelconque $\langle \beta_1, \beta_2 \rangle$ tel que $\beta_1 > 0$ il existe un couple $\langle 1, \alpha_2 \rangle$, dans lequel $\alpha_2 \geqslant 1$, tel que

$$\beta_1 \leqslant \alpha_2 \beta_1 + \beta_2.$$

En posant

$$(2.21a) v = \alpha_2 \beta_1 + \beta_2$$

on a

$$a_2 = \frac{v - \beta_2}{\beta_1}.$$

Dans (2.5) posons $\alpha_1' = 1$ et faisons les substitutions (2.21a) et (2.21b); nous aurons

(2.22)
$$\beta_1 h\left(1, \frac{v-\beta_2}{\beta_1}\right) + 3\beta_2 \frac{v-\beta_2}{\beta_1} + h(\beta_1, \beta_2) = h(\beta_1, v).$$

D'après (2.20) et (2.21a) on a $\beta_1 \leqslant v$ et de plus $\alpha_2 = \frac{v - \beta_2}{\beta_1} \geqslant 1$, donc il résulte de (2.22) après la substitution (2.18)

$$h(\beta_1, \beta_2) = p(\beta_1^3 - \beta_1) + \frac{3}{2} \frac{\beta_2^2}{\beta_1}.$$

 (β_1, β_2) étant un couple quelconque dans lequel $\beta_1 > 0$, on tire de (2.23) la conclusion du lemme sur l'ensemble $R_0^+ \times R$. La démonstration du lemme est ainsi achevée.

Remarquons que pour p quelconque la fonction (2.6) est une solution de l'équation (2.5). Par conséquent le lemme 4 entraîne le

COROLLAIRE 3. La solution générale de l'équation (2.5) sur l'ensemble $R_0 \times R$ ou $R_0^+ \times R$ est l'ensemble des fonctions (2.6), où p est un nombre réel quelconque.

Pour x_0 fixé posons

$$\overline{H} = [\langle a_1, a_2, a_3 \rangle \epsilon H : f(x_0, \langle a_1, a_2, a_3 \rangle) = f(x_0, \langle 1, 0, 0 \rangle) = x_0].$$

L'ensemble \overline{H} est un sous-groupe du groupe H en vertu du théorème 4 de [3]. L'ensemble \overline{H} est déterminé par le

LEMME 5. Si la fonction f vérifie les hypothèses du théorème 2, l'ensemble \overline{H} est l'ensemble

$$(2.24) \qquad \left\{ \left\langle a_1, a_2, p(a_1^3 - a_1) + \frac{3}{2} \frac{a_2^2}{a_1} \right\rangle \right\}_{a_1 \in R_0, a_2 \in R} \quad \text{si } A = (a_1, b_1),$$

ou bien l'ensemble

$$(2.25) \quad \left\{ \left\langle a_1, a_2, p(a_1^3 - a_1) + \frac{3}{2} \frac{a_2^2}{a_1} \right\rangle \right\}_{a_1 \in R_0^+, a_2 \in R} \quad \text{ si $A = (a_1, b_1) \cup (a_2, b_2)$.}$$

Démonstration. Posons

$$(2.26) f_0(x,\langle a_1,a_3\rangle) \stackrel{\mathrm{df}}{=} f(x,\langle a_1,0,a_3\rangle).$$

Remarquons que la fonction f_0 satisfait aux hypothèses du théorème 1 pour r=3. Nous profiterons souvent de ce fait. Soit $\bar{x}=f(x_0,\langle 1,\alpha_2,0\rangle)$; alors

$$(2.27) f(\overline{x}, \langle \beta_1, 0, \beta_3 \rangle) = f[f(x_0, \langle 1, \alpha_2, 0 \rangle, \langle \beta_1, 0, \beta_3 \rangle)]$$

$$= f(x_0, \langle \beta_1, \beta_1 \alpha_2, \beta_3 \rangle).$$

En vertu de (2.26) et (2.27) et du théorème 1 pour r=3, $\beta_1 \neq 0$ et $v=\beta_1 a_2$ étant fixés, la fonction $f(x_0, \langle \beta_1, v_1, \beta_3 \rangle)$ est fortement monotone par rapport à la variable β_3 et l'ensemble de ses valeurs est l'un des intervalles (a_1, b_1) et (a_2, b_2) .

(I) Par conséquent, si $A=(a_1,\,b_1)$ et $a_1\neq 0$ et a_2 sont arbitraires, l'ensemble

$$\{\langle a_1, a_2, a_3 \rangle\}_{a_3 \in R}$$

a exactement un élément commun avec \overline{H} . Il existe donc une fonction $h\colon R_0\times R\to R$ telle que \overline{H} est l'ensemble

$$\{\langle a_1, a_2, h(a_1, a_2) \rangle\}_{a_1 \in R_0, a_2 \in R}.$$

(II) Si $A=(a_1,b_1)\cup(a_2,b_2)$, l'ensemble (2.28) a avec l'ensemble \overline{H} au plus un élément commun. Par conséquent l'ensemble \overline{H} est l'ensemble

$$\{\langle a_1, a_2, h(a_1, a_2) \rangle\}_{\langle a_1, a_2 \rangle \in B},$$

où $B \subset R_0 \times R$ et $h: B \to R$. Nous allons prouver que $B = R_0^+ \times R$.

Supposons que $\langle a_1, a_2, h(a_1, a_2) \rangle \epsilon \overline{H}$. Comme la fonction f_0 satisfait aux hypothèses du théorème 1, on a, en vertu du lemme $3, \langle a_1, h(a_1, 0) \rangle \epsilon \overline{Z}$.

Il résulte donc du lemme 3 que $a_1 > 0$. Nous avons ainsi prouvé que si $\langle a_1, a_2, h(a_1, a_2) \rangle \in \overline{H}$, on a $a_1 > 0$.

Nous prouverons maintenant que pour a_2 quelconque on a $f(x_0, \langle 1, a_2, 0 \rangle) \epsilon(a_1, b_1)$. Supposons qu'il existe un \bar{a}_2 tel que $f(x_0, \langle 1, \bar{a}_2, 0 \rangle) \epsilon(a_2, b_2)$. De (2.26) et du lemme 1 il résulte qu'il existe un β_3 tel que

$$(2.31) f(x_0, \langle 1, \overline{a}_2, 0 \rangle) = f(x_0, \langle -1, 0, \beta_3 \rangle).$$

De (2.31) et du théorème 4 de [3] il résulte que

$$\langle -1, 0, \beta_3 \rangle^{-1} \cdot \langle 1, \alpha_2, 0 \rangle = \langle -1, -\alpha_2, -\beta_3 \rangle \epsilon \overline{H}.$$

Nous avons déjà remarqué que $\langle -1, -\alpha_2, -\beta_3 \rangle_{\ell} H$, puisque -1 < 0. Nous avons donc prouvé que pour tout α_2

$$(2.32) \overline{x} = f(x_0, \langle 1, a_2, 0 \rangle) \epsilon(a_1, b_1).$$

En vertu de (2.26), (2.27), (2.32) et du théorème 1 pour r=3 et $\beta_1 > 0$ et $v = \beta_1 a_2$ fixés la fonction $f(x_0, \langle \beta_1, v, \beta_3 \rangle)$ est fortement monotone et l'ensemble de ses valeurs est l'intervalle (a_1, b_1) . Par conséquent, pour $a_1 > 0$ et a_2 quelconques, l'ensemble (2.28) a exactement un élément commun avec \overline{H} . Nous avons ainsi démontré que $B = R_0^+ \times R$.

Formons le produit

(2.33)
$$\langle \beta_1, \beta_2, h(\beta_1, \beta_2) \rangle \langle \alpha_1, \alpha_2, h(\alpha_1, \alpha_2) \rangle$$

= $\langle \alpha_1, \beta_1, \beta_1, \alpha_2 + \beta_2, \alpha_1^2, \beta_1, h(\alpha_1, \alpha_2) + 3\beta_2, \alpha_1, \alpha_2 + h(\beta_1, \beta_2), \alpha_1^3 \rangle$.

Puisque l'ensemble \overline{H} est un sous-groupe du groupe H et qu'il est l'ensemble (2.29) ou (2.30), il résulte de (2.33) que

$$(2.34) \beta_1 h(a_1, a_2) + 3\beta_2 a_2 a_1 + h(\beta_1, \beta_2) a_1^3 = h(a_1\beta_1, \beta_1 a_2 + \beta_2 a_1^2).$$

En tenant compte de (2.29), (2.30), (2.34), du lemme 3 et du fait que $B = R_0^+ \times R$ on obtient enfin la conclusion du lemme 5.

Les ensembles (2.24) et (2.25) seront désignés respectivement par H_1 et H_2 . On vérifie facilement que pour p arbitraire les ensembles (2.24) et (2.25) sont des sous-groupes du groupe H. Par conséquent le corollaire 3 entraîne le

COROLLAIRE 4. Les sous-groupes du groupe H de la forme (2.29) ou (2.30) pour $B=R_0\times R$ ont nécessairement la forme (2.24) ou (2.25), où p est un nombre réel quelconque.

Pour l'élément $\langle \beta_1, \beta_2, \beta_3 \rangle$ et pour le nombre p il existe un nombre t tel que

$$\beta_3 = t\beta_1^3 - p\beta_1 + \frac{3}{2} \frac{\beta_2^2}{\beta_1}$$

On peut facilement prouver que la classe à gauche du groupe H par rapport au sous-groupe H_1 ou H_2 pour l'élément $\left<\beta_1, \beta_2, t\beta_1^3 - p\beta_1 + \frac{3}{2} \frac{\beta_2^2}{\beta_1}\right>$ est l'ensemble

(2.35)
$$\left\{\left\langle a_{1}, a_{2} t a_{1}^{3} - p a_{1} + \frac{3}{2} \frac{a_{2}^{2}}{a_{1}}\right\rangle\right\}_{a_{1} \in R_{0}, a_{2} \in R},$$

respectivement

(2.36)
$$\left\{\left\langle a_{1}, a_{2}, ta_{1}^{3} - pa_{1} + \frac{3}{2} \frac{a_{2}^{2}}{a_{1}} \right\rangle\right\}_{a_{1} \in R_{0}^{+}, a_{2} \in R} \quad \text{si } \beta_{1} > 0,$$

ou

$$\left\{\left\langle a_{1},\,a_{2},\,ta_{1}^{3}-pa_{1}+\frac{3}{2}\frac{a_{2}^{2}}{a_{1}}\right\rangle\right\}_{a_{1}\in R_{0}^{-}a_{2}\in R}\quad\text{ si }\beta_{1}<0\,.$$

Pour t fixé la classe de la forme (2.35) ((2.36) ou (2.37)) ne contient que les éléments $\langle a_1, a_2, a_3 \rangle$ (pour lesquels $a_1 > 0$ ou $a_1 < 0$) satisfaisant à la condition

$$(2.38) t = \frac{a_3}{a_1^3} + \frac{p}{a_1^2} - \frac{3}{2} \frac{a_2^2}{a_1^4}.$$

En vertu du théorème 4 de [3] et en tenant compte du fait que la classe à gauche du groupe H par rapport au sous-groupe H_1 (H_2) est l'ensemble (2.35) (respectivement les ensembles (2.36) ou (2.37)) on obtient

$$(2.39) f\left(x_0,\left\langle a_1,\ a_2,\ ta_1^3-pa_1+\frac{3}{2}\frac{a_2^2}{a_1}\right\rangle\right)=f(x_0,\ \langle a_1,\ 0,\ ta_1^3-pa_1\rangle)$$

pour $a_2 \in R$ et $a_1 \neq 0$ arbitraires $(a_1 > 0 \text{ ou } a_1 < 0)$. En mettant dans (2.39) au lieu de t l'expression (2.38) on obtient

$$(2.40) f(x_0, \langle a_1, a_2, a_3 \rangle) = f\left(x_0, \left\langle a_1, 0, a_3 - \frac{3}{2} \frac{a_2^2}{a_1} \right\rangle\right).$$

En vertu de la définition (2.26) de la fonction f_0 et du théorème 1 pour r=3 il existe, pour un x quelconque de l'ensemble A, un élément $\langle \beta_1, 0, \beta_3 \rangle$ tel que

$$(2.41) x = f(x_0, \langle \beta_1, 0, \beta_3 \rangle).$$

Par hypothèse et à cause de (2.41) on a

$$(2.42) f(x, \langle a_1, a_2, a_3 \rangle) = f[f(x_0, \langle \beta_1, 0, \beta_3 \rangle), \langle a_1, a_2, a_3 \rangle]$$

$$= f(x_0, \langle \beta_1 a_1, a_2 \beta_1^2, a_1 \beta_3 + a_3 \beta_1^3 \rangle).$$

$$f(x, \langle a_1, 0, a_3 - \frac{3}{2} \frac{a_2^2}{a_1} \rangle) = f\Big[f(x_0, \langle \beta_1, 0, \beta_3 \rangle), \langle a_1, 0, a_3 - \frac{3}{2} \frac{a_2^2}{a_1} \rangle\Big]$$

$$= f\Big(x_0, \langle \beta_1 a_1, 0, a_1 \beta_3 + \left(a_3 - \frac{3}{2} \frac{a_2^2}{a_1}\right) \beta_1^3 \rangle\Big).$$

$$= f\Big(x_0, \langle \beta_1 a_1, 0, a_1 \beta_3 + a_3 \beta_1^3 - \frac{3}{2} \frac{a_2^2}{a_1} \beta_1^3 \rangle\Big).$$

De (2.40), (2.42) et (2.43) il s'ensuit que

$$(2.44) f(x, \langle a_1, a_2, a_3 \rangle) = f\left(x, \left\langle a_1, 0, a_3 - \frac{3}{2} \frac{a_2^2}{a_1} \right\rangle\right).$$

En tenant compte de la définition (2.26) de la fonction f_0 et de l'égalité (2.44) et en s'appuyant sur le théorème 1 pour r=3 on obtient enfin la conclusion du théorème 2.

Après le théorème 2 on peut faire des remarques analogues à celles qui suivent le théorème 1.

Références

- [1] J. Aczél und S. Gołąb, Funktionalgleichungen der Theorie der goemetrischen Objekte, Warszawa 1960.
- [2] M. Kucharzewski and M. Kuczma, Basic concepts of the theory of geometric objects, Rozprawy Matematyczne 43, Warszawa 1964.
- [3] S. Midura, Sur les solutions de l'équation de translation, Aequationes Mathematicae, vol. I, fasc. 1/2 (1968), p. 77-84.
- [4] O rozwiązaniach niektórych równań funkcyjnych w teorii klasyfikacji obiektów geometrycznych II, Rocznik Naukowo-Dydaktyczny Wyższej Szkoły Pedagogicznej w Krakowie, Nr 31 (1968), p. 51-79.

Reçu par la Rédaction le 23. 7. 1969