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COMPLETENESS OF LP-SPACES OVER FINITELY ADDITIVE
SET FUNCTIONS

BY

EULINE GREEN (COLUMBIA, MO.)

Suppose 8§ is a set, 2'is a field of subsets of §, and u is a non-negative
bounded finitely additive set function on X. For 1 < p < oo, the real
normed linear space L”(S, 2, u) is not, in general, a complete space.
In this paper*, necessary and sufficient conditions for LP(8, X u) to
be complete are obtained and then applied to certain Banach limits.

1. Necessary and sufficient conditions. We begin this section fi;r
demonstrating the existence of a measure space (8’, 2’, ') and a linear
isometry ¢ from LP(8, 2, u) into LP(S8’, X', u’) such that the image of
i is dense in L*(8’, 2", u'). Then, since L?(8’, X', u’) is complete, L7 (8, X, u)
is complete if and only if ¢ is an onto function. We conclude Section 1 by
"'showing conditions under which ¢ is onto.

Let I be the ideal of all y-null sets in X, and let 2 be the quotient
Boolean algebra 2/I. By the Stone Representation Theorem, there is
a compact Hausdorff space S’ such that the field £’ of clopen (simul-
taneously open and closed) subsets of 8’ is isomorphic as a Boolean
algebra to . Let E’ denote that element of Q' which corresponds to
the equivalence class [E]e Q of E < X. If we define u, on Q' by u;(E’) = u(E),
then g, is a non-negative bounded regular finitely additive set function
on £'. In addition, yu, is countably additive since, given any denumerable
collection {E,} of pairwise disjoint non-empty sets in 2’, the union | E, is

n=1
never in Q’. Therefore u, can be uniquely extended to a regular Borel
measure u on S’. Let X’ denote the o-field of all Borel subsets of §'.
Then (S§’, X, u’) is a measure space and, moreover, if @ is a non-void open
subset of 8’, then u'(G@) > 0. '

* A major portion of this paper was pé,rt of the author’s Ph. D. Thesis prepared
at Purdue University, 1968. -
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Let y5 denote the characteristic function of a set E. If

n

f= ZakxEk

k=1
is a u-simple function on 8 and g = fin L?(8, 2, u), we define a function
2, by the formula

n
t(9) = Z%XE;-
k=1
It is clear that 4, is a linear isometry from the simple functions in
I?(8, 2, u) into LP(8’, 2’, u’). Since the simple functions are dense in
I?(8, 2, u), i, can be extended to a linear isometry ¢ from IL”(8, 2, u)
into L*(8’, 2’, u’'). Moreover, since u’ is regular, the image of ¢ is dense
in IP(8', 2, u').
Two elements of X’ are said to be equivalent if their symmetric dif-
ference has u'-measure zero.
A topological space is extremally disconnected if and only if the closure
of every open set is clopen.

THEOREM. The linear isometry i as defined above is onto if and only
if 8’ is extremally disconnected and every open subset of 8' is equivalent
to its closure.

Proof. Suppose ¢ is onto. Then every element of X’ is equivalent
to a clopen set, and thus (recalling that the u'-measure of every non-
empty open set is positive) we conclude that 8’ is extremally disconnected.
(See [6], p. 277.) Moreover, if G is open in 8 and is equivalent to H’ in
', then G\H' is an open set of u’-measure zero, hence empty. (Let B
denote the closure, and B° denote the interior, of a set B.) Thus H' > G > G,
which implies x'(G\@) = 0, which in turn implies that G is equivalent
to its closure.

Conversely, suppose 8’ is extremally disconnected and every open
subset of 8’ is equivalent to its closure. By taking complements, it follows
that every closed set is equivalent to its interior. We show first that
every element of 2" is equivalent to an element of £’.

Let Ae2" such that u’(4)>0. By the regularity of u’, there is
a family {K,},- » of compact subsets of A such that u'(4)— u'(K,) < 1/n,
where M is the first integer such that 1/M < u’(A). Since 8’ is extremally
disconnected, (K,)° is clopen. By hypothesis, u'(K]) = u’'(K,), and hence
p(A)—p' (K)) <1/n. Let

00
K = U (Kn)o'
n=M
Then K is an open subset of A equivalent to 4. Hence K is an element
of ' equivalent to A.
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Applying Theorem 6 of [6], we conclude that every bounded measur-
able function on 8’ is equal a.e. [u'] to a continuous function. Since every
element of X’ is equivalent to an element of ', ¢ takes the set of simple
functionsin I” (8, 2, u) onto the set of simple funections in LP(8’, 2’ u’).

Let f be a continuous function on 8’. Choose a sequence {f,} of con-
tinuous simple functions converging uniformly to f. There exists a sequence
{g.} of u-simple functions on 8 such that i(g,) = f, and {g,} is uniformly
Cauchy. If g(x) = lim g,(x), then geL”(8, 2, u) and 4(g) = f. Hence ¢ is

onto the bounded elements of LP(8’, 2, u’).
If feL?(8’, 2’, u’) is non-negative and unbounded, let f,(x) = f(x)
if f(#) < n and f,(x) = 0 if f(z) > n. Choose FE, <2’ equivalent to {z: f(x)
> n}. By induction, choose a decreasing sequence {E,} of elements of
X such that [E,]e2 corresponds to E,. Then
lim p(B,) = lim ' (B,) = 0.
n—>00 7—>00
By the preceding section there is a function g, on 8 such that g,(x) = 0
for all xeF, and i(g,) = f, a.e. [¢']. By induction, there exist functions
g, on 8 such that g,(z) = g,_,(x) for all zeF, U (S\E,_,)and such that
i(¢,) = f. a.e. ['], n=>1. Let
g(») = lim g, (x).
Then it is clear that g, converges to g in u-measure, and since {g,}
is Cauchy in LP(8, X, u), geL?(8, X, u) and i(g9) = f a.e. [u']).
Since any function in L?(8’, 2", u’) can be expressed as the difference
of two non-negative functions, we conclude that ¢ is onto L?(8’, 2', u’),
and the theorem is proved.

2. Application. We call u non-atomic if for every set EeZX such that
u(E) >0, and for every real number a such that 0 < a < u(E), there
is a set F' = K such that Fe2 and u(F) = a.

" COROLLARY. If u 48 mon-atomic, u(S) = 1, and 8’ is separable, then
IP(8, X, u) is not complete.

Proof. We demonstrate the existence of an open subset of S’ which
is not equivalent to its closure. Let {z,};_, be dense in §’. Choose A, est
such that u(4,) <1/2 and #,¢4;. Let n, be 1, and let n, be the lea X
integer such that w, ¢A;. Choose A,eX such that A4, N A, =@, u(4,)
<1/4, and ,,eA,. Now let n be the least integer such that , ¢4, U 4,,
and choose Age2 such that A; N (4, VU A4,) =0, u(ds) <1/23% and
wnaeA;. Continue this process to get a sequence {4,} of pairwise disjoint
clopen subsets of S’ such that

{wn}$=1 < U A':z'

n=1
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Since {z,}_, is dense, | 4, = 8’. Thus u’'({U4,) =1, while

w(U4y) = Dw'(4n) = D u(4s) <1.

Therefore, by the previous theorem, L”(8, X, ) is not complete.

Example. Let 8 be the set of positive integers, and let 2 be the
field of all subsets of 8. Let #: 8 —~ 8 be defined by #(n) = n+1. If f =
(f1y f2y ---) 18 In 1%, then fot = (fy, f5, ...) 18 In1*. Let B = {pe(I®)*|¢p > 0,
lpll =1, and ¢(fot) = @(f) for. all fel*}, where (I)* is the dual space
of 1. The elements of B are known as Banach limits. Since (I°°)* is isome-
trically isomorphic to ba(8S, 2) (the Banach space of all bounded finitely
additive set functions on X with the total variation norm (see [1], p. 258)),
if peB, then there is an element Aeba(8S, X) corresponding to ¢. We will
also call 4 a Banach limit. The properties of ¢, when transferred to 4,
say that A is a probability element of ba(S, 2) such that A(4) = A(t4)
for all 4 2. This last property enables one to show that 1 is non-atomic.
Let the Stone space 8’ of Section 1 be denoted by K, (to indicate that S’
varies as A varies). K, is extremally disconnected since it is the Stone
space of a complete Boolean algebra. (For a proof, see [2], p. 1241.) We
could apply the Corollary if we knew that K, were separable. The map
t: § > 8§ can be extended to a map T': 88 — 8 such that the restriction
of T to fS— 8 is a homeomorphism onto S8 — 8. (38 is the Stone-Cech
compactification of S.) A set 4 < 8 is called T-invariant if T(A) = A.
We observe ([5], pp. 31f) that K, is homeomorphic to a closed subspace
of 88. In [4], p. 3, Raimi has shown that the “support set’’ K, is homeo-
morphic to a (1) non-empty, (2) closed, (3) T-invariant subset of 58— 8.
If K, is minimal with respect to properties (1), (2), and (3), then it is
separable. In fact, {T™(x)}5__, is dense in K, for any ze¢K,. Thus, by
the Corollary, L?(S, X, 1) is not complete if K, is minimal. This is some-
times the case. The set B of Banach limits is non-empty, convex, and
compact in the weak-star topology on (I°)*. Hence by the Krein-Milman
Theorem, the set B is the closed convex hull of its extreme points. Raimi
[3] has shown that every minimal non-empty closed T-invariant subset
of 8 — 8§ is the support set of (at least) two extreme Banach limits. Thus
there are Banach limits A such that K, is separable. We have not been
able to decide if the set K, is separable for every Banach limit, nor even
for every extreme Banach limit (P 709).
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