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A note on a pentomino functional equation

by SHIGERU HARUKI (Waterloo, Canada)

The following square functional equation for f: R* — R,

D fE+rv,y+n)+fletr,y—n)+fl@—r,y+v)+fl@—»,y—»)= 4f(2,y)
was considered in [7], and generalizations and applications were con-
sidered in [1], [2], [8], [12], [13], [15], [16], [17].

It was shown in [1] that the square functional equation (1), or alter-
natively, the equation

(2) XY+ XY+ XY+ XY ) (2, y) = 4f(z, y)

with X’f(x, y) 2f(a:+v, y) and Y'f(x, y) gf(a:, y-+v), has the har-
monic polynomials

(3) f(x,y) = Re(ia,2* +a,2* + a2+ a2+ a,)

as the only measurably bounded solutions (bounded on a set of positive
measure), where v is real, a, is real, and a;, j = 0,1, 2,3 are complex
constants.

Further, (1) and

(4) (X' + X"+ Y+ Y7') f(x, y) = 4f(2, ¥)

are equivalent without any regularity assumptions.
We shall consider the following functional equation:

(5) (XY XY P4 XY P LY A XY XY L XY
FX TP LX TP L XY A XY A X Y7 (2, y) = 12f(2, y),

for some arbitrary real p. Equation (5) is a special case of the mean-
value equation for f: R" — R,

N
(6) D) wif @+ ait) = f(@),

N

where > u; =1, Y u; # 0 for any subset I < {1,2,..., N}, e R", a;¢R",
i=1 el

a;,t*=1,2,..., N, span the space R”. Equations of this form were con-

sidered in [3], [4], [5], [6], [14] (among others).
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THEOREM. The only measurably bounded solutions of equation (5)

for arbitrary fixed p (|p| # 1/3 +V10 ) are the harmonic polynomials of
the form (3).

Proof. In [14] the following theorem is proved: if f: V™ — R is
a solution of (6) for all xe V", t >0, such that v, x+a,t, ..., x+a,t lie in
a domain D < V" and if

(a) the as span V" (hence again N = n),

(b) Yu; #0 for J = I (assuming } u; = 1),
teJ el
() f is bounded on some set of positive measure in D,
then f is C® on D, and hence a polynomial of degree at most N(N —1)/2.
We may therefore assume that f(z, y) is of class C®. Equation (5)

in the plane R? yields, by repeated differentiation of both sides with
respect to » for » =0,

(7) fzz +fw =0 ’

(8) (24 P") fazaa+ (2 + D)y + (6 +129°) fryy = 0.
From equation (7) follows

(9) fa:zxa;+f:za:yv = 0, fmy+fyyyy =0,

and substituting (9) into (8) we get (p'—6p’—1)f,,, = 0. Since [p|
= 1/3 -H/E, we obtain

(10) fz:ryy =0,
which together with (9) implies
(11) fa:xa:z = 07 fywy = 0.

Equations (7), (10), (11) yields the form (3). Conversely, by substi-
tuting (3) into (5), one verifies that (3) satisfies equation (5). Q.E.D.

COROLLARY. If (5) s satisfied for fized p (Ip| # V3 1V10), by a me-
asurably bounded function f(x,vy), then this function satisfies (5) for all p

(Ipl #V3+V10).
Remark. By the corollary, equations (5), for various values of p

(Ip| # V3 4+V10), are for measurably bounded solutions equivalent. This
does not seem to be true for the general solutions of (5).

The case p =1 yields the square functional equation (1). In the
case p = 3, on account of the geometric sense (similar type equations
can be found in [9], [10], [11]) of (1), we call equation (5) a pentomino
functional equation. Without any regularity assumptions, the square
functional equation implies the pentomino functional equation; this
may readily be verified in view of (1) and (4).
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