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COUNTING PERFECT MATCHINGS IN POLYOMINOES
WITH AN APPLICATION TO THE DIMER PROBLEM

Abstract. A polyomino is a connected finite plane graph with no cut-points in which all
interior regions (called cells) are unit squares. Let P be a given polyomino and e be a given edge
of P. A simple algorithm is developed for calculating the numbers m(P) and m(P, e) of all
perfect matchings of P and of those perfect matchings of P which contain the edge e,
respectively.

The numbers m(P) and m(P, ¢)/m(P) play an important role in the dimer problem of
Statistical crystal physics.

1. Introduction. The dimer problem has its origin in the investigation of
the thermodynamic properties of a system of diatomic molecules (called
dimers) adsorbed on the surface of a crystal (see, e.g., [1] and [9]-[11]). In
many cases, the most favourable points for the adsorption of atoms form a
part L of a square lattice and a dimer can occupy two neighbouring points
of L (and only such points). A dimer covering is an arrangement C of dimers
on L such that every dimer of C occupies two neighbouring points and every
point of L is covered by exactly one dimer of C. Let us identify the point set
of L with the vertex set of a graph P corresponding to L (Fig. 1a); P is a
Special polyomino (for the definition see the Abstract; more about polyomi-
noes in [4]). To any dimer covering of L there corresponds a perfect
Mmatching (PM) M of P (i.e., a set of disjoint edges covering all vertices of P),
and conversely (Fig. 1b).

Let x, y be two neighbouring pomts in Land let e =(x, y) be the edge
Connecting x and y in P. Suppose that every dimer covering of L occurs with
the same probability. The physicist is interested in the number m, of all
dimer coverings of L and in the probability p,(x, y) to find x and y covered
by the same dimer in a randomly chosen covering. Let m(G) and m(G, e)
denote the numbers of all PMs of a graph G and of those PMs of G which
Contain the edge e, respectively. Clearly,

m,=m(P) and p.(x, y) = m(P, e)/m(P);
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further,
m(P, &) = m(P—{x, y}) = m(P)—m(P—e),

where P—e and P—{x, y} denote the subgraphs of P obtained from P by
omitting the edge e or the vertices x and y and all edges incident to them,
respectively. However, in general, P—e and P—{x, y} are no longer polyo-
minoes; therefore, we shall extend our investigations to a certain class S of
subgraphs of polyominoes (see Section 3). The problem of determining m,
and p;(x, y) will be considered to be solved as soon as we have a handy
method (an algorithm) for calculating m(G) for every graph GeS.

® | [ L [ ] C : ¥
P M
(a) (b)
Fig. 1

A very similar question arose in the chemistry of benzenoid hydrocar-
bons. A hexagonal system (HS) is a connected finite plane graph with no cut-
points in which all interior regions are regular hexagons of side length one.
An HS is the skeleton of some benzenoid hydrocarbon molecule if and only
if it has a PM (Kekulé structurc) (see, e.g., [7], [8], [12]). Given an HS, the
chemist-is interested in the number of all PMs as well as in the probability of
finding a given edge in some PM (this probability is Pauling’s bond order). It
turned out that the methods developed for hexagonal systems (see [5]—[8])
can also be applied to polyominoes; however, some preparation is needed.

All graphs G to be considered in the sequel are finite, multiple edges aré
allowed to occur. V(G) denotes the set of vertices of G, and n(G) = |V (G}

2. A basic theorem. Let G be a finite plane graph; G subdivides the
plane into a finite number f of (connected, open) regions. A region F is
called a (2 mod 4)-region if the length I{(C) of every component C of the
boundary of F satlsﬁes
(1) I(C) =2 (mod 4);



Counting perfect matchings 467

‘G is called a (2 mod 4)-graph if all of its regions are (2 mod 4)-regions
(Fig. 2).

Fig. 2. A (2 mod 4)-graph

The following theorem (see [13] and [14]) generalizes a result of
Cvetkovié et al. [2] (see also [3] and [1], 8.2); it follows also from a more
&eneral theorem of Kasteleyn expressing the number of perfect matchings
of a plane graph in terms of a Pfaffian (see [9]).

THEOREM 1. Let G be a (2 mod 4)-graph with adjacency matrix A which
has n vertices and let m denote the number of perfect matchings contained in G.
Then

(A) n is even,

(B) G is bipartite, _

(C) det A =(—1)"m? where h = n/2.

We need also

THEOREM 2. Let G be a connected plane graph whose interior regions are
ail (2 mod 4)-regions. Then G is a (2 mod 4)-graph if and only if it has an even
‘number of vertices.

Proof. Let F,, Fy,...,F,_; be the regions of G, where F, is the
exterior (infinite) region, and let /; denote the length of the boundary of F,.
We have to show that I, = 2 (mod 4) if and only if n = n(G) is even. Let k
be the number of edges of G. Clearly,

2k =lo+li+... 41,y =lp+(f—1)-2 (mod 4).
By Euler’s polyhedron formula, 2k = 2n+ 2f—4. Thus I, = 2n+2 (mod 4).

3. Trapezoidal systems. Let P be a polyomino over a square lattice. Fix
a vertex z of P and colour it black; colour all vertices of P black and white
S0 that every edge connects a black vertex with a white one. Lift the white
vertices and pull the black ones down by 1/4 each thus transforming P into a
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trapezoidal system T = T(P) (Fig. 3). By this operation the set of edges is
partitioned into three classes: long (vertical), short (vertical), and oblique.
Subdivide every long edge by inserting two additional vertices (a black one
and a white one) so that the three new edges are of length 1/2 each, as
indicated in Fig. 3. By these operations, P is transformed into an “extended
trapezoidal system” T’ = T'(P) in which, with respect to the lowest white
vertices (which define the zero level), every vertex x has a well-defined height
h(x) (Fig. 3).

valleys—___

P TP
Fig. 3

A white vertex x, (black vertex y,) whose neighbours are all lower than
Xo (higher than y,) is called a peak (valley). Let w, b, p, v be the numbers of
white vertices, black vertices, peaks, and valleys of T(P), respectively, and let
w, b, p’, v have the analogous meanings with respect to T"(G).

OBSERVATION 1. The peaks and valleys are precisely those vertices which,
in T(P), are not incident with a short edge.

Since the short edges are disjoint and every short edge connects a white
vertex with a black one, we conclude that

(2) | p—v=w—b.
Clearly, p=p, v =v, and w—b'=w—>b, so
(2) pP—v=w-=b.

OBSERVATION 2. The PMs of P are in a (1, 1)-correspondence with the
PMs of T(P) as well as T'(P); therefore,

(3) m(P) = m(T(P)) = m(T'(P))
(Fig. 4). |
~ Let n=n(P) and n' = n(T'(P)); clearly, n’ = n (mod 2).

OBSERVATION 3. If n is even, then (by Theorem 2) T'(P) is a (2 mod 4)-
graph; therefore (according to Theorem 1 (C) and Observation 2)

“4) m? = |det A,
where m = m(P) and A’ is the adjacency matrix of T'(P).
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Fig. 4

It will be our main concern to derive from (4) a simple determinant
formula for m where the size of the matrix is considerably reduced as
Compared with the size of A’ or A. ‘

‘Let S* denote the set of all connected graphs which are subgraphs of
Some polyomino.

OBSERVATION 4. The transformations T and T' described above can be
applied analogously to any graph Ge S* transforming G into T(G) and T'(G),
- Tespectively, and the statements made in Observations 1 and 2 remain valid for

G; the analogue of formula (4) is also true for G provided T'(G) is a (2 mod 4)-
graph. _

Let Z denote the set of all (2 mod 4)-graphs and put
S = {G| GeS* and T'(G)eZ]}.

Next two simple characterizations of the members of S shall be given.
Let F be an interior region of a graph GeS* and let i(F) denote the
humber of lattice points lying in the interior of F (Fig. 5).

F
24 ou e
2 ot
-14———¢2_ 3
' Fig. 5
iF)=2, k() =0

Lemma 1. T'(F) is a.(2 mod 4)-region if and only if i(F) is even.
This can be proved by induction on the number of cells covered by F.

‘Let X(F) denote the set of vertices lying on the boundary of F. Let
X€X(F) and let the total measure of the (open) angles which have their
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vertex at- x and are open towards the interior of F be kg(x) n/2
kr(0)efl, 2,3, 4). Put .

_ 1 if xis white,
i = {—1. if x is black

and

1
- 2, sgn(x)-ke(x)

4 xeX(F)

h(F) =

(Fig. 3).

LEMMA 2. For each interior regwn F of a graph GeS"’ h(F) is an
integer. T'(F) is a (2 mod 4)-region if and only if h(F) is even.

Again, the proof can be carried out by mductlon on the number of ce]]s_
covered by F, making use of Lemma 1.

From these lemmata and Theorem 2 we obtain

TueoreM 3. For a graph Ge S* the following statements are equivalent:

i) GeS.

(ii) n(G) is even and i(F) is even Jor every interior region F- of G

(iii) n(G) is even and h(F) is even for every interior region F of G.
. COROLLARY. 1. Whether or not a graph GeS* is a member of S does,
neither depend on the choice of the distinguished vertex z (the colours may be
interchanged) nor on the posztton of G m the plane (G may be turned by
multiples of 90°).

CoRrOLLARY 2. Let GeS.

Let e be an edge of G such that G—e is connected; then G—ecS.

Let G' be a connected subgraph of G with an even number of vertices such
that G":= G—V(G') is connected; then G'e S and G"€S.

Fig. 6
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CoROLLARY 3. Any hexagomal system H can be obtained from some
Polyomino P by deleting all long edges of T(P) (Fig. 6); thus the hexagonal
Systems which have an even number of vertices may be considered members of
S. This implies that the entire theory to be developed for the members of S is a
Jortiori valid for hexagonal systems with an even number of vertices.

. 4. Perfect matchings and perfect path systems. Let GeS and consider
T(G) and T'(G). A pv-path is a path starting at a peak and running
monotonically down to a valley. A path system is a set of pairwise disjoint
Pv-paths; it is called perfect if every peak and every valley is contained in
Some path of the system. Clearly, a necessary condition for a perfect path
System (PPS) to exist is that the number of peaks equals the number of
valleys, i.e, p=v or, equivalently (by Observation 1), w=>b or w =V
respectively. Evidently, the same condition is necessary for a PM to exist.

- Suppose that G has a PM. Let M be any PM of T(G); colour the edges
of M red and the others blue. It is not difficult to see that the long and the
oblique edges which are red together with the short edges which are blue
form a PPS, say Q =: f(M). Conversely: Assume that T(G) has a PPS. Let
Q be a PPS of T(G); first colouring the short edges red and all others blue
and then interchanging the colours of all edges that lie on some path of Q
Tesults in a PM, say M =:g(Q). It is almost evident that g is the inverse of f,
le, Q = f(M) implies M = g(Q), and conversely (Fig. 7).

Fig. 7

Thus a (1, 1)-correspondence between the set of PMs (of G, T(G) or
(G)) and the set of PPSs (of T(G) or T'(G)) (these sets may be empty) is
Cstablished, in particular, the number g = ¢(T(G)) = q(T'(G)) of PPSs is equal
o the number m = m(G) = m(T(G)) = m(T'(G)) of PMs:
THEOREM 4. Let Ge S*. There is a simple (1, 1)-correspondence between
the set of perfect matchings of G (or T(G) or T'(G)) and the set of perfect path
Systems of T(G) (or T'(G)) implying

) m(G) = ¢(T(G)) = ¢(T'(G)).
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5. The main theorem. Let Ge S* and assume that w = b implying, by
"Observations 4 and 1, pP=p=v'=v. Let

X,,={x1,x,_,...,x,,}' cand Y, ={y;, ¥z, ..e» Vi)

be the sets of the peaks and the valleys, respectively, of T(G) or of T'(G)
(which, without danger of confusion, can be identified) and let g; denote the
number of pv-paths connecting x, with y; (1 <i, k <p); clearly, these
numbers are the same for T(G) and T'(G). Put Q :=(qu)

TueorEM 5. For any graph Ge S with as many black vertices as white
ones,

(6) m(G) = q(T(G)) = |det Q.

As to the efficiency of Theorem 5, it is important to note that the
numbers g, can be very easily calculated. Let x be any vertex of T(G) or
T'(G), let g,(x) denote the number of monotone paths issuing from the peak
X, and terminating at x (k=1, 2, ..., p), put

q(x) = (ql (X), q2 (x): seey qp(x));
clearly, q;(y) =4qu (i=1,2,..., p) and

: q(y1)
(7 Q =(gu) = RN E

Let U(x) denote the “upper neighbourhood” of x, i.e., the set of neighbours
x' of x satisfying h(x’) > h(x). In order to calculate the vectors g(x), noté
simply the following:

(i) For any peak x,,

q(x0) = (61> Ok2, -- -, Oxp),

where 6; =1, 0;=0if i#£j(k=1,2,..., p).
(ii) For any vertex x which is not a peak,

®) q0) = Y q(x)

b xtel(x)

010

120
120

120
120
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(especially, q(x) = 0 if x is a black vertex which has no upper neighbours).
Unning through G from top to bottom, the g(x) can now be successively
determined. See Fig. 8, where

1210
o=|21 3|
35 1

6. Proof of Theorem 5. Let G be as in Theorem 5 and consider T'(G):
by Observations 4 and 1, w =b" Let
= {X1, X3, ceeur X}
and
Y = {y,, 72’ voos Yw ) = {Xws1s Xwra2s oens Xy }
(Where Vi = x,-+;) be the sets of the white and the black vertices, respectively,

Where (as above) x;, x;, ..., x, are the peaks and y,, y,,..., y, are the
Valleys. The adjacency matnx of T'(G) then takes the form

, [o BT
(3 5]

and from Observations 24 and Theorem 4 we obtain
®) m(G) = q(T(G)) = m(T"(G)) = |det B.
We have to show that |det B| = [det Q|. This will be performed by applying

: Simple Gaussian elimination process (in a more or less disguised form) to
® B’ reducing it to +det Q.

qix;) qix;)
Fig. 9 (see also Fig. 3)
We may assume that the vertices are numbered as follows (Fig. 9):

(l) numbers 1, 2, ..., p are reserved for the ‘peaks and valleys;
(i) any white vertex which is not a peak is given a number

jelp+1,p+2, ..., w}
§
Yh that h(x) > h(x,) implies i <k (i, ke {p+1, p+2, ..., wl);
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(iil) every black vertex which is not a valley is given the same number 8%
its unique lower neighbour.
Then B’ takes the form

,_[cu
(10 B=[V D:t,
p d

where d = w'—p and D = (dg) = (V)4 ,+8) (L k=1,2,...,d) is a triangulal
matrix satisfying d;; = 0 if i <k, d; = 1. Thus

@ det D = 1.
Put |
(11) [C Ul=:R and [V D]=:5;

s0, by (10),

| R
12) B 3[3]‘

Let I, denote the s xs unit matrix. Clearly,
[ (1), ¢ (x2), -, (x)] = 1,,.

Put |
| [4" (% 1) @ (%ps 2 ..o G ()] =:F,
(I, F1=[q"(x1), ¢ (x2), ..., ¢ (x,)] =:H;
put, further, 7
(13) (-0 q(x)=:3(x) (=1,2,...,%)
(Fig. 9), '
[F x), F(x), ..., T(x)] =T,
[F.(xp+1)s f(xwz), ey qr(xw')] =3f,
0, F1=:82, Q@ L]=:K
and
14) [?, ﬂqﬁ? g =:2:
note that

(D |  |det Z) = det I,|-|det L] = 1.
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The (p xw)-matrix R (see (11)) reflects the neighbourhoods of the

Valleys; therefore, because of (8), ,
RH' =Q =[q (1), ¥ 2, ..., ‘IT(.Y,)]T

(see (7)). Put —

(15) - RE" =0 =:[8, &, .... &

‘“}d note that the i-th row §; of Q is cither equal to the i-th row q(y;) of Q or
from it only by the factor —1 (in fact, because of (13) we have

&= (=112 4(y)); thus
() |det 0| = jdet Q).

The (d xw')-matrix S =[V D] (see (11)) reflects the neighbourhoods of
those black vertices which are not valleys; therefore, by (8) and (13),

(16) SH™ = 0.
Further,
(17) RK"=[C U] [IO} =U,

‘ d
(18) SK"=[V D] [0] =D.

I

Equations (12) and (14)-(18) yield
1 vy R [t T Q U .
(19) Bz_[s][Hf KT]—[O D],
thuys |
av) . det (B’ Z) = (det §)(det D).

From (I, (IV), (1), and (III) we now obtain in order
det B'| = |det B'|-|det Z| = |det(B'Z)|
‘= |det 0] -|det D| = |det §] = |det Q.
This proves the theorem.

7. An example. In how many ways can a 5 x 6 “chess-board” be covered
by 15 dominoes such that each domino covers exactly two fields and each

WI:d is covered (by exactly one domino)? The answer is given by Fig. 10,
rAcre ‘

52 39
Q=[39 52] and m=|det Q] = 1183.
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More about covering chess-boards by dominoes in our “Problem” (see the
Problems Section of this issue). :

1.0 0.1

3
P

T
]
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o

WA
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~ 1

52,39

39,

14

\ /-

8,16

ANV

Fig. 10

8. A different approach. We have proved

@) 4(T(G)) =m(G) (Theorem 4)
and

(ii) m(G) = |det Q] (Theorem 5)
implying o

(iii) q(T(G)) =|det Q| (Theorem 5).

For (i) we found a simple, intuitive combinatorial proof whereas (i) was a bit
harder. Comparing (i), (ii), and (iii), one is led to try to eliminate the concept
of a perfect matching altogether by directly proving (iii), since this is a sort of
an inclusion-exclusion principle for paths and path systems that has nothing
to do with perfect matchings, and then to obtain (i) from (i) and (iii) very
easily — indeed, a plausible and challenging idea. However, there are somé
obstacles. That this program can nevertheless be carried through is shown 19
all details by Gronau et al. [5] who found a general determinant formul#
discussed under what conditions it is valid, and applied it to hexag«rmal
systems.
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