COLLOQUIUM MATHEMATICUM

VOL. XX 1969 FASC. 1

A NOTE ON HOMOMORPHISMS OF OPERATOR ALGEBRAS

 \mathbf{BY}

HORACIO PORTA (LA PLATA)

Let K be a real Hilbert space (the complex case can be handled in a similar way) and denote by B(K) the Banach algebra of all bounded operators in K. Consider a Banach algebra homomorphism $R \colon B(K) \to B(H)$ preserving the identities, where H is another Hilbert space. It was proved in [2], Theorem 4.1, that if $\dim(H) < \dim(K)$, then necessarily $\dim(H) = 0$ and R = 0, and (loc. cit., Theorem 4.5) that if $\dim(K) = \dim(H) = \aleph_0$, then R is necessarily one-to-one. We intend to show here that this conclusion does not follow when $\dim(K) = \dim(H) > \aleph_0$. More precisely, we have the

THEOREM. Let K be a Hilbert space of dimension $a \geqslant \aleph_0$. Then there exists a Hilbert space H and a Banach algebra homomorphism $R \colon \boldsymbol{B}(K) \to \boldsymbol{B}(H)$ such that

- (a) $\dim(H) \leqslant a^{\aleph_0}$;
- (b) $ker(R) = \mathscr{C}(K) = the ideal of compact operators in K.$

We will need two lemmas. In the sequel, Card(A) will denote the cardinal power of the set A.

LEMMA 1. If Ω is the set of all sequences in a Hilbert space K, then

$$\operatorname{Card}(\Omega) \leqslant (\dim(K))^{\aleph_0} \cdot 2^{\aleph_0}.$$

Proof. By definition, $\Omega = K^N$ (N = set of positive integers), so that $\operatorname{Card}(\Omega) = \operatorname{Card}(K)^{\aleph_0}$. It remains to compute a bound for $\operatorname{Card}(K)$. Now, K is clearly the union of all closed subspaces of K generated by countable subsets of any orthonormal basis. Hence, if $\{e_a\}_{a \in I}$ is an orthonormal basis of K, we have

$$\operatorname{Card}(K) \leqslant \operatorname{Card}(P_c(I)) \cdot \operatorname{Card}(l^2),$$

where $P_c(I)$ denotes the set of all countable subsets of I and l^2 is the ordinary space of square summable sequences. Using the axiom of choice, one can define an injection of $P_c(I)$ in I^N . Therefore

$$\operatorname{Card}(P_c(I)) \leqslant (\operatorname{Card}(I))^{\aleph_0}.$$

Furthermore,

$$\operatorname{Card}(l^2) \leqslant \operatorname{Card}(R^N) = 2^{\aleph_0},$$

whence

$$\operatorname{Card}(\Omega) = \operatorname{Card}(K)^{\aleph_0} \leqslant (\operatorname{Card}(I)^{\aleph_0} \cdot 2^{\aleph_0})^{\aleph_0} = \dim(K)^{\aleph_0} \cdot 2^{\aleph_0}.$$

Let l^{∞} be the space of all bounded real sequences.

LEMMA 2. Let K be a Hilbert space, $c_0(K_w)$ the linear space of all sequences in K which converge weakly to 0. If LIM: $l^{\infty} \to R$ is any positive linear functional on l^{∞} that coincides with the ordinary limit when the latter exists, set, for $x = (x_1, x_2, \ldots)$ and $y = (y_1, y_2, \ldots)$ in $c_0(K_w)$,

$$[x, y] = LIM\{(x_n, y_n)\},\,$$

where (,) denotes the inner product in K. Then $p(x) = [x, x]^{1/2}$ is a seminorm on $c_0(K_w)$ and the completion H of the normed space obtained from $c_0(K_w)$ by factoring out the elements x with p(x) = 0, is a Hilbert space such that

$$\dim(H) \leqslant (\dim(K))^{\aleph_0} \cdot 2^{\aleph_0}$$
.

Proof. As H is the completion of a quotient of $c_0(K_w)$, its cardinal $\operatorname{Card}(H)$ can not exceed $\operatorname{Card}\left(\left(c_0(K_w)\right)^N\right) = \left(\operatorname{Card}\left(c_0(K_w)\right)\right)^{\aleph_0}$. Lemma 2 follows then from Lemma 1 above and the fact that $c_0(K_w) \subset \Omega$.

Consider now an operator $T \in B(K)$. T can be made to act on $c_0(K_w)$ as follows: if $x = \{x_1, x_2, \ldots\}$, then $Tx = \{Tx_1, Tx_2, \ldots\}$. Clearly $Tx \in c_0(K_w)$. Moreover,

$$(p(Tx))^2 = \operatorname{LIM}(Tx_n, Tx_n) \leqslant ||T||^2 \operatorname{LIM}(x_n, x_n),$$

or $p(Tx) \leqslant ||T|| p(x)$. This shows that T defines a bounded operator R(T) on (the quotient $c_0(K_w)/\{x; p(x) = 0\}$, and hence on) H, and in fact, that also $||R(T)|| \leqslant ||T||$. Obviously $R \colon B(K) \to B(H)$ is a homomorphism of Banach algebras. Since for $C \in B(K)$ compact and $x = \{x_n\} \in c_0(K_w)$ we have $|Cx_n| \to 0$, it follows that p(Cx) = 0 for all x and therefore R(C) = 0. On the other hand, if R(T) = 0 and $x = \{x\} \in c_0(K_w)$, let $\varepsilon = \limsup |Tx_n|$. Clearly, there exists a subsequence $x' = \{x_n'\}$ of $\{x_n\}$ such that $\varepsilon = \lim |Tx_n'|$. But then $LIM|Tx_n'| = \varepsilon$ and also $0 = p(Tx') = \varepsilon$. Therefore $|Tx_n| \to 0$ and T maps weakly convergent sequences into norm convergent sequences, which implies that T is compact. It follows that the kernel of R is precisely the ideal of compact operators in K.

The theorem follows from these two lemmas and the remark that if $a \ge \aleph_0$, then $a^{\aleph_0} \cdot 2^{\aleph_0} = a^{\aleph_0}$.

COROLLARY. If $\dim(K) = a \geqslant \aleph_0$ and $a^{\aleph_0} = a$, then there are endomorphisms of the Banach algebra B(K) that are not one-to-one.

Remark. The construction of H in Lemma 2 is due to Calkin (see [1]). Furthermore, all the theorems in § 5 of [1] can be generalized to non-separable Hilbert spaces, from which it follows that R(T) is either 0 or not compact and that the homomorphism $R: \mathbf{B}(K)/\mathscr{C}(K) \to \mathbf{B}(H)$ induced by R, is an isometry. Of course, $R(T^*) = (R(T))^*$, where * denotes adjoints.

REFERENCES

- [1] J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Annals of Mathematics 42 (1941), p. 839-873.
- [2] H. Porta and J. T. Schwartz, Representations of the algebra of all operators in Hilbert space, and related analytic functions algebras, Communications on Pure and Applied Mathematics 20 (1967), p. 457-492.

Reçu par la Rédaction le 9.10.1967