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1. Introduction. In this paper we consider the differential equation
(1.1) 0+ sin6—sin b, = 0,

in which 6, is a given constant from the open interval (0, x/2), and
6 = 6(t) is the unknown function. Equation (1.1) occurs in the theory
of a synchronous motor as a special case of the more general equation

(1.2) 6-+7(6)0+g(0) = D,

for the power angle 6(f) as a function of time. Here, g(8) and f(0) are some
known periodic functions with period 2z, and represent the electrody-
namical torque and the damping coefficient of the motor, respectively.
The quantity D may be considered as the external moment (cf. {5], 5.101;
[7], 6.3 and also the references in those works).

In recent years some essential results in the qualitative theory of
equation (1.2) have been obtained. Those results explain some effects
during the motion of a synchronous motor, noticed empirically (see [2],
p.16-21; [6], p. 190-191; [14], p. 66-80; [1], VII, § 2, § 3). A quantita-
tive analysis of the equation (1.2) is rather less developed ([5], 5.102;
[8], VIII, 8.30-8.43; [9], § 4).

The point 6 = 6, is a point of stable equilibrium of equation (1.1).
If the deflection 6 = 6(¢)— 6, from the equilibrium-point is sufficiently
small, equation (1.1) may be approximated by

8-+ (cos0,)8 = 0.

Then, for the frequency w of the free oscillations of the power angle we
have the well-known formula,

(1.3) w? = cos f,.

However, that formula cannot be used for large amplitudes of oscillations
defined by |

(1.4) a = }(max § —min0).
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In that case, one considers higher terms in the power expansion of gin @
= §in(0,+ d) in order to get the approximate equation

0+ (8—L18% cos 0,—46%in 0, = 0

within the third degree of accuracy. The study of the dependence between
the amplitude, the frequency of oscillations and the parameter 6, involves
elliptic functions. In this way a formula more accurate than (1.3) could
be obtained. Here we are going to follow another direction of investigation.

Suppose that the solution 6 = 6(#) of equation (1.1) describes the
vibrations about the equilibrium-point 6,. Denote

(1.5) 6, = mind(t), 0, = max0(i).
Then, the period of the oscillations T is given by

0
(1.6) T =V2 [ [(cosf—cost;)-(6— 0,)sin 0,]-*d8,
01

(cf. [4], § 42). Finally, let @ = 2x/T be the corresponding circular fre-
quency of the oscillations. In this paper some approximate formulae
for w as well as the estimates for the error of approximation will be given.
The methods are based on papers [10], [11], [12].

2. Range of oscillations. Denote by g(0) and G(§) the control-function
and the potential energy, respectively. In the case of equation (1.1)
we have

(2.1) g(0) = sinf—siné,

and .

(2.2) G(0) = [g(0)d = —co8 B+ 008 O— (§— B,)sin 0.
8

From Fig. 1 and also [4], § 42 it can be seen that the quantity 6, defined
by (1.5) satisfies the conditions

(2.3) —n —0p < 0, < 0,

and

(2.4) G(0,) < G(r—06,)

or, by (2.2),

(2.4) cos 0, -+ 6,8in 0, > (m— 0,)sin §,.

On the other hand, if 0, satisfies (2.3) and (2.4’) there exists a penodm
solution 0 = 6(f) of the initial-value problem

6+ sin0—sin 6, = 0,

(2.5) .
6(0) = 0,, 6(0) = 0,
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describing the oscillations about the equilibrium-point 6,. Of course,
6, is the left turning point of those oscillations.

Given the left turning-point 6, we find the right turning-point 6,
by standard methods from the equation G(6;) = G(0,) (cf. [4], §42).
In this way we obtain the transcendental equation

(2.6) co8 6,— cos 0, +(6;,— 0,)8in 6, = 0,

where the solution 6, < 0, < ©— 0, is needed in our case. Obviously,
the required solution of equation (2.6) exists provided conditions (2.3)
and (2.4') hold (see Fig.1).

6(6) A
It
T~
- 6

Fig. 1. Case 6, = 0,6; 6, = —0,3
Now we give a method of finding 6,. We first find the dependence
between the quantities 6,, 6, and the amplitude

92— 91
2

a =

of the oscillations. Accordingly put
(2.7) 6, =q—a, 0,=gq+ta.
By substituting these expressions in (2.6) we obtain the equation

(2.8) | g - 2%
sina

'Next': we define two sequences {a™} and {¢"™} by the formulae

(1) o3
a™gin 6
a® = +0,  ¢™ = aresin——

4 o sina™ ’
(2.9)

ad™tV =g™_9,, n=0,1,2,...
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It can be proved that:

(i) there exist limg™ and lima™,
n—o 00

(i) 6, = im[g™+-a™]
N0

if (2.3) and (2.4’) hold. Here is the plan of the proof:

1. We show that the graphs of the functions ¥ = asinf,/sina and
Y = gin(a- 0,) are located as in Fig. 2.

vk

_asing, y=sina+6,)
T sina
_a-sing,
Y= Sina
It . ! \ .
| ] ] ]
=] 1 | 1
sg'n 0, y=sin(a+0,) : | : :
sin @, ‘ 2 :—— B ! | a
-g Olima™ 7 i o' o™ a"™ M (im g™
N=oo .
ZM- 485 ZM—486
Fig. 2. Case 6, = 0,5; 6, = 0,25 Fig. 3

2. We verify that
a(n) < a(n"'l) < a’ q("') < q(n+1) < q
(see Fig. 3), from which (i) follows. Then the quantity 0, = lim [¢™+
— n—00
+ a™] satisfies equation (2.6) and the inequality 6, < 8, < n— 6,. Since
there exists only one root of (2.6) in the interval (6,, = — 8,), we obtain

(ii). The details of the proof are omitted. Relation (ii) gives a simple rule
to find 0, with any required numerical accuracy.

3. Auxilary control-functions. In the initial value problem (2.5)
the control-function g(6) = sinf—sin6, is non-odd with regard to the
point of equilibrinm 6,. The problem may be replaced by two similar
problems with odd control-functions
(3.1) 9:(d) = —sgnd-g(6,—|8]),

93(0) = sgnd-g(6o+4]).

fl‘hen g(0,+8) = g,(8) for 6 <0 and ¢(6,+ 8) = g4(d) for &6 > 0 and
Instead of the initial problem (2.5) we can consider the following initial
value problems:

(3.2) | 8+9.(6) =0,
8(0) = 6,—6,, &(0)=0
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and
8 8) =0
(3.3) + g2(9) . ’
8(0) = 6,—6,, 0(0) =0.
Put
(3.4) a1 =‘ eo_ 01, 0,2 — 92'— 60.

In view of the inequa]ities —n—0, < 6, <0, and 6, < 8, < n—0,,
by (3.1), we get
d-9:(8) >0 for 0<|d <ay.

Thus the initial-value problems (3.2) and (3.3) have periodic solutions
describing the oscillations about the point 6 = 0 with the amplitudes a,
and a,, respectively (see [4], § 42).

Denote by T, and T, the periods of those oscillations. It is easy to
prove that

(3-5) T = %(T1+T2)1
where T is given by formula (1.6).
Put
27 2% 27
(3-6) CO='—1-_1—’ wl:ﬁ’ w2=ﬁ

and suppose that

(3-7) Wy ~ w;, Wy ~= w;,

where w; and w, are any approximations of o, and w,. Let o’ be defined
by the equation

(3.8) . 3(3,+—1—). |

’
2 wy; Wy

This yields an approximation w ~ o’ with the following estimate for the
eIToT: ’

’ ! r 14 !
fo— o < i le—w1]+ @, .Iwz“'wzl
[

= 4 ! ’
@ ;1 w, Wy w;+ Wy Wy

In fact, by (3.5) and (3.6) we have

1 1f{1 1
-_—=_—4=
o 2\w; wg

and by (3.8) it follows that

(3.9)

7 ’ ’ ’ ’
w—ao Wsy wl'—'wl+ wy Wy — Wy

- ’ ’ ’ ’
w ®,+ w, W e Wy

which implies (3.9).

?
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4. The approximations for w, and w,. The considerations of the preced-
ing sections permit the use of the well-known approximate formulae
2m

(4.1) o} = (0p)f = — | g;(ajsine)sinada
Tl §

obtained by asymptotic methods (cf. [3],'§2). In those formulae-the
functions g; are given by (3.1) and a; are the amplitudes of the osecillations
determined by (3.2), (3. 3) and (3.4) (see [10]; [11], § 1, §4).

In view of (2.1) and (3.1) we obtain for g;(d) the following expres-
sions:

(4 2)  g:(8) = sinBoosO;—(—1)'sgné- (1— cos 8)sin bo; i=1,2.

Substltutmg (4 2) in (4.1), we get
2n

(w;)" = (wa;)" cos Gof gin (a;sin o) sinade—
F |

27

—(—1)"(ra;)"'sinf, [ [1— cos{a;sina)] [sing|da.

After calculations with the use of integral tables ([13], 3.524.5; 3.524.3)
we get the following expressions:

(4.3) (w;:)z = A,(a;)cos eo"‘(—l)iAa(ai) sin 6,,
where |
_ 2J1(a,) ‘ ™
Ay(a) 2( o n+1)"
(4.3") -

a

44(0) _"2(“ )n(2n—l—1)”(2n—|—3)”

We thus have the required approximations for w; and @g.
In [12], §3 the estimates of the errors

CO.:'"— w;
€; =
g

have been found as
(4.4) 0 < & < 0,430} 0y (2 — o),
where

1 2n
(4.5) 0t = —; [ gilasina)da,

i :
and the constants g; will be glVBn later. (In [12] an other notation was
used: g; = ¢, 0 =7"", 0; = w,, and 2; = w,,)
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By substituting (4.2) in'(4.5) we have

(A4--76)ﬁ 2 =By, (&i)icosz 89— (—1)"2B1,(a;)sin 6,08 0, +Byy(a;)sin? 4,

where we write
i 2%
By, (a) = -ic—a,zof ‘smz(asma)da,

b

By, (a) = n_a,gf [1— cos(asina)]2dea,

2n

B (a) = — f [1—cos(asina)]sin [asina|da.
B 0

These integrals, by well-known formulae (cf. [13], 3.528,3; 3.421.1),
are equal to:

Bmm=$uﬂmmm

(4.7) Bai(a) = ;}2 [‘3'— 4Jo‘(a) +J0(2a)],

=]

4 . A1
Bn(a) = ;2 (—1) Waﬁ +l.
=0

n

Then, by (4.6) and (4.7) we calculate 2.
'~ 'Now, the constants g; in (4.4) are (see [12], § 2)

1 el

= — 8P —m78M————— 1=1,2
" 2 0 s (a)) —Ga(z)’ »e

(4.8) 9
where
- z
Gi(@) = [ gi(x)da.
J ;
From the expression for g,(xz), by (4.2), it can be verified that g, (@)
represents a soft control-function. In this case the equality
CadR—gt R S
up a — lim __az_L
(0,a5) G2 (a3) — G () zrag Gy (ay) — G, (2)
holds (see [11], § 4). Hence

P

4.9 . S
(4.9) @ = Sin0,—sino,
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The determination of g, may be more involved. If a, < 0,, the function
g:(x) represents a hard control-function in the interval {—a,, a,>. There-
fore
2 2
a;— . a;—x’
su =lim——
o G1(0) —G1(T) o0 Gy (o) —G3 ()

(see [11], § 4) and by (4.8) and (4.2) we have

2
0y
2(cos 6y— cos 0, + a,sin ;)

(4.10) e =

If a, > 0,, the function (ai—2*)/[@;(a,)—@,(x)] may attain its maximal
value at an interior point of the interval {—a,, 0>. Then it is necessary
to solve a transcendental equation. In this case, however, instead of
determining p, we can use the inequality

a,
2sin 4 @, min [cos 6,, cos(0,—%a,)]’

(4.11) 01 <

which follows simply from the estimate
sup @ —a’ < sup 20
0.2 G1(81) —6G1(@) ~ 0.0 9:(2)’

In this way we have prepared all the formulae needed for finding
the approximate values of w, and w,, and for estimating the errors.

5. Numerical example. As an illustration of the method given in
the preceding sections let us assume in the initial-value problem (2.5)
the following numerical data:

(5.1) 8, =0,5, 6, =0,25.

First we check that conditions (2.3) and (2.4’) hold. Thus the initial-
value problem (2.5) has a periodic solution.

In order to estimate the corresponding cyclic frequency w we cal-

culate the right turning-point of the oscillations, using the iteration-process
(2.9) for example. Substituting the numerical values (5.1) we find

o® = 0,256024, ¢ = 0,506024.

The next iteration leaves the above six decimals unchanged. Hence,
by 2(ii), we may assume

(5.2) 0, = ¢+ a®® = 0,762048
with accuracy 10~°%. Now, from (3.4) we get
(5.3) a; = 0,250000, a, = 0,262048
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and consequently, by (4.3'), we calculate
Ay(a,) = 0,9922080, Ay(a;) = 0,1056620,
A4, (a,) = 0,9914413, Ay(as) = 0,1107085.
Using (4.3) we obtain

o = 0,9214015, o, = 0,8169947
or .
(5.4) o, = 0,9598966, o, = 0,9038776.

Finally formula (3.8) gives
(5.5) o’ = 0,931045,

which is an approximation of the frequency o of oscillations. In order
to estimate the error of that approximation we calculate by (4.7) and (5.3)
the numerical values

Bi(a,) = 0,9844830, By (a;) = 0,9829637,
Byy(a,) = 0,1047841, Bys(a,) = 0,1096985,
Bzz(al) == 0,0116174’ Bzz(drg) = 0’012 7527.

Then formula (4.6) yields
@ = 0,8490439, Q; = 0,6676539.
Now, by (5.4), the estimation formulae (4.4) give
(5.6) 0 <e <0,0000261-037%, 0 <e, <0,0000675- 03,

The numerical values of g; are calculated by substituting in formulae
(4.9) and (4.10) the numerical data (5.1), (5.2) and (5.3). We get

0, = 1,0064750, o, = 1,2426466.
Hence
0 <e <0,0000328, 0 <e, <0,0001161.

Finally, by (5.4), formula (3.9) gives

(5.7) 0 <272 <0,000076
w
and
(5.8) w = 0,931045—8-0,000071,

where 0 <9 < 1.

More accurate computations performed by the Department
of Numerical Methods at Wroctaw University show the quality of
the estimate given by (5.8). By the use of the eleotronic com-
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puter Elliott 803 the values of the infegral (1.6) have been tabulated and
those computations have shown that for 6, = 0,5, & = 0,256024,

® = 0,93101815.
Consequently
o' — o = 0,000027,

which shows that the actual error is 2,7 times smaller than its estimate
given by (5.8).
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A. RYBARSKI{ E. STRZELECKI (Wroclaw)
0 OZESTOSCI DRGAN GENERATORA SYNCHRONICZNEGO

STRESZCZENIE
W pracy bada si¢ réwnanie
(1.1) §+5in6—sing, = 0,

gdzie 0, jest stala nalezaca do przedzialu otwartego (0, =/2), 6 = 6(f) jest funkcja
poszukiwang. Réwnanie (1.1) wystepuje w teorii generatora synchronicznego. Praca
zawiera wzory dla przyblizonego obliczania okresu drgan okreslonych przez réwnanie
(1.1), a takie wzory pozwalajace oszacowaé dokladnoié przyblizen. Na zakohczenie
podany jest przyklad numeryczny.

A.PHIBAPCKH u E. CTHIEJEI[KH (Bponuas) :
O YACTOTE KOJEBAHHHW CHHXPOHHOI'O 'EHEPATOPA

PESIOME
B pa6ore mMByuaeTcA ypaBHEHHE
(L.1) 6+ sin6—sin 0, = 0,

rge 0, ABIAEeTCA NOCTOAHHON, HpUHAJJNe:xamed K OTKPHTOMY muHTepBaxny (0, n/2)
a 0 = 0(t) ucromoit Ppyuxnueil. YpasHeHHe 3TO BCTPEYAETCA B TEOPHH CHHXDPOHHOTO
regeparopa. Ilpmeopsarca QopMysNs [NA NPAGHMIKEHHOr0 BHYHCIEHAA YaCTOTH KO-
ne6anuit onpemenseMux ypasaeHueM (1.1) a Tarske QopMydIH, NO3BONANIMYE ONEHATH
TOYHOCTh HOJNYy4YaeMHX upubiumeruit. PaGora BaKaHYMBAGTCA YUCIGHHHM NPHEMEPOM.



