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1. Motivation

From the variational point of view the most natural modifications of Einstein’s
equations are to be derived from Lagrangians

(N L = kR+ay,R?*+a, |Ric|? +a,|Riem|?
for a space-time metric

(2) g = Zapdx"dx!  (a,8=0,1,2,3).
We write

curvature tensor = Riem = R,z,,dx" A dxPdx* A dx’,

Ricci tensor = Ric = R, pdx*dx?,

scalar curvature = R,

conformal curvature tensor = Weyl = C,ﬂ,,,dx“/\dxﬁdx'“/\dx’,

V = dx*V, = Levi-Civita covariant derivative.

Theories based on (1) have been discussed in the early times of general relativity
and have recently gained renewed interest in the context of quantum gravity, el-
ementary length, gauge field ideas, supergravity, singularity problems, nonconven-
tional matter field equations (viz. fourth order equations or equations containing
curvature terms). Note that the quantized version of a mixed theory (1) is renor-
malizable [9]. Einstein’s theory on the one hand and purely quadratic theories
on the other hand may be looked upon as limiting cases of (1).

The special choice due to R. Bach [1]

3) L = |Weyl|? = 1 R?—2|Ric|?+ |Riem|?
implies the vacuum field equations
(4) Ba'g = V”chyuﬁv_ %‘C’mﬂ,Rﬂw = 0.

Bach’s tensor B,zdx*dx? is tracefree and conformally invariant of weight —1. It
appears as an object of conformal geometry and in investigations on Huygens’
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principle for linear hyperbolic differential equations. Some classes of exact solutions
of Bach’s equations have been constructed [3], [4]. P. Giinther studied the shock

waves to (4) and qualitatively analysed Cauchy’s problem [7], [6]. Our work is
a continuation and refinement of [6].

2. The constraints

Let (M, g) be a space-time with local coordinates x* (x =0,1,2,3)and S M
a spacelike hypersurface with intrinsic coordinates ¢! (i = 1, 2, 3), unit normal
n = n*d,, and connecting quantities x¥ = dx*/dt!. In Einstein’s theory the first
and second fundamental forms of S

I = gudtldt" = gaﬁxildtledtj,

Il = P,de'dt = (Vang)xfde'xt di’

serve as Cauchy data. In Bach’s theory we complete them by

Il = Qdt'dt = n*x{x8n’Cap,di'dl’,

IV = S,dt’dt) = wxixiV°Cp,dt'dt’.

Obviously, projection of an M-tensor of degree p on the tetrad (n, 6/0t") decomposes
it into S-tensors of degrees 0,1, ..., p. We use a shorthand notation:

(3

(6

B,, = nanﬁBaﬁ' B, = nanga ’ BU = x?xmeﬁ’
Ry = x?xfxfoRuﬁyw
-Ruku = x?xfxﬁanaﬁyu

etc. Gauss—Codazzi equations tell us that Rijy, Rijkas Cijus Cijkn are S-intrinsic
differential expressions in I, II. This can be established by means of Van der Waerden-
Bortolotti’s D;-symbols: The D; act as x{'V, on M-tensors and as I-covariant deriva-
tives on S-tensors. Note that we raise Latin indices i,j, k,... by means of

(") := (g:)™".
THEOREM 1. The tetrad components B,,, B,; taken on S are S-intrinsic differential
expressions in 1, I1, 111, 1V, viz,
B,, = D‘(DJQU'*'PJ"CUIM)—QU(QU'*'RIzj)'*'PUSU’
B, = —D!S,;+ $ DY(D*Cyjun+ 3PFQ— YO +
+ P{PYCipp—Q*D Py— Cipn R~
We developped three methods for reducing the number of unknown functions
and transforming the equation system B,, = 0, B,; = 0 into an elliptic one.
I. Method. Application of the closed range theorem in Sobolev—Hilbert spaces
W' = Wi = Wi(S). Let (S,I) be closed and C®, I > 2, m> 1. Then for each
Qi€ W' there exist Qi€ W', ue W'*2 such that

® Oy = QAu+D|DJ”—’}8uA“s D'DJQAU = 0.

™)
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Also for each S;; € W™ there exist .SA'U e W™, v; e W™ such that

9 Siy = Sy+Dyvp— g, Do, D'S;; = 0.
The splittings (8), (9) make (7) Petrovskij-elliptic in (u, v;) with orders (4, 2):
(10 3B,, = 24%*u+ ..., 6B, = 3Av,+D,D*v,+ ...

This procedure works with modifications also in other topological situations.

2. Method. Lapse and shift formalism. A family of spacelike hypersurfaces
containing S and additionally a timelike vector field

0 7,
(11) ""E=N'n+Xi'.=N‘n+X

defining lapse N and shift X, are presupposed. Abbreviating time derivatives gf
by dots we obtain
2NP; = gy~ DuXp,

(12) 2NQyy = D.D,N~-3g, AN+ ...,

‘ —2N3S,; = tracefree part (NX"D,‘D,D_,N+D(,A".,,)+
and as a conclusion the Petrovskij-elliptic system

3NB,, = AN+ ...
ON3B,, = 4NX*D,D,AN +34X,+ D, D*X,+ ...

Only terms contributing to the Petrovskij-principal part are written down.

(13)

3. Method. Reduction of the dimension by means of symmetry assumptions.
For P;; = 0 our system simplifies to

B,, = DiDjQu—QUQu =0,

(14) B,,‘ = —DJS” = 0.

If additionally
g&;=29y, Qu=0, &Q,=0, S;=0, 5,=0,

Z:=tl+it2, 4q = le‘l"in]_, 4s 1= S,2+iS“,
then the constraints reduce to

(15)

(16) Rn(d2q/d22—q?) = 0, 8s/dz = 0.

Special solutions of (16) can be found. The simplification (15) is only an example—
a lot of other special solutions could be constructed.

3. The evolution problem

As is well known, the Ricci tensor splits into a hyperbolic part v and into a gauge
part A:

15*



228 R. SCHIMMING

Ry = f\'ap-i'ﬁaﬁ,
(17) Rop = 18" 0,0,8ap+ rapi '),
Ry = ~Valy, with I i= gl .
The analogous splitting for
2B,; = O(Rap~ t REup) — ¥ VoV R— (Crapy + Riapy — Ria8ir) R
reads
2B.p = ORep— (Coape + Rucs— R R,
2.5 = ORup— 48:s0R— V.V, R
Here we treat the contractions Iy, I of Christoffel symbols [,,,, Iy, as well as Raﬁ,
RMj formally like tensors and the jet symbol J* denotes the collection of all partial

derivatives of orders 0, 1, ..., k. While Raﬁ can be gauged away by the choice of
harmonic coordinates

(18)

= —-0Ox*=0,
in Bach’s theory the gauge conditions read

harmonic gauge I = 0, conformal gauge R = 0.
The informations contained in Cauchy’s data on S exhibit some algebraic structure:
minimal data @ gauge data = maximal data, viz.
(19) (I, I, IIL, IV)® (N, X) (2™, ' R) = (j78ap)-

In the following a manifold is understood as Hausdorff, connected and paracom-
pact. A space-time is a 4-dimensional manifold equipped with a lorentzian metric
and a time orientation. We use local Sobolev-Hilbert spaces W' = W}.

DEeFiNITION 1. Let (M, g) be a space-time and S = M a spacelike hypersurface.
A nonempty open set U = M is called a Cauchy neighborhood over SnU if every
past (future)-directed causal curve y issuing from a point x € U\ S and without
past (future) endpoint in U intersects S exactly once, the segment between x and
ynS lying in U. S is called a Cauchy hypersurface if M is a Cauchy neighborhood
over §.

DEFINITION 2. A Cauchy problem (X; 1, 11, 111, IV) consists in a 3-dimensional
manifold 2’ and symmetric 2-forms I, 11, III, IV in Z, I being definite, I1T and IV
being tracefree, obeying the constraint equations B,, = 0, B,; = 0 in the appro-
priate interpretation.

DEFINITION 3. A solution (M, g, ) of a Cauchy problem (X; 1, 1I, 1II, 1V)
consists in a space-time (M, g) obeying Bach’s field equations B,; = 0 and an
embedding A: £ — M such that § := A(X) is a Cauchy hypersurface and that the
data on § induced from (I, IL, III, IV) by 1 equal the data calculated from g.
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THEOREM 2 (Unicity result). For two solutions (M’, g’, A'), (M",g", 2") of
a Cauchy problem (&; 1, IL, 111, 1V) with M’', M"', X', 1", X' being of class C™*!
and g', g’ € W™ (m = 6) there exists a Cauchy neighborhood U’ over S’ := 1'(X)
and a Cauchy neighborhood U’ over §" := 1"(X) and a conformal mapping from
(U, g) 10 (U", g").

Sketch of the proof. 1. Since S’, S’ are Cauchy hypersurfaces in M’, M"’, there
exist a 0 < T < oo and diffeomorphic embeddings (—T, T) xS’ —» M', (=T, T)x
xS — M". Combining them with 1, A’ we get embeddings A’, A" of M
=(—-T,T)x2 in M’, M”. We diminish M’, M” to imA’, imA"” and “ignore”;
then .1’, 1", thus identifying M’, M with M, S’, S” with § := {0}x2X and A, 1"
with the canonical embedding 4: Y - § = M.

2. There exists a conformal mapping (¢, ®): (M, g’) — (M, g) preserving
the data (A~Y)* (I, II, TII, 1V) such that g := (p~1)* (Pg’) fulfills j3g|; = j3g"|s.
By “ignoring” (¢, @) we identify g’ with g. (Note that we write a conformal mapping
as being composed by an isometry ¢ and a conformal factor @.)

3. Consider the linear Cauchy problem

_ Ou+3Ru=0, wu =1, Vu,=0
with respect to g’, g”’. According to a theorem stated in [5] there exist Cauchy neigh-

borhoods of S and in these positive solutions «', u” € W™. The metrics g’ := u'%g’,

9

g = u”zg have vanishing scalar curvature R =0, R” = 0. We write again

g, g’ for g, g".
4. Consider the local linear Cauchy problem
Ouw' =0, u,=x", Gutly= &

for determining four scalar fields «* (v = 0, 1, 2, 3} with respect to g’, g'’. Again
according to [5] there exist coordinate (Cauchy) neighborhoods of an arbitrary
point y € S and in these solutions w'*, ’’* € W™ representing harmonic coordinates.
By mapping points with equal values of the harmonic coordinates we construct
a local diffeomorphism y, € W™*! with jly,|; = j'id|;. Then the v’* (. =0, 1, 2, 3)
are harmonic coordinates with respect to both g’ and g := (y;!)*g’

5. Bach’s equations B,; = 0 with respect to g, g’ in the coordinates x* := u"*
reduce to the strictly hyperbolic system B,, = 0. In (19) the summands (1, 11, III, 1V)
and (N, X), coincide with respect to g, g’ and (j2I™*, j'R); = (0, 0) in our gauge.
Hence we have j3g.gls = jgasls and these data are of class W™ x W™~ ! x W™~ 2x
x W™-3, According to a theorem stated in [8] there exists a coordinate (Cauchy)
neighborhood of y € § where uniqueness g,3 = gq5 holds.

6. The local objects y, and g, = g5 can be pasted together to spatially global
objects » and g = g”’. Now we do not longer “ignore” A’, A", (p, D), ', u":
These elements together with y combine to the conformal mapping announced in
Theorem 2.

THEOREM 3 (Existence result). For a Cauchy problem (X; 1, 11, 111, 1V) with X
of class C™*! and (I, 11, IIL, IV) e W™ x W™= 1 x W™=2x W™ 2 (m > 6) there exists
a solution (M, g, 2) with M, 2 of class C™*' and ge W™.
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Sketch of the proof. 1. We begin to work in the product manifold R x X’ of class
C™*1 and set

(N, X, j*I*,j'R):=(1,0,0,0)

on S:= {0}xZ. According to (19) this initial gauge together with the minimal
data (I, IT, T1I, IV) constitutes maximal data j3g,,|, in each X or S-coordinate neigh-
borhood.

2. According to the theorem stated in [2] there exist coordinate (Cauchy)
neighborhoods of an arbitrary y € § and i31 each of these a solution gy = gas(x")
€ W™ of the strictly hyperbolic system B, = 0 having the initial values j’gql;
constructed under item I.

3. Our local solutions g,s can be shown to satisfy the gauges /™ = 0, R = 0:

(a) According to a theorem stated in [8] the linear Cauchy problem

28¥Bp = OR =0, Jj'Rl, =j*(R+V.I*)j =0

has the unique solution R=0.
(b) One can show (here & = n, i)

Buls =0 and Byl = 0= B, = 0= 3 = 0.

(¢) Taking (a), (b) into account one can derive from V"’Baﬁ = 0 and Vﬁlvi'c.ﬁ =0
a linear Cauchy problem

OU+b(8%,j' Rapu)j'U = 0, j'U|; =0

for the set of function U := ({4, JA?,,,, O7I,— RéI%). Again according to [§] we
have the unique solution U = 0. Thanks to the gauge I, =0, R=R+R =0
our g, solves the full Bach equations Bz = 0.

4. The initial data and the gauge R = O freeze the conformal freedom. Follow-
ing P. Giinther [6] we freeze the freedom of isometries by prescribing the values
of the unit tangent vectors of the geodesics orthogonal to S. Thus the local solutions
become comparable and can be pasted together to a spatially global solution g
defined in some Cauchy neighborhood M = Rx 2 over S = {0} xX. Care is to
be taken to the orders of regularity, because uniqueness theorems are to be applied
on differential equation systems occurring in the procedure.
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