THE ADDITIVITY OF THE VOLUME
AND SPERNER'S LEMMA

BY

W. DĘBSKI (KATOWICE)

We shall prove here a theorem according to which if \(T \) is a triangulation of an \(n \)-dimensional simplex

\[
p = \langle p_0, \ldots, p_n \rangle \subset E^n
\]

and \(f \) is a map of the set of vertices of \(T \) into \(E^n \) such that the set of vertices of \(T \) lying on a given \((n-1)\)-dimensional face of \(p \) is mapped into the \((n-1)\)-dimensional hyperplane generated by that face, then the oriented volume \(V(p_0, \ldots, p_n) \) of \(p \) is equal to the sum of oriented volumes \(V(f(s_0), \ldots, f(s_n)) \) of simplices \(\langle f(s_0), \ldots, f(s_n) \rangle \), where \(\langle s_0, \ldots, s_n \rangle \) run over all \(n \)-dimensional simplices of \(T \). This theorem, which establishes the additivity of the oriented volume, implies the oriented version of Sperner's lemma when we restrict our consideration to maps \(f \) having values in the set \(\{p_0, \ldots, p_n\} \) of vertices of \(p \). We regard the connection between these two theorems as interesting, and this is the reason for writing this note.

1. Let \(a_0, \ldots, a_n \) be points of the Euclidean space \(E^n \) which are affine independent, which means that

\[
\begin{vmatrix}
1 & \ldots & 1 \\
a_{01} & \cdots & a_{n1} \\
\vdots & \ddots & \vdots \\
a_{0n} & \cdots & a_{nn}
\end{vmatrix} \neq 0,
\]

(1)

\(a_{ij} \) denoting the \(j \)-th coordinate of \(a_i \).

Let \(\langle a_0, \ldots, a_n \rangle \) be the simplex with vertices \(a_0, \ldots, a_n \). We shall regard the orientation of \(\langle a_0, \ldots, a_n \rangle \) to be equal to 1 or \(-1\) depending on the positive or negative value of the determinant in (1).

The oriented volume \(V(a_0, \ldots, a_n) \) of \(\langle a_0, \ldots, a_n \rangle \) is meant as the \((n!)^{-1}\)-th of the determinant in (1). If the points \(a_0, \ldots, a_n \) are not affine independent, we let \(V(a_0, \ldots, a_n) = 0 \), understanding that the orientation of \(\langle a_0, \ldots, a_n \rangle \) is 0. In the case where inequality (1) holds we call the simplex \(\langle a_0, \ldots, a_n \rangle \) \(n \)-dimensional.
Let us note the equality
\[(2) \quad (-1)^0 V(b, a_0, \ldots, a_n) + (-1)^1 V(b, \hat{a}_0, \ldots, a_n) + \cdots
+ (-1)^n V(b, a_0, \ldots, \hat{a}_n) = 0\]
for points \(b, a_0, \ldots, a_n\) of \(E^n\) (the sign \(\hat{\ })\) means that the point is deleted), obtained by developing along the first row the determinant
\[
\begin{vmatrix}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1 \\
1 & a_{01} & \ldots & a_{n1} \\
\vdots & \vdots & \ddots & \vdots \\
b_n & a_{0n} & \ldots & a_{nn}
\end{vmatrix}
\]
which is equal to 0.

For every \(j\) we can write equality (2) in the form
\[(3) \quad V(a_0, \ldots, a_{j-1}, a_j, a_{j+1}, \ldots, a_n) - V(a_0, \ldots, a_{j-1}, b, a_{j+1}, \ldots, a_n)
= \sum_{i \neq j} (-1)^i V(b, a_0, \ldots, \hat{a}_i, \ldots, a_n).\]

2. Let \(p = \langle p_0, \ldots, p_n \rangle\) be a positively oriented \(n\)-dimensional simplex in \(E^n\), i.e., such that \(V(p_0, \ldots, p_n) > 0\). Let \(T\) be a simplicial subdivision of \(p\). Let \(W\) be the set of vertices of \(T\). The geometrical background for further reasoning is concentrated on the following two properties of \(T\):

(4) If points \(a\) and \(b\) lie on the opposite half-spaces into which the space \(E^n\) is disconnected by the \((n-1)\)-hyperplane generated by the simplex \(\langle u_0, \ldots, u_{n-1} \rangle\), then the simplices \(\langle a, u_0, \ldots, u_{n-1} \rangle\) and \(\langle b, u_0, \ldots, u_{n-1} \rangle\) have different orientations.

(5) Each \((n-1)\)-dimensional simplex of \(T\) is the common face of exactly two \(n\)-dimensional simplices of \(T\) if it does not lie on the boundary of \(p\), and is the face of exactly one \(n\)-dimensional simplex of \(T\) if it lies on the boundary of \(p\).

Let \(f: W \to E^n\) be a map. Let
\[V(f) = \sum_{s \in T} V(f(s_0), \ldots, f(s_n)),\]
where \(s = \langle s_0, \ldots, s_n \rangle\) run over all \(n\)-dimensional simplices of \(T\) (which are assumed to be positively oriented).

We call maps \(f\) and \(g\) from \(W\) into \(E^n\) compatible if for every \((n-1)\)-dimensional simplex \(u\) of \(T\) lying on the boundary of \(p\) they take the vertices of \(u\) into the same \((n-1)\)-dimensional hyperplane.

Lemma 1. If \(f\) and \(g\) are compatible, then \(V(f) = V(g)\).

Proof. Consider the special case where \(f\) and \(g\) differ on a single element \(w\) of \(W\).
In the expression

\[V(f) - V(g) = \sum_{s \in T} (V(f(s_0, \ldots, f(s_n)) - V(g(s_0, \ldots, g(s_n))) \right)

the non-vanishing differences on the right-hand side can occur only if \(w \) is one of \(s_0, \ldots, s_n \). So, let \(w = s_j \) and fix one such difference

\[V(f(s_0), \ldots, f(s_n)) - V(g(s_0), \ldots, g(s_n)). \]

According to formula (3), we have then

\[V(f(s_0), \ldots, f(s_n)) - V(g(s_0), \ldots, g(s_n)) \]

\[= V(f(s_0), \ldots, f(s_j), \ldots, f(s_n)) - V(f(s_0), \ldots, g(s_j), \ldots, f(s_n)) \]

\[= \sum_{i \neq j} (-1)^i V(g(s_j), f(s_0), \ldots, \hat{f}(s_i), \ldots, f(s_n)). \]

If the simplex \(\langle s_0, \ldots, \hat{s}_i, \ldots, s_n \rangle \) lies on the boundary of \(p \), then all the points \(f(s_r) \) and \(g(s_r) \), \(r \neq i \), lie on the same \((n-1)\)-dimensional hyperplane. Thus, the summands of that kind on the right-hand side of (7) vanish.

If the simplex \(\langle s_0, \ldots, \hat{s}_i, \ldots, s_n \rangle \) does not lie on the boundary of \(p \), then, by (5), it is a common face of \(\langle s_0, \ldots, s_n \rangle \) and another simplex \(t = \langle t_0, \ldots, t_n \rangle \) of \(T \), where the vertices of \(t \) are assumed to be ordered in such a way that

\[V(t_0, \ldots, t_n) > 0. \]

Let \(t_k \) be the vertex of \(t \) opposite to the common face of \(s \) and \(t \). So this common face of \(s \) and \(t \), expressed in \(s \) as \(\langle s_0, \ldots, \hat{s}_i, \ldots, s_n \rangle \), is expressed as a face of \(t \) as \(\langle t_0, \ldots, t_k, \ldots, t_n \rangle \). The simplices

\[\langle s_0, \ldots, \hat{s}_i, \ldots, s_n \rangle \quad \text{and} \quad \langle t_0, \ldots, t_k, \ldots, t_n \rangle \]

differ only in ordering of vertices.

An easy calculation shows that

\[\text{sgn } V(s_i, s_0, \ldots, \hat{s}_i, \ldots, s_n) = (-1)^i \text{sgn } V(s_0, \ldots, s_i, \ldots, s_n) = (-1)^i \]

\[= (-1)^i \text{sgn } V(t_0, \ldots, t_k, \ldots, t_n) = (-1)^{i+k} \text{sgn } V(t_k, t_0, \ldots, \hat{t}_k, \ldots, t_n) \]

\[= (-1)^{i+k+1} \text{sgn } V(s_i, t_0, \ldots, \hat{t}_k, \ldots, t_n), \]

the last equality being obtained by means of (4). This means that the sign of permutation of vertices \(s_0, \ldots, \hat{s}_i, \ldots, s_n \) with respect to \(t_0, \ldots, t_k, \ldots, t_n \) is \((-1)^{i+k+1}\).

Let \(t_l \) be that vertex of \(t \) which is equal to \(w \). We have \(s_j = w = t_i \); clearly, \(l \neq k \). From our calculation it follows that

\[(-1)^i V(a, g(s_0), \ldots, \hat{g}(s_i), \ldots, g(s_n)) = (-1)^{k+1} V(a, g(t_0), \ldots, \hat{g}(t_k), \ldots, g(t_n)). \]
Hence, substituting $a = f(s_j)$ we get
\[(-1)^i V(f(s_j), g(s_0), \ldots, \hat{g(s_i)}, \ldots, g(s_n)) = (-1)^{k+1} V(f(s_j), g(t_0), \ldots, \hat{g(t_k)}, \ldots, g(t_n)). \]

But $s_j = t_i$, and we have
\[(-1)^i V(f(s_j), g(s_0), \ldots, \hat{g(s_i)}, \ldots, g(s_n)) + (-1)^k V(f(t_i), g(t_0), \ldots, \hat{g(t_k)}, \ldots, g(t_n)) = 0. \]

Thus, for every i there exists a k such that the expression above vanishes. The correspondence between i and k is involutary by (5). So, the summands on the right-hand side of (7) cancel.

We can obtain g from f by successive substituting the values of g at elements of W for the values of f at these elements. At each step the change concerns only one value and each two of functions modified in such a way are compatible, as f and g are. Thus, the special case can be successively applied, and the lemma follows in full generality.

3. Assign to every element of W the vertex $\varphi(w) = p_j$ of p such that
\[j = \min \{ i \mid w \in \langle p_0, \ldots, p_i \rangle \} . \tag{8} \]

Clearly, $\varphi(p_i) = p_i$.

If $w \in \langle p_0, \ldots, p_i \rangle$, then in formula (8) for $\varphi(w)$ the vertices $p_j, j > i$, are inessential. Thus, if $w \in \langle p_0, \ldots, p_i \rangle$, then
\[\varphi(w) \in \{ p_0, \ldots, p_i \} . \]

Moreover, the function φ restricted to $W \cap \langle p_0, \ldots, p_i \rangle$ is equal to the function defined by (8) for the simplex $\langle p_0, \ldots, p_i \rangle$ equipped with the simplicial subdivision induced from that of $\langle p_0, \ldots, p_n \rangle$.

Lemma 2. There exists exactly one n-dimensional simplex s of T such that φ assumes at the vertices of s all the values p_0, \ldots, p_n. In addition,
\[V(s_0, \ldots, s_n) > 0 \]

assuming $\varphi(s_j) = p_i$.

Proof. We proceed by induction on n. The case $n = 0$ is obvious. Assume $n > 0$ and consider the simplex $\langle p_0, \ldots, p_n \rangle$ and its face $\langle p_0, \ldots, p_{n-1} \rangle$. The function φ restricted to $W \cap \langle p_0, \ldots, p_{n-1} \rangle$ is, according to the comment made before the proof, the same as the function defined by (8) for the simplex $\langle p_0, \ldots, p_{n-1} \rangle$ equipped with the simplicial subdivision induced from that of $\langle p_0, \ldots, p_n \rangle$. Thus, by the induction hypothesis, there exists a uniquely determined $(n - 1)$-dimensional simplex t of T lying on $\langle p_0, \ldots, p_{n-1} \rangle$ such that φ assumes on the set of vertices all the values p_0, \ldots, p_{n-1}.

The simplex t, lying on the boundary of p, is by (5) a face of exactly one n-dimensional simplex of T; call that simplex s. The function φ assumes the
value \(p_n \) at the vertex of \(s \) not belonging to \(t \), as that vertex does not belong to the face \(\langle p_0, \ldots, p_{n-1} \rangle \). Thus \(\varphi \) assumes all the values \(p_0, \ldots, p_n \) on the set of vertices of \(s \).

It remains to prove that such a simplex is unique. Let \(v \) be an \(n \)-dimensional simplex of \(T \) such that \(\varphi \) assumes all the values \(p_0, \ldots, p_n \) on the set of vertices of \(v \). The \((n-1)\)-dimensional face of \(v \) of whose set of vertices the function \(\varphi \) assumes all the values \(p_0, \ldots, p_{n-1} \) lies on \(\langle p_0, \ldots, p_{n-1} \rangle \). By uniqueness, implied by the induction hypothesis, this face coincides with \(t \). But the simplex \(s \) is the only \(n \)-dimensional simplex of \(T \) having \(t \) as a face. Thus \(v = s \).

To prove the second part of the conclusion, assume \(\varphi(s_i) = p_i \).

We have \(s_i \in \langle p_0, \ldots, p_i \rangle \) and \(s_i \notin \langle p_0, \ldots, p_{i-1} \rangle \). Thus, for barycentric coordinates \(\beta_{i0}, \ldots, \beta_{in} \) of \(s_i \) with respect to \(p_0, \ldots, p_n \) we have

\[
\beta_{i0} + \ldots + \beta_{in} = 1, \quad \beta_{ik} \geq 0, \\
\beta_{ik} = 0 \text{ for } k > i \quad \text{and} \quad \beta_{ii} > 0 \text{ for all } i.
\]

Taking into account that

\[
s_i = \sum_{k=0}^{n} \beta_{ik} \cdot p_k \quad \text{and} \quad 1 = \sum_{k=0}^{n} \beta_{ik} \quad \text{for each } i,
\]

we get

\[
\begin{bmatrix}
1 & \ldots & 1 \\
p_{01} & \ldots & p_{n1} \\
p_{0n} & \ldots & p_{nn}
\end{bmatrix}
\begin{bmatrix}
\beta_{00} & \ldots & \beta_{n0} \\
\beta_{0n} & \ldots & \beta_{nn}
\end{bmatrix}
=
\begin{bmatrix}
1 & \ldots & 1 \\
s_{01} & \ldots & s_{n1} \\
s_{0n} & \ldots & s_{nn}
\end{bmatrix}.
\]

The determinant of the second matrix on the left-hand side equals \(\beta_{00} \cdot \ldots \cdot \beta_{nn} \) since that matrix is triangular (\(\beta_{ik} = 0 \) for \(k > i \)). Since the determinant of the product of matrices is equal to the product of their determinants, we get

\[
V(s_0, \ldots, s_n) = V(p_0, \ldots, p_n) \cdot \beta_{00} \cdot \ldots \cdot \beta_{nn}.
\]

The last expression is positive as \(\beta_{ii} > 0 \), and \(V(p_0, \ldots, p_n) > 0 \) by assumption.

Note that

Lemma 3. \(\varphi(w) \neq p_i \) whenever \(w \in \langle p_0, \ldots, \hat{p_i}, \ldots, p_n \rangle \).

Proof. In fact, \(\varphi(w) = p_i \) would imply \(w \in \langle p_0, \ldots, p_i \rangle \). Thus we would have \(w \in \langle p_0, \ldots, p_{i-1} \rangle \), contrary to \(\varphi(w) = p_i \).

Satisfying Lemma 3, the function \(\varphi \) is a Sperner function, and Lemma 2 can be considered as a special case of Sperner’s lemma.

Theorem. Let \(f : W \rightarrow E^* \) be a map taking vertices of a given \((n-1)\)-dimensional face into the \((n-1)\)-dimensional hyperplane generated by this face. Then

\[
V(f) = V(f(p_0), \ldots, f(p_n)).
\]
Proof. Under the assumption on \(f \) we made, the functions \(f \) and \(f \circ \varphi \) are compatible. In fact, by Lemma 3, if \(s \) is an \((n-1)\)-dimensional simplex lying on \(\langle p_0, \ldots, \hat{p}_i, \ldots, p_n \rangle \), then the vertices \(s_0, \ldots, s_{n-1} \) of \(s \) are mapped by \(\varphi \) into \(\{ p_0, \ldots, \hat{p}_i, \ldots, p_n \} \). But \(f \) maps all the vertices lying on \(\langle p_0, \ldots, \hat{p}_i, \ldots, p_n \rangle \) into an \((n-1)\)-dimensional hyperplane, and this means that \(f \) and \(f \circ \varphi \) are compatible.

We have

\[
V(f \circ \varphi) = \sum_{s \in T} V(f(\varphi(s_0)), \ldots, f(\varphi(s_n))).
\]

By Lemma 2, there exists exactly one \(n \)-dimensional simplex \(s \) of \(T \) such that \(\varphi \) admits all the values \(p_0, \ldots, p_n \) on its vertices. Thus the summands corresponding to the other simplices vanish. We can assume that \(\varphi(s_i) = p_i \). Thus, by Lemma 2, formula (9) can be rewritten in the form

\[
V(f \circ \varphi) = V(f(\varphi(s_0)), \ldots, f(\varphi(s_n))) = V(f(p_0), \ldots, f(p_n)),
\]

which completes the proof, as \(V(f \circ \varphi) = V(f) \) by Lemma 1, \(f \) and \(f \circ \varphi \) being compatible.

Corollary (Sperner's lemma \(^1\); oriented version). Let \(T \) be a simplicial subdivision of \(p = \langle p_0, \ldots, p_n \rangle \) and let \(W \) be the set of vertices of \(T \). Let

\[
f: W \to \{ p_0, \ldots, p_n \}
\]

be a map such that

\[
f(w) \in \{ p_0, \ldots, \hat{p}_i, \ldots, p_n \} \quad \text{whenever} \quad w \in \langle p_0, \ldots, \hat{p}_i, \ldots, p_n \rangle.
\]

Then the difference between the numbers of positively and negatively oriented \(n \)-dimensional simplices \(\langle f(s_0), \ldots, f(s_n) \rangle \) is equal to 1.

Proof. We have \(f(p_i) = p_i \) by assumption. Hence

\[
V(p_0, \ldots, p_n) = V(f(p_0), \ldots, f(p_n)) = V(f) = \sum_{s \in T} V(f(s_0), \ldots, f(s_n)).
\]

The non-vanishing volumes in the last sum differ only in sign, as the absolute values of these volumes are the same and are equal to \(V(p_0, \ldots, p_n) \). Thus we obtain 1 as the sum of

\[
\sum_{s \in T} \text{sgn} \ V(f(s_0), \ldots, f(s_n)),
\]

i.e., the required conclusion.

Taking f to be the identity, we get from the Theorem the following

Corollary. $V(p_0, \ldots, p_n) = \sum_{s \in T} V(s_0, \ldots, s_n)$.

This means the additivity of volume mentioned in the introductory part of the paper.

INSTYTUT MATEMATYKI, UNIWERSYTET ŚLĄSKI
BANKOWA 14, 40-007 KATOWICE
POLAND

Reçu par la Rédaction le 23.3.1988;
en version modifiée le 20.9.1988