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AND SPERNER'S LEMMA
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W. DEBSKI (KATOWICE)

We shall prove here a theorem according to which if T is a triangulation of
an n-dimensional simplex

p=1<Pgs--:s Py < E"

and fis a map of the set of vertices of T into E" such that the set of vertices of
T lying on a given (n—1)-dimensional face of p is mapped into the
(n—1)-dimensional hyperplane generated by that face, then the oriented
volume V(p,,...,p,) of p is equal to the sum of oriented volumes
V(f(so)s ..., f(s,) of simplices { f(so), - - -, f(s,)), where (s, ..., 5,> run over all
n-dimensional simplices of T. This theorem, which establishes the additivity of
the oriented volume, implies the oriented version of Sperner’s lemma when we
restrict our consideration to maps f having values in the set {p,, ..., p,} of
vertices of p. We regard the connection between these two theorems as
interesting, and this is the reason for writing this note.

1. Let a,, ..., a, be points of the Euclidean space E" which are affine
independent, which means that

1 1
(1) Apgr - - - Quy £ 0’
Aon - - . Qpu

a;; denoting the j-th coordinate of a;.

Let <a,, ..., a,) be the simplex with vertices a,, ..., a,. We shall regard the
orientation of <a,, ..., a,) to be equal to 1 or —1 depending on the positive or
negative value of the determinant in (1).

The oriented volume V(a,, ..., a,) of {a,, ..., a,) is meant as the (n!)~ !-th of
the determinant in (1). If the points a,, ..., a, are not affine independent, we let
WV(ay, ..., a,) = 0, understanding that the orientation of (a,, ..., a,) is 0. In the
case where inequality (1) holds we call the simplex <a,, ..., a,) n-dimensional.
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Let us note the equality
(2) (_I)OV(E’ Aoy -« an)+(_1)lV(b5 60: R an)+ s
+(=1)"*"v, aq, ..., 4,)=0

for points b, aq, ..., a, of E" (the sign * means that the point is deleted),
obtained by developing along the first row the determinant

1 1 1
1 1 1
b, ao Qny
bn Qon App

which is equal to 0.
For every j we can write equality (2) in the form

(3) Vi, ..., aj-1,8, @j+1, ..., a)—V(ag, ..., 8j-1, b, aj41, ..., a)
=Y (=1)Vb,aq, ..., d,..., a,).
i#j
2. Let p = {p,, ---, P,y be a positively oriented n-dimensional simplex in E",
i.., such that V(p,, ..., p,) > 0. Let T be a simplicial subdivision of p. Let W be

the set of vertices of T. The geometrical background for further reasoning is
concentrated on the following two properties of T:

(4) If points a and b lie on the opposite half-spaces into which the space E" is
disconnected by the (n—1)-hyperplane generated by the simplex
{Ugy ..., Up—yy, then the  simplices <a,ugy, ..., u,—;» and
<b, ugy, ..., u,—1) have different orientations.

(5) Each (n—1)-dimensional simplex of T'is the common face of exactly two
n-dimensional simplices of Tif it does not lie on the boundary of p, and is
the face of exactly one n-dimensional simplex of T if it lies on the
boundary of p.

Let f: W— E" be a map. Let
V(f) = X V(f(s0)s -5 f(s0)s

seT

where s = (s, ..., S, run over all n-dimensional simplices of T (which are
assumed to be positively oriented).

We call maps f and g from W into E" compatible if for every
(n—1)-dimensional simplex u of T lying on the boundary of p they take the
vertices of u into the same (n—1)-dimensional hyperplane.

LEMMA 1. If f and g are compatible, then V(f) = V(g).

Proof. Consider the special case where f and g differ on a single element
w of W.
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In the expression

(6) V(N)=Vig) = X (V(f(50), -+ f() = V(9(s0)s ---» g(sp)))

seT N

the non-vanishing differences on the right-hand side can occur only if w is one
of s4,..., 5, So, let w=s; and fix one such difference

V(£(s0); ---» fs)) = V(g(so)s ---» 9(sy)-

According to formula (3), we have then
(7) V(f(so)a vy f(sn))_ V(g(so)a ceey g(sn))

= V(f(So)s ---» f(5)), s F8) = V(f(S0)s -5 G(5)s -5 £(5,)
= Y (= D)V(g(s), f(s0)s ---, [ (s, ..., f(s,)

i#j .

If the simplex (s, ..., §;, ..., s,» lies on the boundary of p, then all the
points f(s,) and g(s,), r # i, lie on the same (n— 1)-dimensional hyperplane.
Thus, the summands of that kind on the right-hand side of (7) vanish.

If the simplex (s,, ..., §;, --., $,» does not lie on the boundary of p, then, by
(5), it is a common face of (s, ..., s,> and another simplex t = {t,, ..., t,) of
T, where the vertices of ¢ are assumed to be ordered in such a way that

Vitg, ..., t,) > 0.

Let t, be the vertex of t opposite to the common face of s and t. So this
common face of s and ¢, expressed in s as {sy, ..., §;, ..., 8,0, is expressed as
a face of t as (t,, ..., 4, ..., t,). The simplices

(SgseveesSiy e Sy and  tgy vy by ooy B0

differ only in ordering of vertices.
An easy calculation shows that

S8 V(S;, Sgs -+-s Sis --e» S) =(—1)'sgnV (sq, ..., S5 ..., 5,) = (— 1)’
=(=1)sgn V(tg, ..., tys ---» t) = (= 1) *sgn V(t,, to, ..., b, ...\ L)
= (=1 *  son Vs, to, ..os bys vnns 2,),

the last equality being obtained by means of (4). This means that the sign of

permutation of vertices s, ..., §;, ..., s, with respect to tq, ..., t, ..., t, is
(_ 1)i+k+ l.

Let ¢, be that vertex of ¢ which is equal to w. We have s; = w = ¢;; clearly,
| # k. From our calculation it follows that

(= 1)V(@, g(5o)s - GG, s 9(50) = (= DV (@, Glto), -ves GEs - G(0,).
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Hence, substituting’ a = f(s;) we get
(= DV(f(s)), glso)s - 905, --» 9(5)
= (=D V(S(5), 9to), -0 (8, - 9(2,))-
But s5;=1t;,, and we have
(— D V(f(s), glso)s ---» G5, -, g(s,) |
+H=DV(S), 9(to), .., 48, --.. 9(t,) = O.

Thus, for every i there exists a k such that the expression above vanishes.
The correspondence between i and k is involutary by (5). So, the summands on
the right-hand side of (7) cancel.

We can obtain g from f by successive substituting the values of g at
elements of W for the values of f at these elements. At each step the change
concerns only one value and each two of functions modified in such a way are
compatible, as f and g are. Thus, the special case can be successively applied,
and the lemma follows in full generality. '

3. Assign to every element of W the vertex ¢(w)=p; of p such that
(8) j=min{i: we{p,, ..., p}-

Clearly, ¢(p) = p;.
If we<lpy, ..., p;, then in formula (8) for ¢(w) the vertices p;, j > i, are

inessential. Thus, if we{p,, ..., p;), then

(P(W)G{po, ey pl}

Moreover, the function ¢ restricted to Wn {p,, ..., p;> is equal to the function
defined by (8) for the simplex {p,, ..., p;> equipped with the simplicial
subdivision induced from that of {p,, ..., p,).

LEMMA 2. There exists exactly one n-dimensional simplex s of T such that

@ assumes at the vertices of s all the values p,, ..., p,. In addition,
V(sgy---» 8,) >0

assuming @(s;) = p;. .

Proof. We proceed by induction on n. The case n = 0 is obvious. Assume
n > 0 and consider the simplex {p,, ..., p,> and its face {p,, ..., p,—1). The
function ¢ restricted to Wn {p,, ..., p.-1) is, according to the comment made
before the proof, the same as the function defined by (8) for the simplex
{Po» ---» Pa—1y €quipped with the simplicial subdivision induced from that of
{Pgs ---» Ppy)- Thus, by the induction hypothesis, there exists a uniquely
determined (n — 1)-dimensional simplex ¢t of Tlying on {p,, ..., p.—1 ) such that
¢ assumes on the set of vertices all the values p,, ..., p,-;.

The simplex ¢, lying on the boundary of p, is by (5).a face of exactly one
n-dimensional simplex of T; call that simplex s. The function ¢ assumes the
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value p, at the vertex of s not belonging to ¢, as that vertex does not belong to
the face {py, ..., Pn—1)- Thus ¢ assumes all the values p,, ..., p, on the set of
vertices of s.

It remains to prove that such a simplex is unique. Let v be an n-dimensional
simplex of Tsuch that ¢ assumes all the values p,, ..., p, on the set of vertices
of v. The (n— 1)-dimensional face of v of whose set of vertices the function
¢ assumes all the values p,, ..., p,—; lies on {p,, ..., pn—1). By uniqueness,
implied by the induction hypothesis, this face coincides with ¢. But the simplex
s is the only n-dimensional simplex of T having ¢ as a face. Thus v ==s.

To prove the second part of the conclusion, assume ¢(s;) = p;.

We have s;e{p,, ..., p;» and s;¢{py, ..., Pi-1y. Thus, for barycentric
coordinates B, ..., Bin Of s; with respect to p,, ..., p, we have

Biot+ ... +Bn=1, PBu=0,
Pu=0 for k>i and B; >0 for all i.

Taking into account that

S; = Z Ba'p, and 1= Z Bix  for each i,
k=0 k=0 .

we get
1 1 Boo - Bno 1 1
Po1 Pn1 — | So1 Sn1
DPon Pnn B On ﬁ nn Son Snn

The determinant of the second matrix on the left-hand side equals
Boo:---*Bam since that matrix is triangular (f; =0 for k > i). Since the
determinant of the product of matrices is equal to the product of their
determinants, we get

V(sgs ---5 8)) = V(Dos ---5 Pn) Boo"---* Bun-

The last expression is positive as f; > 0, and V(p,, ..., p,) > 0 by assumption.
Note that

LEMMA 3. @(w) # p; whenever we{pg, ..., Dis ---s Ppy-

Proof. In fact, ¢(w) = p, would imply we (p,, ..., p;). Thus we would
have we{py, ..., pi—1), contrary to @(w) = p,.

Satisfying Lemma 3, the function ¢ is a Sperner function, and Lemma 2 can
be considered as a special case of Sperner’s lemma.

THEOREM. Let f: W— E" be a map taking vertices of a given (n— 1)-dimen-
sional face into the (n— 1)-dimensional hyperplane generated by this face. Then

V(f) = V(f(Po)’ sf(pn))
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Proof. Under the assumption on f we made, the functions f and fop are
compatible. In fact, by Lemma 3, if s is an (n— 1)-dimensional simplex lying on
{Po> ---» D ---» Pyy» then the vertices s, ..., s,—; of s are mapped by ¢ into
{Po» ---» Dis - - - » Po}- But fmaps all the vertices lying on <p,, ..., p;, .., p,» into
an (n—1)-dimensional hyperplane, and this means that f and fo¢ are
compatible. ‘

We have

©) V(foo) = ZT V(f(@G0)s --- f(9(s,)))-

By Lemma 2, there exists exactly one n-dimensional simplex s of T such that
¢ admits all the values p,, ..., p, on its vertices. Thus the summands
corresponding to the other simplices vanish. We can assume that ¢(s;) = p;.
Thus, by Lemma 2, formula (9) can be rewritten in the form

V(fo) = V(f(0(s0)): ---» f(@(s.) = V(f(Po)s -, £(p),
which completes the proof, as V(fog) = V(f) by Lemma 1, f and fo¢ being
compatible.

COROLLARY (Sperner’s lemma ('); oriented version). Let T be a simplicial
subdivision of p = <{py, ..., P,y and let W be the set of vertices of T. Let

f: W {po, ..., P}
be a map such that

fw)e{po, -.-s Dis ---» P,y  whenever we Py, ..., Pis --.» Dp-

Then the difference between the numbers of positively and negatively oriented
n-dimensional simplices {f(s,), -..,f(s,)) is equal to 1.
Proof. We have f(p,) = p; by assumption. Hence
V(poa vy p,,) = V(f(po)’ .. ’f(pn)) = V(f) = Z V(f(so)a .. -,f(S,,)).

seT

The non-vanishing volumes in the last sum differ only in sign, as the absolute
values of these volumes are the same and are equal to V(p,, ..., p,). Thus we
obtain 1 as the sum of

z Sgl'l V(f'(so)a et f (Sn))a

seT

i.., the required conclusion.

(") E. Sperner, Neuer Beweis fiir die Invarianz der Dimensionszahl und des Gebietes, Abh.
Math. Sem. Univ. Hamburg 6 (1928), pp. 265-272.
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Taking f to be the identity, we get from the Theorem the following
COROLLARY. V(py, ..., p,) =3, V(sg, ---» 5,)-

seT

This means the additivity of volume mentioned in the introductory part of
the paper.
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