ON THE JOIN OF EQUATIONAL CLASSES OF IDEMPOTENT ALGEBRAS AND ALGEBRAS WITH CONSTANTS

BY

J. PŁONKA (WROCŁAW)

We will consider algebras of a given type $\tau = (n_1, n_2, ...)$ with corresponding fundamental polynomials $f_1(x_1, ..., x_{n_1}), f_2(x_1, ..., x_{n_2}), ...,$ where $n_k > 0$ for k = 1, 2, 3, ...

We say that an algebra $\mathfrak A$ is idempotent if $f_k(x,...,x)=x$ for k=1,2,3,...

Let \mathcal{K}_1 be an equational class of idempotent algebras and \mathcal{K}_2 be an equational class of algebras in which any polynomial f_k is a constant, i.e. $f_k(x_1, \ldots, x_{n_k}) = f_k(y_1, \ldots, y_{n_k})$. Let $\mathcal{K}_1 \vee \mathcal{K}_2$ be the join of \mathcal{K}_1 and \mathcal{K}_2 , i.e. the smallest equational class containing \mathcal{K}_1 and \mathcal{K}_2 . In this paper we describe algebras from $\mathcal{K}_1 \vee \mathcal{K}_2$ by means of algebras from \mathcal{K}_1 and \mathcal{K}_2 .

First we define a construction of algebras.

Let $\mathfrak{A}_0 = \langle I; f_1, f_2, \ldots \rangle$ be an idempotent algebra and let $\{\mathfrak{A}_i | \mathfrak{A}_i = \langle X_i; f_1, f_2, \ldots \rangle, i \in I\}$ be a family of algebras in which all f_k are constants. Let us denote the constant operation $f_k(x_1, \ldots, x_{n_k})$ in an algebra \mathfrak{A}_i by k(i).

Now we define a new algebra of the same type τ , namely S_{i_0} \mathfrak{A}_i , as

$$\int_{\mathfrak{A}_0} \mathfrak{A}_i = \langle \bigcup_{i \in I} X_i; f_1, f_2, \ldots \rangle,$$

where $\bigcup_{i \in I} X_i$ is the disjoint union of the sets X_i , and if $a_1 \in X_{i_1}$, $a_2 \in X_{i_2}$, $a_3 \in X_{i_3}, \ldots, a_{n_k} \in X_{i_{n_k}}$, then $f_k(a_1, \ldots, a_{n_k}) = k(f_k(i_1, i_2, \ldots, i_{n_k}))$, where $f_k(i_1, \ldots, i_{n_k})$ is taken in the algebra \mathfrak{A}_0 .

THEOREM 1. Let $\mathfrak{A} = \langle X; f_1, f_2, ... \rangle$ be an algebra of type τ . Then the following three conditions are equivalent:

(C1) $\mathfrak{A} \in \mathcal{K}_1 \vee \mathcal{K}_2$, where \mathcal{K}_1 is an equational class of idempotent algebras, and \mathcal{K}_2 is an equational class of algebras in which any polynomial f_k is a constant.

(C2) A satisfies all identities of the form

$$(1) f_k(x_1, \ldots, x_{n_k}) = f_k(f_k(x_1, \ldots, x_{n_k}), \ldots, f_k(x_1, \ldots, x_{n_k}))$$

$$= f_k(f_l(x_1, \ldots, x_1), f_l(x_2, \ldots, x_2), \ldots, f_l(x_{n_k}, \ldots, x_{n_k})).$$

(C3) $\mathfrak{A} = \sum_{\mathfrak{A}_0} \mathfrak{A}_i$, where \mathfrak{A}_0 is an idempotent algebra and in any algebra \mathfrak{A}_i any polynomial f_k is a constant.

Proof. The implication (C1) \Rightarrow (C2) follows from the fact that (1) is satisfied in \mathcal{K}_1 because of idempotency, and also in \mathcal{K}_2 because in algebras from \mathcal{K}_2 any f_k is a constant. Thus (1) is satisfied in $\mathcal{K}_1 \vee \mathcal{K}_2$.

 $(C2) \Rightarrow (C3)$. Let us define a relation R in X by putting $aRb \Leftrightarrow f_1(a, ..., a) = f_1(b, ..., b)$. The relation R is obviously an equivalence. We shall show that it is a congruence in \mathfrak{A} . Let a_jRb_j , $j = 1, 2, ..., n_k$. Thus, by (1),

$$\begin{split} f_1 \big(f_k(a_1, \, \dots, \, a_{n_k}), f_k(a_1, \, \dots, \, a_{n_k}), \, \dots, f_k(a_1, \, \dots, \, a_{n_k}) \big) \\ &= f_1 \Big(f_k \big(f_1(a_1, \, \dots, \, a_1), f_1(a_2, \, \dots, \, a_2), \, \dots, f_1(a_{n_k}, \, \dots, \, a_{n_k}) \big), \, \dots, \\ & f_k \big(f_1(a_1, \, \dots, \, a_1), f_1(a_2, \, \dots, \, a_2), \, \dots, f_1(a_{n_k}, \, \dots, \, a_{n_k}) \big) \Big) \\ &= f_1 \Big(f_k \big(f_1(b_1, \, \dots, \, b_1), f_1(b_2, \, \dots, \, b_2), \, \dots, f_1(b_{n_k}, \, \dots, \, b_{n_k}) \big), \, \dots, \\ & f_k \big(f_1(b_1, \, \dots, \, b_1), f_1(b_2, \, \dots, \, b_2), \, \dots, f_1(b_{n_k}, \, \dots, \, b_{n_k}) \big) \Big) \\ &= f_1 \big(f_k(b_1, \, \dots, \, b_{n_k}), f_k(b_1, \, \dots, \, b_{n_k}), \, \dots, f_k(b_1, \, \dots, \, b_{n_k}) \big). \end{split}$$

Thus R is a congruence. By (1) we have

$$f_1(x, ..., x) = f_1(f_k(x, ..., x), ..., f_k(x, ..., x)),$$

whence $xRf_k(x, ..., x)$, what means that \mathfrak{A}/R is an idempotent algebra. Write $\mathfrak{A}/R = \mathfrak{A}_0 = \langle I; f_1, f_2, ... \rangle$, where I is the set of indices of congruence classes of the relation R. We shall show that any congruence class X_i is a subalgebra of \mathfrak{A} , and any function f_k is a constant in \mathfrak{A}_i . Let $a_1, a_2, ..., a_{n_k}, b \in X_i$. Then, by (1), we have

$$\begin{split} &f_1\big(f_k(a_1,\,\ldots,\,a_{n_k}),\,\ldots,f_k(a_1,\,\ldots,\,a_{n_k})\big)\\ &=f_1\big(f_k\big(f_1(a_1,\,\ldots,\,a_1),\,f_1(a_2,\,\ldots,\,a_2),\,\ldots,f_1(a_{n_k},\,\ldots,\,a_{n_k})\big),\,\ldots,\\ &f_k\big(f_1(a_1,\,\ldots,\,a_1),\,f_1(a_2,\,\ldots,\,a_2),\,\ldots,f_1(a_{n_k},\,\ldots,\,a_{n_k})\big)\big)\\ &=f_1\big(f_k\big(f_1(b,\,\ldots,\,b),\,\ldots,f_1(b,\,\ldots,\,b)\big),\,\ldots,f_k\big(f_1(b,\,\ldots,\,b),\,\ldots,f_1(b,\,\ldots,\,b)\big)\big)\\ &=f_1\big(f_k(b,\,\ldots,\,b),\,\ldots,f_k(b,\,\ldots,\,b)\big)=f_1(b,\,\ldots,\,b)\,.\\ &\text{Thus }f_k(a_1,\,\ldots,\,a_{n_k})\,Rb \text{ and }X_i \text{ is a subalgebra.} \end{split}$$

Further,

$$f_k(a_1, \ldots, a_{n_k}) = f_k(f_1(a_1, \ldots, a_1), f_1(a_2, \ldots, a_2), \ldots, f_1(a_{n_k}, \ldots, a_{n_k}))$$

$$= f_k(f_1(b, \ldots, b), \ldots, f_1(b, \ldots, b)) = f_k(b, \ldots, b),$$

and so f_k is a constant in X_i . Denote this constant by k(i).

Let $a_1 \in X_{i_1}$, $a_2 \in X_{i_2}$, ..., $a_{n_k} \in X_{i_{n_k}}$. Since R is a congruence relation, we have $f_k(a_1, \ldots, a_{n_k}) \in X_{f_k(i_1, \ldots, i_{n_k})}$, but

$$f_k(a_1, \ldots, a_{n_k}) = f_k(f_k(a_1, \ldots, a_{n_k}), \ldots, f_k(a_1, \ldots, a_{n_k})) = k(f_k(i_1, \ldots, i_{n_k})).$$

 $(C3)\Rightarrow(C1)$. Let \mathscr{K}_1 be the equational class generated by \mathfrak{A}_0 , and \mathscr{K}_2 — the equational class generated by all algebras \mathfrak{A}_i . Let $\varphi=\psi$ be an identity in $\mathscr{K}_1\vee\mathscr{K}_2$. Then it follows from the definition of $\mathfrak{S}_i\mathfrak{A}_i$ that $\mathfrak{S}_i\mathfrak{A}_i\in\mathscr{K}_1\vee\mathscr{K}_2$.

In fact, if we substitute arguments in the identity $\varphi = \psi$, then the value of φ and ψ must be in the same X_i , and then $\varphi = \psi$ for an arbitrary choice of arguments if and only if the most external polynomials in φ and ψ are equal in \mathcal{X}_2 .

Reçu par la Rédaction le 14.1. 1972