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There are numerous examples in the literature of continuous functions
on the real line R which have a derivative at no point of R. Filipczak [4]
constructed one of the more interesting such functions in that her function f

has a symmetric derivative nowhere; i.e., at each point x, im D!f(x, h) fails

. h—o*
to exist, where

D'f(x, h) = [f(x+h)—f(x—h)]/2h.

In [2] it was further shown that Filipczak’s construction leads to a function
which has an approximate symmetric derivative nowhere; i.e,
lim apD! f(x, h) fails to exist at each xeR.

h-‘0+ . o . .
An alternate, or complementary, symmetry criterion is obtained by

considering the divided difference

D* f(x, h) = [f (x+h)+ f (x—h)—2f (x)]/2h.
A function is said to be smooth (approximately smooth) at x if
lim D*f(x,h) =0 (lim apD?f(x, h) =0).

h—0+ h—ot
For properties of smooth and approximately smooth functions, the interested
reader is referred to [9], [5]}-[7], [3]. Clearly, a function which is (approxi-
mately) differentiable at x is both (approximately) symmetrically differentiable
and (approximately) smooth at x. Conversely, if f is both (approximately)
symmetrically differentiable and (approximately) smooth at x, then f is
(approximately) differentiable at x.

The purpose of the present paper is to show that a continuous function
can fail to behave in either of these symmetric senses at each point in R. We
shall construct a continuous function f having the property that at each
xeR,

limsupapD® f(x, h) = + 00, liminfapD® f(x, h) = — o0,

k-0t h-ot
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and
limsupap|D%f(x, h)| = + .
h—-0™t
Indeed, if C denotes the metric space of all continuous real-valued functions
on [0, 1] with the L_-metric,

e(f, g) = max {|f (x)—g(x): xe[0, 11},

then the collection of functions having the property described above will be
shown to be residual in C.

Definitions of terms used in this paper are as found in [8]. The notation
|G| will be used for the Lebesgue measure of a measurable set G.

We begin by letting « and B be any two positive numbers and defining
the basic function f,, on [0. 72] by

[ Bx/a for xe[0, a],
f (20— x)/a for xe[a, 2],
fup(X) =1 2Qe—x)/a  for xe[2a, 3a],
| 2B(x—4a)/a for xe[3a, 4a],
L 0 for xe[4a, 7a].

We then extend f,5 to R by f,z(x+7na) = f, g(x), yielding a function of
period 7a.

LemMA. The function f,, defined on R as above satisfies the following
conditions:

(1)  fap is continuous and periodic of period Ta.

(2 |fapX) < 2B for all x.

() ap ()= fap (x2)l < B/ xy x5 for all x, x,.

(4) For each x there exists a closed interval J(x) such that
4a) J(x) =[9a,4d.1a];

@4b) |J(x) = .1a;

(4c)  if teJ(x), then |D2f, 4(x, t)| = B/25a.

Proof. Conditions (1), (2), and (3) are clearly satisfied. To verify (4) we
shall consider separately the three cases:

xe[0, 2.1a], xe[2.la,39a], and xe[3.9a, 7a].

Then the periodicity of f, 5 will yield (4) for any other x. (Before turning to
consideration of these cases, let us denote f, ; by f for simplicity of notation
in the remainder of this proof.)
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First, suppose xe[0. 2.12]. If we let
J(x)=[3x—x, 3.1a—x],

then (4a) and (4b) are obvious. Let teJ(x). Then x+te[3a, 3.1a], implying
that
S(x+1) <f(3.1a) = —1.88.

Consequently,
5 D (x, 0 < TLHHE=0-2/ )
< —188+8—-2f(2.10) _ —2B < —ﬂ.
6.2x 3la 25«

Next, if xe[2.1a, 3.9a], we set
J(x) = [6a—x, 6.1a — x],
yielding (4a) and (4b). Let teJ(x). Then x+te[6a, 6.1a], implying f(x+1)
=0; x—te[—19a, 1.8a], implying f(x—1t) > 0; and
f(x¥) < f(21la) = f(392) = —.28.
Hence

0+0-2(-28) B _ B

2 > — .
©) D’jx. 9= 8a 200~ 25a

Finally, if xe[3.9a, 7a], we set
J(x) = [x—3a, x—2.9a],

again giving (4a) and (4b) immediately. If teJ(x), then x—te[2.9a, 3a],
implying that f(x—t) < —1.88. Furthermore,

0>1(x) > f(39) = —.28.
Consequently,

B+(—18f)—2(—-28) -28 -—P
@ D*f(x, < 8.2 = a2 250

From (5)(7) we see that (4c) is satisfied and the proof is complete.

Remark. The function f, ; defined here satisfies the properties listed in
the lemma in [2] with the exceptions that properties (2) and (3) of that paper
are now replaced by properties (2) and (3) of this present work. In fact, the
proof given in that paper applied to the present f, ; need not be altered at all
to prove that the stated properties hold.

THEOREM 1. There is a continuous function f defined on R which fails to
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be approximately smooth and fails to have an approximate symmetric derivative
(finite or infinite) at each and every point in R. More precisely, at each xe R

(1) limsupapD'f(x, y) =
h—0*

(i1) liminfapD!f(x, h) = — o0,
h—ot

(iii) limsupap|D?f (x, h)| = + o0
h-ot

Proof. As in [2] and [4] we let 0 <a <b < 1, where the actual values
of a and b will be fixed later, and set

Jo(X) = fonpn(x)

for each natural number n, where f»,» is the function from the lemma with
@ =a" and B =b" Then the desired continuous function f is given by

ICEP W)

We shall verify that (iii) holds. Let xe R and let n be a natural number.
From the lemma we know there is an interval
Ju(x) =[9a", 4.1a"]
of length 14" such that
ID?f,(x, t)l = b"/25a" for teJ,(x).
So, if teJ,(x), then

ID*f(x, ) =| Y D*fml(x, 1)
m=1

n—1 ®

2D folx, = Y ID*fu(x, )l = Y ID*fu(x, 1)
m=1 m=n+1
LY S U mG+)=fuX)] | [ fu(x=0)— fn()
> 2_5( ) —,,,Zl[ 2t + 2t ]

—5 Z [fm e+ 01+ fo (x =) + 2| fm (%)]]

m n+1

522 O - 5

b
a
_ 1\ (b/a)" bla 40 p*?
~25\a bla—1  9a"1-b

S (°Y(L_2a 40 b
“\a/ \25 b—a 91-b/

W
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If we now set a = 107 ¢ and b = 1073, then this last expression is clearly
greater than 10". If p is any positive number, let N be a natural number
greater than the logarithm base 10 of p. Then, for any n > N and teJ,(x),
we have

ID2f(x,t)) >p and |J,(x)N[O0, 4.1¢]| = .1a,

and hence the set {t: |D?f(x, t)] > p} has upper right density at least 1/41 at
zero, implying (iii).

In light of the remark preceding this theorem, (i) and (ii) are verified
precisely as in the proof of Theorem 1 in [2], using, of course, the now fixed
values of a=10"° and b =10"3.

THEOREM 2. Let P be the collection of all functions f in C having the
following three properties at each point x in (0, 1):

(i) limsupapD'f(x, h) = + 0,
h—-ot

(ii) liminfapD'f (x, h) = — o0,
h—-o%t

(i) limsupap |D*f (x, b)| = + 0.
h—0t

Then P is residual in C.
Proof. Let N=C\P and set

N, = {feC: 3xe(0, 1) such that limsupapD' f(x, h) < + 0},

h—oo".'

N, ={feC: 3xe(0, 1) such that liminfapD'f(x, h) > — o0},
h-0*t

N; ={feC: 3xe(0, 1) such that limsupap|D*f(x, h)| < +0}.
h—o*

Then N = N, UN, U N;. Both N, and N, were shown to be of the first
category in the proof of Theorem 2 in [2]. It remains to show the same for
N;.

For each feC, xe(0, 1), and d > 0, let

E(f,x,d)={h>0: D2 f(x, b <d};

and for each n=2, 3, ..., set

S, ={feC: Ixe[1/n, 1 —1/n] such that
|E(f, x, n) 0[O, t]| > 41¢/42 whenever t < 1/n},

Then N; = J S,. We shall show that each S, is closed and nowhere
n=2

dense in C.
Fix an n and let f be a limit point of S,. Let {f;} be a sequence of
functions in S, such that o(f;,f)— 0. For each k=1, 2, ..., there is an

10 — Colloquium Mathematicum t. 54, z. 2
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x €[1/n, 1 —1/n] such that
|E(fi» Xk, 1) N[0, t]| = 42t/42 whenever t < 1/n,

and we may assume that |x,] converges to some point xoe[1/n, 1—1/n].
Let

EO = Ol ky E(.fka Xk s n)'
Then, for 0 <t < 1/n,
® |Eo [0, ]l = lim | U E(fk %, n) " [0, ]|

m—-wo k=m

> Giminf|E (f,, Xn, 1) A [0, £]] = 41t/42.

m—x

Next we show that E, = E(f, xo, n). Let he E, and suppose ¢ > 0. By
the Arzela—Ascoli Theorem (see, e.g., [1], p. 191) there is a 6 > 0 such that
|x—x'| <6 implies

1 (¥)—fi(xX) <eh/2  for all k=1, 2, ...
Clearly,
lim D?f;(xo, h) = D*f (xo, h),

k — o

and, consequently, there is a natural number m > 1 for which k > m implies
both

ID?f,(xo, )—D?f (x0, W] <&/2 and |x,—xo| <9.

Since he E,, there is a k > m for which he E(f, x, n). For this k it
follows that |D2f,(x,, h)) <n and

ID*f (x0, h)— D fi (xy, h)

< |D?f (xo, B)— D fi (%0, W) +ID?fi(x0, h)—D*fi (%, h)|
<egf2+¢/2 =e.

So |D*f (xo, h)| < n+e, ‘and since this holds for each & > 0, it follows that
he E(f, xo, n). Hence E, < E(f, xo, n) and from (8) we infer that S, is closed.
Next we show that S, is nowhere dense in C. To this end, let p be a
polynomial, ¢ > 0, and
B(p, &) = {geC: e(g, p) <¢&}.
We shall show that B(p, &) n(C\S,) # Q. Let

L = max {|p’(x)|: xe[0, 1]}
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and let f be the function constructed in Theorem 1. Further let

{=¢2|Ifl, where ||f]l = max{|f(x)|: xe[0, 1]}.

As shown in the proof of Theorem 1, for each xe(0, 1), there is a positive
number t (which depends on x) such that

|E(f, x, (L+n)/l) [0, t]] < (1-1/41)t < 41t/42.
Now, p+{feB(p, ¢) and for each heE(p+{f, x, n) [0, t] we have
n 2 |D*(p+{f)(x, | = |D*p(x, H+{D*f (x, h)| > |(D>f (x, h)|—|D? p(x, h)|
= (|D*f(x, W - L;

ie, |D*f(x, h)| <(L+n)/, implying heE(f, x, (L+n)/{)n[0,t]. Conse-
quently,

E(p+{f, x, [0, t] < E(f, x, (L+n)/t) N[O, 1],
and so

|E(p+{f, x, )" [0, t]| <41t/42.

Consequently, p+{fe(C\S,) " B(p, ¢) and S, is nowhere dense, completing
the proof that N, is of the first category.
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