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Remark on hyperbolic embeddability of relatively
compact subspaces of complex spaces

by Do Duc THal (Hanoi)

Abstract. The characterization of hyperbolic embeddability of relatively compact subspaces
of a complex space in terms of extension of holomorphic maps from the punctured disc and of limit
complex lines is given.

We assume that complex spaces are connected and have a countable
topology. Put D = {zeC: |z| < 1} and D* = D\{0}.

Let M be a subspace of a complex space X. We say that M has the
D*-extension property for X if every holomorphic map of D* into M can be
extended to a holomorphic map of D into X.

Recall that M is hyperbolically embedded in X if for x, ye M, x # y, there
exist open neighbourhoods U of x and Vof y such that d,,(UnM, VnM) >0,
where for each complex space Z we denote by d, the Kobayashi semidistance
on Z. It is known [2] that if M is hyperbolically embedded in X then M has the
D*-extension property for X. Some criterions for hyperbolic embedding can be
found in [3]. In a particular case when M and X are complex manifolds, M is
locally complete hyperbolic and relatively compact Zaidenberg has proved [4]
that M is hyperbolically embedded in X if M contains no complex lines and
OM contains no limit complex lines, Here by a limit complex line ‘of dM we
mean a non-constant holomorphic map of C into X which can be ap-
proximated on each D, = rD by holomorphic maps of D, into M. In case where
X is a complex space and M is a complement of a hypersurface the result has
been established in [3].

The aim of this note is to prove the following

THEOREM. Let M be a locally complete hyperbolic and relatively compact
subspace of a complex space X. Then the following are equivalent:

(i) M is hyperbolically embedded in X.

() M has the D*-extension property for X and M contains no limit
complex lines.

(i) M contains no complex lines and OM contains no limit complex lines.

Moreover, if one of the above conditions holds, then M is complete hyperbolic.
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Proof. It is known [3] that M is hyperbolically embedded in X if and
only if

c(M): = sup{lldf O)l|: feH(D, M)} <

where H(D, M) denotes the space of holomorphic maps from D into M equip-
ped with the compact-open topology.

(i)=>(ii). By [2], M has the D*-extension property for X. Thus it remains Lo
show that dM contains no limit complex lines. This is an immediate
consequence of the inequality ¢(M) < 0.

(ii) = (iii). It suffices to prove that M contains no complex lines. Assume
that there exists a non-constant holomorphic map f: C — M. Observe that the
map

1/z for ze C\{0},

g: (C\{0})u {0} = CP‘azl——r{O for z = o0,

is holomorphic.

By (ii), the map (fog)|D* can be extended to a holomorphic map on D.
Hence fog can be extended to a holomorphic map 0: CP' - X. Since
fog # const, it follows that 0 is finite. Take a holomorphic map
¢: D* - C < CP! which cannot be extended to a holomorphic map of D into
CP". By hypothesis # = 0o can be extended to a holomorphic map f: D - X.
Since 0 is finite, there exists a neighbourhood U of f(0) such that 0~ *(U) is
isomorphic to a bounded domain in C. Thus for sufficiently small ¢ > 0, o|D}
can be extended to a holomorphic map of D, into 0~ *(U). This is impossible.

(ii))=>(1). It suffices to show that ¢(M) < ov. Assume that ¢(M) = co. Then
there exists a sequence {f,} = H(D, M) such that ||df,(0)|| = r,— co. For each
n > 1 consider the map g,: D, - M, z— f (z/r,). Then ||dg,(0)]] = 1. As in [3]
there exists a sequence of holomorphic maps ¢,: D, — M which is uniformly
convergent on every compact subset of every fixed disc in C to a holomorphic
map ¢: C— X and ||dg,(0)|| =1 for every n 2 1. Clearly ¢ is not constant
since ||dp(0)|| = lim||de,(0)|| = |. Since OM contains no limit complex lines,
o(CO)NnM #J. Put

Z = {zeC: there exists an open neighbourhood U
of z such that @(U) < IM}.

Assume that Z # . Let z,€ 0Z. Take an open neighbourhood U of ¢(z,) such
that UnM is complete hyperbolic. Since {¢,} uniformly converges to ¢ on
every compact set in C, there exists an open neighbourhood W of z,, such thal
@, (W)cUnM for n>1! and ¢(W)< UnM. From the complete hyper-
bolicity of UnM, it follows that H(W, U M) is normal [3].

Assume that the sequence {¢,|W} contains a subsequence which is
compactly divergent. Without loss of generality we may assume (hat the
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sequence {¢,|W} is compactly divergent. Choose z, e W such that ¢(z,)
€ Un M. Then for every compact neighbourhood K’ of ¢(z,) in UM, there
exists j such that ¢,(z,)¢ K’ Vn > j. Hence ¢,(z,)+ @(z,). This is a contradic-
tion.

Thus we may assume that {¢,|W} converges to a holomorphic map in
H(W, UnM). Hence lim ¢,(z,))e UnM. Thus ¢(z,)e UnM, ie. ¢(z,)¢0M.
This is a contradiction. Therefore Z = @.

Since M contains no complex lines, ¢(C)ndM # 3. Let z,€ C such that
¢(z,)€ OM. Reasoning as above, there exists an open neighbourhood U of
®(z,) such that Un M is complete hyperbolic and an open neighbourhood Wof
zy such that ¢,(W)c UnM Vn2! and ¢(W)c UnM. By Z = there
exists z, € W such that ¢(z,)e Un M. Reasoning as above, we may assume that
the sequence {@,|W} is convergent in H(W, U M). This, as above, leads to
a contradiction. Hence c(M) is finite and the implication (iii)) = (i) is proved.

Finally, by [3] if M is as in the theorem and M is hyperbolically embedded
in X, then M is complete hyperbolic.

The following is an immediate consequence of the above theorem.

COROLLARY. Let M be a compact complex space. Then the following are
equivalent:

(i) M is hyperbolic.
() M has the D*-extension property for M.
(ili) M contains no complex lines.
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