Remark on hyperbolic embeddability of relatively compact subspaces of complex spaces

by Do Duc Thai (Hanoi)

Abstract. The characterization of hyperbolic embeddability of relatively compact subspaces of a complex space in terms of extension of holomorphic maps from the punctured disc and of limit complex lines is given.

We assume that complex spaces are connected and have a countable topology. Put $D = \{z \in \mathbb{C}: |z| < 1\}$ and $D^* = D \setminus \{0\}$.

Let M be a subspace of a complex space X. We say that M has the D^* -extension property for X if every holomorphic map of D^* into M can be extended to a holomorphic map of D into X.

Recall that M is hyperbolically embedded in X if for $x, y \in \overline{M}, x \neq y$, there exist open neighbourhoods U of x and V of y such that $d_M(U \cap M, V \cap M) > 0$, where for each complex space Z we denote by d_Z the Kobayashi semidistance on Z. It is known [2] that if M is hyperbolically embedded in X then M has the D^* -extension property for X. Some criterions for hyperbolic embedding can be found in [3]. In a particular case when M and X are complex manifolds, M is locally complete hyperbolic and relatively compact Zaidenberg has proved [4] that M is hyperbolically embedded in X if M contains no complex lines and ∂M contains no limit complex lines. Here by a limit complex line of ∂M we mean a non-constant holomorphic map of C into X which can be approximated on each $D_r = rD$ by holomorphic maps of D_r into M. In case where X is a complex space and M is a complement of a hypersurface the result has been established in [3].

The aim of this note is to prove the following

THEOREM. Let M be a locally complete hyperbolic and relatively compact subspace of a complex space X. Then the following are equivalent:

- (i) M is hyperbolically embedded in X.
- (ii) M has the D*-extension property for X and ∂M contains no limit complex lines.
 - (iii) M contains no complex lines and ∂M contains no limit complex lines. Moreover, if one of the above conditions holds, then M is complete hyperbolic.

Proof. It is known [3] that M is hyperbolically embedded in X if and only if

$$c(M) := \sup \{ ||df(0)|| : f \in H(D, M) \} < \infty$$

where H(D, M) denotes the space of holomorphic maps from D into M equipped with the compact-open topology.

- (i) \Rightarrow (ii). By [2], M has the D^* -extension property for X. Thus it remains to show that ∂M contains no limit complex lines. This is an immediate consequence of the inequality $c(M) < \infty$.
- (ii) \Rightarrow (iii). It suffices to prove that M contains no complex lines. Assume that there exists a non-constant holomorphic map $f: \mathbb{C} \to M$. Observe that the map

$$g: (\mathbb{C}\setminus\{0\})\cup\{\infty\} = \mathbb{C}P^1\ni z\mapsto\begin{cases} 1/z & \text{for } z\in\mathbb{C}\setminus\{0\},\\ 0 & \text{for } z=\infty, \end{cases}$$

is holomorphic.

- By (ii), the map $(f \circ g)|D^*$ can be extended to a holomorphic map on D. Hence $f \circ g$ can be extended to a holomorphic map $\theta \colon CP^1 \to X$. Since $f \circ g \neq \text{const}$, it follows that θ is finite. Take a holomorphic map $\sigma \colon D^* \to C \subset \mathbb{C}P^1$ which cannot be extended to a holomorphic map of D into $\mathbb{C}P^1$. By hypothesis $\beta = \theta \sigma$ can be extended to a holomorphic map $\beta \colon D \to X$. Since θ is finite, there exists a neighbourhood U of $\beta(0)$ such that $\theta^{-1}(U)$ is isomorphic to a bounded domain in C. Thus for sufficiently small $\varepsilon > 0$, $\sigma|D^*_{\varepsilon}$ can be extended to a holomorphic map of D_{ε} into $\theta^{-1}(U)$. This is impossible.
- (iii) \Rightarrow (i). It suffices to show that $c(M) < \infty$. Assume that $c(M) = \infty$. Then there exists a sequence $\{f_n\} \subset H(D, M)$ such that $||df_n(0)|| = r_n \to \infty$. For each $n \ge 1$ consider the map $g_n \colon D_{r_n} \to M$, $z \mapsto f_n(z/r_n)$. Then $||dg_n(0)|| = 1$. As in [3] there exists a sequence of holomorphic maps $\varphi_n \colon D_{r_n} \to M$ which is uniformly convergent on every compact subset of every fixed disc in $\mathbb C$ to a holomorphic map $\varphi \colon \mathbb C \to X$ and $||d\varphi_n(0)|| = 1$ for every $n \ge 1$. Clearly φ is not constant since $||d\varphi(0)|| = \lim ||d\varphi_n(0)|| = 1$. Since ∂M contains no limit complex lines, $\varphi(\mathbb C) \cap M \ne \emptyset$. Put

$$Z = \{z \in \mathbb{C}: \text{ there exists an open neighbourhood } U$$
 of z such that $\varphi(U) \subset \partial M\}$.

Assume that $Z \neq \emptyset$. Let $z_0 \in \partial Z$. Take an open neighbourhood U of $\varphi(z_0)$ such that $U \cap M$ is complete hyperbolic. Since $\{\varphi_n\}$ uniformly converges to φ on every compact set in C, there exists an open neighbourhood W of z_0 such that $\varphi_n(W) \subset U \cap M$ for $n \geq l$ and $\varphi(W) \subset U \cap \overline{M}$. From the complete hyperbolicity of $U \cap M$, it follows that $H(W, U \cap M)$ is normal [3].

Assume that the sequence $\{\varphi_n|W\}$ contains a subsequence which is compactly divergent. Without loss of generality we may assume that the

sequence $\{\varphi_n|W\}$ is compactly divergent. Choose $z_1 \in W$ such that $\varphi(z_1) \in U \cap M$. Then for every compact neighbourhood K' of $\varphi(z_1)$ in $U \cap M$, there exists j such that $\varphi_n(z_1) \notin K' \ \forall n \geqslant j$. Hence $\varphi_n(z_1) \leftrightarrow \varphi(z_1)$. This is a contradiction.

Thus we may assume that $\{\varphi_n|W\}$ converges to a holomorphic map in $H(W, U \cap M)$. Hence $\lim \varphi_n(z_0) \in U \cap M$. Thus $\varphi(z_0) \in U \cap M$, i.e. $\varphi(z_0) \notin \partial M$. This is a contradiction. Therefore $Z = \emptyset$.

Since M contains no complex lines, $\varphi(C) \cap \partial M \neq \emptyset$. Let $z_0 \in C$ such that $\varphi(z_0) \in \partial M$. Reasoning as above, there exists an open neighbourhood U of $\varphi(z_0)$ such that $U \cap M$ is complete hyperbolic and an open neighbourhood W of z_0 such that $\varphi_n(W) \subset U \cap M \ \forall n \ge l$ and $\varphi(W) \subset U \cap \overline{M}$. By $Z = \emptyset$ there exists $z_1 \in W$ such that $\varphi(z_1) \in U \cap M$. Reasoning as above, we may assume that the sequence $\{\varphi_n | W\}$ is convergent in $H(W, U \cap M)$. This, as above, leads to a contradiction. Hence c(M) is finite and the implication (iii) \Rightarrow (i) is proved.

Finally, by [3] if M is as in the theorem and M is hyperbolically embedded in X, then M is complete hyperbolic.

The following is an immediate consequence of the above theorem.

COROLLARY. Let M be a compact complex space. Then the following are equivalent:

- (i) M is hyperbolic.
- (ii) M has the D*-extension property for M.
- (iii) M contains no complex lines.

References

- [1] R. Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc. 235 (1978), 213-219.
- [2] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Dekker, 1970.
- [3] S. Lang, Introduction to Complex Hyperbolic Spaces, Springer-Verlag, 1987.
- [4] M. Zaidenberg, Picard theorem and hyperbolicity, Siberian Math. J. 24 (6) (1983), 44-55.

DEPARTMENT OF MATHEMATICS, PEDAGOGICAL INSTITUTE 1 OF HANOL Hanol, Violnam

Reçu par la Rédaction le 05.11.1988 Révisé le 03.08.1989