Some structures on an \(f \)-structure manifold

by U. C. Vohra and K. D. Singh (Lucknow, India)

The idea of \(f \)-structure on a differentiable manifold was initiated and developed by Yano [3, 5]. Koto [4] defined and studied certain structures on almost Hermitian manifold, some of which were reformulated by Gray [1] in terms of exterior and co-derivatives. In the present paper we define and study some structures on a differentiable manifold in terms of exterior, Lie, and co-derivatives.

Section 1 is introductory and in Section 2, we define certain structures and prove their inclusion relations, corresponding to the inclusion relations in Gray [1].

In the last section we define a conformal diffeomorphism between two differentiable manifolds and obtain some interesting results relating their structures.

1. An \(n \)-dimensional differentiable manifold \(V \) is said to possess an \(f \)-structure [5] if a non-null \((1, 1)\) tensor field \(f \) of constant rank \(r \) is defined on it which satisfies \(f^2 + f = 0 \). If the rank of \(f \) is such that \(n - r \geq 1 \), then there exist two complementary distributions \(L \) and \(M \) corresponding to the projection operators \(l \) and \(m \) respectively, defined as [5];

\[
(1.1) \quad l = -f^2 \quad \text{and} \quad m = f^2 + I,
\]

where \(I \) denotes the identity operator. These projection operators satisfy the following relations:

\[
(1.2) \quad lf = fl = f, \quad mf = fm = 0, \\
\quad f^2 l = -l \quad \text{and} \quad f^2 m = 0.
\]

The above relations show that \(f \) acts as an almost complex structure on \(L \) and as a null operator on \(M \). If the rank of \(f \) is \(r \), then the dimensions of \(L \) and \(M \) are \(r \) and \((n-r) \) respectively [5].

Let \(F(V) \) denote the ring of real-valued differentiable functions on \(V \) and \(\mathfrak{X}(V) \) the module of derivations of \(F(V) \). \(\mathfrak{X}(V) \) is then a Lie algebra
over real numbers and elements of $\mathfrak{X}(V)$ are called vector fields. The $(1, 1)$ tensor field f is then a linear map over $\mathfrak{X}(V)$;

$$f: \mathfrak{X}(V) \rightarrow \mathfrak{X}(V).$$

Yano [5] has defined a positive definite Riemannian metric $\langle \cdot, \cdot \rangle$ in V, with respect to which the distributions L and M are orthogonal. Such a Riemannian metric satisfies the following relations [5]

$$\langle X, Y \rangle = \langle fX, fY \rangle + \langle mX, Y \rangle \quad \text{for all } X, Y \in \mathfrak{X}(V).$$

Since L and M are orthogonal, (1.2) yields

$$\langle fX, Y \rangle = \langle f^2X, fY \rangle, \quad \langle X, fY \rangle = \langle fX, f^2Y \rangle.$$

A 2-form F has been defined as [5]

$$F(X, Y) = -F(Y, X) = \langle fX, Y \rangle,$$

and it is easy to verify that

$$F(mX, Y) = 0 = F(X, mY).$$

The Nijenhins tensor N of type $(1, 2)$ is defined as [4]

$$N(X, Y) = \{fX, fY\} - f\{fX, Y\} - f\{X, fY\} + f^2\{X, Y\} \quad \text{for all } X, Y \in \mathfrak{X}(V).$$

2. Using the definitions of the Riemannian connexion V_X and the Lie derivative \mathcal{L}_X, we have the following relations:

$$V_X(f)(Y) = V_X(fY) - fV_XY, \quad (\mathcal{L}_X f)Y = [X, fY] - f[X, Y].$$

In view of (1.2) and the above relations, we have

$$mV_X(f)(mY) = 0 \quad \text{and} \quad m(\mathcal{L}_X f)(mY) = 0.$$

Since f^2 is also a $(1, 1)$ tensor, we have

$$V_X(f^2)(Y) = V_X(f^2 Y) - f^2V_XY.$$

We can easily check that the covariant derivative $V_X(F)$ and the exterior derivative dF of F are given by the following:

$$V_X(F)(Y, Z) = \langle V_X(f)Y, Z \rangle$$

and

$$dF(X, Y, Z) = \sum_{x,y,z} V_X(F)(Y, Z),$$

where \sum denotes the cyclic sum over X, Y, Z.
THEOREM 2.1. By using above formulae we get the following results:

(2.5) \[N(X, Y) = V_{fX}(f) Y - V_{fY}(f) X + fV_X(f) X - fV_Y(f) Y, \]
\[= (\mathcal{L}_{fX}) Y - f(\mathcal{L}_X f) Y, \]

(2.6) \[V_{fX}(F)(fY, fZ) = dF(fX, fY, fZ) - dF(fX, f^2 Y, f^2 Z) + \langle fX, N(fY, f^2 Z) \rangle, \]

(2.7) \[2V_{fX}(F)(fY, fZ) + 2V_{f^2 X}(F)(f^2 Y, fZ) \]
\[= dF(fX, fY, fZ) - dF(fX, f^2 Y, f^2 Z) + dF(fY, f^2 Z, f^2 X), \]

(2.8) \[2V_{f^2 X}(F)(f^2 Y, fZ) - 2V_{fX}(F)(fY, fZ) \]
\[= \langle N(fX, f^2 Y), fZ \rangle - \langle N(fX, fZ), f^2 Y \rangle - \langle N(fY, fZ), fX \rangle. \]

Proof. The proof of (2.5) follows from (2.1) and
\[V_X Y - V_Y X = [X, Y], \]
while (2.6), (2.7) and (2.8) are consequences of (2.5) and the formula

(2.9) \[V_X(F)(f^2 Y, fZ) = V_X(F)(fY, f^2 Z). \]

We shall call an f-structure manifold fK-manifold iff
\[V_{fX}(f) = 0, \]
fAK-manifold iff
\[dF(fX, fY, fZ) = 0, \]
fNK-manifold iff
\[V_{fX}(fY) + V_{fY}(f) = 0, \]
fQK-manifold iff
\[V_{fX}(fY) + V_{f^2 X}(f) = 0, \]
and fH-manifold iff
\[N(fX, fY) = 0 \]
for all $X, Y, Z \in \mathfrak{X}(V)$.

As a consequence of theorem (2.1) and the definitions of fH and fQK-manifold we get the following

THEOREM 2.2. \[(\mathcal{L}_{f^2 X} f)(fY) = f(\mathcal{L}_{fX} f)(fY) \] for all $X, Y \in \mathfrak{X}(V)$ if and only if the manifold V is fH, while
\[V_{fX}(F)(fY, fZ) = -V_{f^2 X}(F)(f^2 Y, fZ) \]
for all $X, Y, Z \in \mathfrak{X}(V)$ if and only if the manifold V is fQK-manifold.

We next study the inclusion relations between the special f-structure manifolds defined above and prove
THEOREM 2.3.

\[fK \begin{cases} \equiv fAK \\ \equiv fNK \end{cases} \subseteq fQK \quad \text{and} \quad fK \subseteq fH. \]

Furthermore,

\[fK \subseteq fH \cap fQK \subseteq fAK \cap fNK. \]

Proof. That \(fK \subseteq fAK \) follows from (2.3) and (2.4); \(fAK \subseteq fQK \) follows from (2.3) and (2.7); while \(fK \subseteq fH \) follows from (2.5). It is obvious that \(fK \subseteq fNK \), while \(fNK \subseteq fQK \) is a consequence of (2.9).

Furthermore, \(fK \subseteq fH \cap fQK \) is obvious.

If the \((1,1)\) tensor field \(f \) satisfies

\[\nabla_{fx}(f)Y = f\nabla_x(f)Y, \]

then from (2.5)

\[N(X, Y) = 0, \]

and we get

THEOREM 2.4. An \(f \)-structure manifold \(V \) is \(fH \)-manifold if the \((1,1)\) tensor field \(f \) satisfies

\[\nabla_{fx}(f)Y = f\nabla_x(f)Y. \]

Also, if the \(f \)-structure satisfies (2.10), then

\[\nabla_{fx}(fY) + \nabla_{fx}(f^2)Y = f\nabla_x(fY) + f^2\nabla_x(fY). \]

In view of (2.1) and the above result, we get

\[\nabla_{fx}(fY) + \nabla_{fx}(f^2)Y = 2f\nabla_x(fY), \]

which provides the proof of the following

THEOREM 2.5. An \(f \)-structure manifold \(V \) which satisfies (2.10), is \(fQK \)-manifold iff

\[f\nabla_x(fY) = 0. \]

3. Conformal diffeomorphism of \(f \)-structure manifolds. Let \((V, \langle, \rangle)\) and \((V^0, \langle, \rangle^0)\) be two Riemannian manifolds and \(\Phi: V \to V^0 \) be a diffeomorphism. If \(X \in \mathfrak{X}(V) \), we denote by \(X^0 \in \mathfrak{X}(V^0) \) the vector field corresponding to \(X \) induced by \(\Phi \). Then \(\Phi \) is called a conformal diffeomorphism provided there exists \(\sigma \in F(V) \) such that

\[\langle X^0, Y^0 \rangle^0 = e^{2\sigma} \langle X, Y \rangle \]

for all \(X, Y \in \mathfrak{X}(V) \). For \(g \in F(V) \) we define \(\text{grad} g \) by

\[\langle \text{grad} g, X \rangle = X(g) \]
for all $X \in \mathfrak{X}(V)$. The Riemannian connections V^0 and V of V^0 and V satisfy the following relation [1]

$$V^0_{X^0} Y^0 = \{V_X Y + X(\sigma) Y + Y(\sigma) X - \langle X, Y \rangle \text{ grad } \sigma \rangle^0.$$

(3.3)

Let V and V^0 be f-structure manifolds respectively. Suppose that $\Phi: V \rightarrow V^0$ in addition to being a conformal diffeomorphism also preserves the f-structure, i.e. there exists a $(1, 1)$ tensor field $f^0: \mathfrak{X}(V^0) \rightarrow \mathfrak{X}(V^0)$ in V^0 such that

$$f^0 X^0 = (fX)^0.$$

(3.4)

If \langle , \rangle^0 is the Riemannian metric in V^0, then this metric satisfies following relations:

$$\langle f^0 X^0, Y^0 \rangle^0 = \langle (f^0)^2 X^0, f^0 Y^0 \rangle^0$$

and

$$\langle X^0, f^0 Y^0 \rangle^0 = \langle f^0 X^0, (f^0)^2 Y^0 \rangle^0.$$

If Φ^* is the map induced by Φ which takes differential forms on V^0 back to the differential forms on V, then we have the following

Theorem 3.1. The structures of the spaces V and V^0 are related by the following:

$$F^0(X^0, Y^0) \cdot \Phi = e^{2\sigma} F(X, Y),$$

(3.5)

$$\Phi^* F^0 = e^{2\sigma} F,$$

(3.6)

$$\Phi^* (dF^0) = e^{2\sigma} [2d\sigma \wedge F + dF],$$

(3.7)

$$\mathcal{P}^0_\mathcal{X}^0 (f^0) Y^0 = \{V_X (f) Y + fY(\sigma) X - Y(\sigma) (fX) + \langle fX, Y \rangle \text{ grad } \sigma + \langle X, Y \rangle f \text{ grad } \sigma \},$$

(3.8)

$$\mathcal{P}^0_\mathcal{X}^0 (F^0)(Y^0, Z^0) \cdot \Phi = e^{2\sigma} \{V_X (F)(Y, Z) + fY(\sigma) \langle X, Z \rangle - Y(\sigma) F(X, Z) + F(X, Y) Z(\sigma) - X, Y \rangle f \text{ grad } \sigma \},$$

(3.9)

$$\mathcal{N}^0(X^0, Y^0) = [N(X, Y)]^0$$

for all $X, Y, Z \in \mathfrak{X}(V)$, where N^0 is the Nijenhuis tensor and F^0 is a 2-form in V^0 defined by

$$F^0(X^0, Y^0) = \langle f^0 X^0, Y^0 \rangle^0.$$

(3.10)

Proof. The proof of (3.5) follows from (3.1) and (3.4); (3.6) and (3.7) follow from the definition of Φ^* and (3.4); (3.8) follows from (2.1) and (3.3); (3.9) is a direct consequence of (2.3) and (3.8); while (3.10) follows from (2.5) and (3.8).

Theorem 3.2. Let $\Phi: V \rightarrow V^0$ be a conformal diffeomorphism between f-structure manifolds. If $V \in fH$, then $V^0 \in fH$. On the other hand, suppose
\[\dim V \geq 3 \text{ and } \Phi \text{ is not homothetic; then if } V \text{ is in one of the classes } fK, fAK, fNK \text{ or } fQK, \text{ then } V^0 \text{ is not in any of the classes } fK, fAK, fNK \text{ or } fQK. \]

Proof. If \(V \in fH \), then from (3.10) it follows that \(V^0 \in fH \). Next, if \(V \) is in one of the classes \(fK, fAK, fNK, fQK \), then in view of theorem (2.3) \(V \) is necessarily \(fQK \), and consequently theorem (3.1) shows that \(V^0 \) is not \(fQK \) and therefore cannot be in any of the classes \(fK, fAK, fNK \) or \(fQK \).

Since \(V^0 \) is also an \(f \)-structure manifold, we define the complementary projection operators \(l^0 \) and \(m^0 \) in \(V^0 \) corresponding to the projection operators \(l \) and \(m \) in \(V \), as follows:

\[l^0 = -(f^0)^2 \quad \text{and} \quad m^0 = (f^0)^2 + I^0, \]

where \(I^0 \) is the identity operator in \(V^0 \). From (3.4) we get

\[l^0 X^0 = (lX)^0 \quad \text{and} \quad m^0 X^0 = (mX)^0. \]

Let \(L^0 \) and \(M^0 \) be the distributions corresponding to operators \(l^0 \) and \(m^0 \) in \(V^0 \) respectively. Then from (3.11) and (3.13) we have the following

Theorem 3.3.

\[N^0(m^0 X^0, m^0 Y^0) = \{N(mX, mY)\}^0, \]

\[N^0(l^0 X^0, l^0 Y^0) = \{N(lX, lY)\}^0, \]

\[N^0(l^0 X^0, m^0 Y^0) = \{N(lX, mY)\}^0. \]

The above theorem together with relation (3.10) provides the proof of the following

Theorem 3.4. The distribution \(L \) is integrable in \(V \) if and only if the distribution \(L^0 \) is integrable in \(V^0 \).

Theorem 3.5. The distribution \(M \) is integrable in \(V \) if and only if the distribution \(M^0 \) is integrable in \(V^0 \).

Theorem 3.6. The distributions \(L \) and \(M \) are both integrable in \(V \) if and only if the distributions \(L^0 \) and \(M^0 \) are both integrable in \(V^0 \).

If the distribution \(L \) is integrable and, moreover, if the almost complex structure \(f' \) induced from \(f \) on each integral manifold of \(L \) is integrable, then we say that the \(f \)-structure is partially integrable [3]. A necessary and sufficient condition for an \(f \)-structure to be partially integrable is [3]

\[N(lX, lY) = 0; \]

using equation (3.15), we have the following

Theorem 3.7. The \(f \)-structure in \(V \) is partially integrable if and only if the \(f \)-structure is partially integrable in \(V^0 \).
Also the f-structure is integrable in V [3] iff
\[N(X, Y) = 0 \]
and consequently in view of (3.10), we have

Theorem 3.8. The f-structure is integrable in V if and only if the f-structure is integrable in V^0.

References

DEPARTMENT OF MATHEMATICS AND ASTRONOMY
LUCKNOW UNIVERSITY
Lucknow, India

Reçu par la Rédaction le 21. 5. 1971