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1. Introduction. The theory of curves, i.e., 1-dimensional continua,
was developed in large part in the 1920’s and early 1930’s with much
of this development due to Karl Menger, to G. T. Whyburn, and to
C. Kuratowski, and contained in their books [4, 5, 3].

This paper is devoted to characterizing some known types of curves,
developing additional ones, and refining and adding to a classification
of curves as described by Whyburn and Kuratowski. Several of the
theorems proved here have easy corollaries giving characterizations of
simple closed curves and dendrites.

Let ¥ be the class of all continua that contain no continua of con-
densation, %, the class of all regular curves, /# the class of all heredita-
rily locally connected (hlc) continua, %, the class of all rational curves
and £ the class of all curves. Then it is known ([3], p. 210, and [5], p. 99)
that the following implications hold but that none can be reversed: ¢ < %,
cH# <R, = F. It is the purpose of the next section to develop some
additional classes of curves and insert them in this classification scheme.

Many of the terms used in this paper are defined as they occur.
All those used but not defined may be found in [3] and [5]. Always
a continuum will be a compact, metric, closed and connected point set.

2. Some additional types of curves. A non-degenerate subcontinuum C
of the continuum M is a strong continuum of condensation if C is contained
in the closure of one of the components of M —C.

THEOREM 1. Let M be a continuum that contains mo strong continuum
of condensation. Then M 1is hereditarily locally connected (hle).

Proof. An hereditarily locally connected continuum is characterized
by containing no non-degenerate continuum of convergence; so let us
assume that M contains a non-degenerate continuum of convergence K,
i.e.,, K =limK;, where K;-K; =@ for ¢ #j and K;-K =@ for all 7.
Let P and @ be disjoint non-degenerate subcontinua of K. Now by [3],
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p. 89, an infinite number of the K,’s lie in a component of M —P or
M —@Q; so either P or @ is a strong continuum of condensation, contrary
to hypothesis.

If " denotes the class of all continua that contain no strong continuum
of condensation, then ¥ =% < 5. Kuratowski [3], p. 210, gives an
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example of a continuum that is hereditarily locally connected and is
not a regular curve. This continuum also has no strong continuum of
condensation which shows that #° ¢ #,. The next example shows that
2, ¢ A 80 although Z, and X" both lie between ¥ and # neither is a sub-
set of the other.

Example 1. In the plane let M consist of: (1) the interval [0, 1]
of the z-axis, (2) the vertical interval of length 1/2 with base (1/2, 0),
two vertical intervals of length 1/4 with bases at (1/4,0) and (3/4,0),
four vertical intervals of length 1/8 with bases at (1/8,0), (3/8,0), (5/8,0),
and (7/8,0), ete., and (3) the horizontal interval with end points (1/4,1/4),
(3/4,1/4), two horizontal intervals with end points at (1/8,1/8), (3/8,1/8),
and (5/8,1/8), (7/8,1/8), ete.

This continuum (Fig. 1) is a regular curve but contains a strong
continuum of condensation, e.g., the interval [0, 1].

A continuum that has no strong continuum of condensation may have
a continuum of condensation, i.e., ¥ %X, as the next example shows.

Example 2. Let M be the continuum that is the sum of the intervals
in steps (1) and (2) of Example 1 (the continuum of Fig. 1 without the
horizontal intervals except for the base). The interval [0, 1] is a con-
tinuum of condensation although M contains no strong continuum of
condensation.

There is another way of describing a continuum that contains no
strong continuum of condensation that is useful. A continuum M contains
no strong continuum of condensation if and only if for every subcontinuum
C of M and component K of M — C, the closure of K in C is totally discon-
nected, i.e., K-C contains no non-degenerate component. With this in
mind Theorem 1 has some immediate corollaries.

COROLLARY. If for every mon-degenerate subcontinuum C in the con-
tinuum M and for every component K of M—C, K-C consists of exactly
two points, then M is a simple closed curve.
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COROLLARY. If for every subcontinuum C in the continuum M and
every component K of M—C, K-C consists of one point, then M is a den-
drite and conversely.

COROLLARY. If for every subcontinuum C in the continuum M and
every component K of M—C, K-C consists of one point and in addition
the complement of every continuum in M has at most two components, then M
is an arc. '

The continuum M is aposyndetic at x with respect to y if there is an
open set U and continuum H such that xeU ¢« H <« M —y. If for every
point yeM —x there is an open set U and continuum H so that xeU
c Hc M—y, then M is aposyndetic at x. If xeM and for every pair
of points ¥ and z in M — z, there is an open. set U and continuum H such
that 1eU «c H ¢ M—(y+=2), then M i8 2-aposyndetic at x.

A more general result using these concepts can be obtained by
weakening the hypothesis of Theorem 1.

THEOREM 2. Let M be a continuum and suppose that for every continuum
C = M and every point x ¢C, there is a continuum C’ containing C but not
such that the component K, of M —C' containing x has a totally discon-
nected closure in C', i.e., the components of K, C' are degenerate. Then M
i8 aposyndetic at every point of a dense subset of M.

Proof. Suppose U is an open set in M and M is aposyndetic at no
point in U. Let @ be a countable dense subset of M. According to a the-
orem of Grace [1], p. 102, there exist x¢ U and yeM such that M is not
aposyndetic at x with respect to y, and such that y cuts « from each
point of Q—y. Let V be an open set such that zeV <« ¥V <« U—y. Let
%y, L5, ... be a sequence of points in @-V converging to 2 such that
each x; lies in a component K; of ¥ where K; # K;if ¢ #j. Let C be
the component of ¥V containing . Then C-K; = @ for all i. Let ¢’ be
a continuum containing C but not y so that the component K, of M — ('
containing y has a totally disconnected closure in C’. Because y cuts
from each z;, every K; lies in the same component of M — (' as y, that
component being K,. But limsupK; will be a non-degenerate subcon-
tinuum ¢’ of C. Then K,-C’ contains ¢'’, which is a contradiction.

In the eonclusion of Theorem 2 nothing stronger than aposyndetic
at every point of a dense subset can be claimed as the following examples
show.

Example 3. Let M consist of concentric squares centered at
(1/2,0) on the z-axis and passing through each point of the Cantor dis-
continuum on the interval [0, 1] of the x-axis, together with alternating
Spanning arcs which are considered to be points. This continuum, illus-
trated in Fig. 2, satisfies the hypothesis of Theorem 2, is aposyndetic
at all of its points but is 2-aposyndetic at none of its points.
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To show that M need not even be aposyndetic at all of its points
under the hypothesis of Theorem 2, consider the next example.

Example 4. Let M (Fig. 3) consist of (1) the vertical arcs in the
plane from (—1/n,0) to (—1/n,1) and from (1/n,0) to (1/n,1) for

Fig. 2 Fig. 3

n =1,2,...; (2) arcs perpendicular to the plane from (—1/xr,1, 0) to
(=1/n,1,1)forn =1, 2,...; (3) ares joining (—1/n,1,1) to (—1/n, 0, 0)
for n =1,2,...; (4) the semi-circles in the xy-plane, z%+y? = 1/n?,
y<0 for n =1,2,...; (5) the arcs from (0,0,0) to (0,1,0), from
(0,0,0) to (0,1,1), from (0,1,0) to (0,1,1), from (—1,1,0) to
(0,1,0) and from (—1,1,1) to (0,1,1). This continuum is not apo-
syndetic at any point of the half open interval (0,1) on the y-axis in
the zy-plane.

If in Example 4 the subset of the continuum perpendicular to the
plane is altered as in Fig. 4, then K,-C’ in Theorem 2 is finite for all
points = instead of just totally disconnected.

]

Fig. 4

Remark. As seen from Example 3 and the altered Example 4,
for each continuum C and each x¢C, there is a continuum C’ containing C
but not 2 such that if K, is the component of M — (' containing », then
K.-C' is finite. In fact, for most of the points in M, K,-C’' consists of
one or two points. So requiring K,-C’ to be finite rather than totally
disconnected does not result in a stronger conclusion. However, if K,-C’
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is required to be one point only, then M must be locally connected; in
fact this characterizes a dendrite.

Curves with the property of Theorem 2 as we have seen can be rather
general. In the following theorem this property is strengthened in a way
that forces M to be a curve that is aposyndetic at all points.

THEOREM 3. Suppose that for every subcontinuum C of the continuum M
and every point x ¢C, there is a continuum C’ containing C dbut not x so that
the boundary of C', Fr(C’), is totally disconnected. Then M i8 a curve that
18 aposyndetic at each of its points.

Proof. Suppose that M is not aposyndetic at = with respect to y.
Then by [2], p. 405, y plus the set of all points p in M such that M is
not aposyndetic at p with respect to y is a continuum, N. Let C be a non-
degenerate subcontinuum of N not containing y and let ¢’ be a subcon-
tinuum of M containing C but not y such that Fr(C’) is totally discon-
nected. Now C must intersect the interior of ¢’ and since C < N, there
must be points of N in the interior of C’. This makes M aposyndetic
at these points of N with respect to y which is a contradiction. It is
immediate that M is a 1-dimensional continuum and the theorem is
established.

Example 3 gives a continuum satisfying the hypothesis of the the-
orem that is 2-aposyndetic at none of its points. So it is impossible to
claim anything stronger than aposyndetic for a continuum with this
property.

Suppose we let (%) denote the class of all continua satisfying the
hypothesis of Theorem 3 except that Fr(C’) is to be countable. Of course,
every continuum M in (x) is connected im kleinen on a dense subset
of M as well as being aposyndetic at all of its points since M is now a ra-
tional curve. With this class we can refine the classification of curves
between s (the hlc continua) and %, (the rational curves). To aid in
this refinement let %,, be the class of all rational, locally connected curves
and #,,, the class of all rational aposyndetic curves. Except for obvious
arguments we have established:

H < By < (%)  Bopo © Xy

These inclusions cannot be reversed as shown by the next examples.

Example 5. Let M consist of the arcs in the plane from (1/n, 0)
to (1/n,1) for n = 1,2, ... together with the ares from (0, 0) to (0, 1),
from (0,1) to (1,1), and (0, 0) to (1,0). Then M e(*x), but M ¢%,,.

Example 6. In this example, M ¢#,,, but M ¢(*). Let M be com-
prised of a sequence of rectangles converging to a point p where each
rectangle has in its interior a sequence of broken line segments conver-
ging to the perimeter (Fig. 5).
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Another way of describing a continuum belonging to (x) is provided
by the next theorem. The proof is easy and is omitted.

THEOREM 4. A continuum M belongs to (%) if and only if for every
pair of points x, yeM , there is a continuum H such that xe H* « H ¢ M —y
and ¥r(H) is countable.

Remark. In Theorem 2 the conclusion was unchanged under broad
changes in the cardinality of the totally disconnected set K,-C’'. An
analogous statement cannot be made for the cardinality of Fr((’) in
Theorem 3. As we have seen, making Fr(C’) countable has made the
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curve rational and it is not difficult to see that if Fr(C’) is finite, then
this will characterize a regular curve. Furthermore requiring Fr(C’) to
be exactly one point characterizes a dendrite but making it precisely
two points does not make M a simple closed curve. However, if the boun-
dary of every subcontinuum of M consists of exactly two points, then M
is a simple closed curve and conversely.

3. Characterizations of the class . In this section two characteri-
zations of hereditarily locally connected continua are established.

THEOREM 5. A continuum M 1is hereditarily locally connected if and
only if M 1is hereditarily aposyndetic, i.e., M 1is aposyndetic at all of its
points and so is each subcontinuum of M.

Proof. Since an hle continuum is characterized by containing no
non-degenerate continuum of convergence, it suffices to show that if M
is hereditarily aposyndetic, then M contains no non-degenerate continuum
of convergence. So let us assume that M is hereditarily aposyndetic and K
is a non-degenerate continuum of convergence, i.e., K = lim K;, where
each K; is a continuum, K;-K; = O for ¢ #j and K-K; =@ for all <.
Let z,,2,,... and ¥,, ¥,,... be sequences where z;+vy; = K;, z; +* ¥;,
and x and y are their respective limit points in K with « # y. Let K;
be an irreducible subcontinuum of K; from x; to y;. Since K; is aposyn-
detic at all of its points, it is an arc. By taking subsequences if necessary
there is a continuum K’ < K such that K’ =limK; and z+y < K'.
(Here K,, K,,... may denote a subsequence of the original sequence
of K;’s.) Since M is aposyndetic at x with respect to y, there exist an
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open set U and a continuum H such that xeU <« H <« M —y. The set H
must intersect all but a finite number of the K;’s; so no generality is
lost by assuming that it intersects them all. Hence P = K'+ H+ Y K;
i3 a continuum. Since % and all but a finite number of the y;’s liein M — H,
we can assume that H contains no y;. Let k; be the last point of K;
(ordered from w; to y;) that lies in H. Let k¥ be a limit point of k,, k,, ...
in K'. It is easy to see that P is not aposyndetic at y with respect to k.
This contradiction establishes the theorem.

A non-degenerate continuum K < M is called a strong continuum
of convergence if K = lim K; where the K;’s are mutually disjoint sub-
continua of M, K-K; = for all < and all but a finite number of the
K/s lie in one component of M — K.

The condition that M contain no continuum of condensation is
stronger than the condition that M contain no strong continuum of
condensation as was previously noted but the following theorem shows
that such is not the case for continua of ¢onvergence.

THEOREM 6. A necessary and sufficient condition that a continuum M
be hereditarily locally connected is that M contain mo strong continuum of
convergence.

Proof. The necessity is clear, let us prove the sufficiency. Since
each subcontinuum of M inherits the property of not containing a strong
continuum of convergence if M does not, it suffices to prove that M is
locally connected. First of all, if C is a subcontinuum of M and U is an
open set such that ¢ = U, then only a finite number of components of
M —C intersect M —U. For let K,, K,,... be an infinite sequence of
components of M —C such that K;-(M—U) # O for all i. Let C = V
c V < U, where V is an open set. There is a non-degenerate continuum
of convergence ¢ lying in M —V such that = lim¢@); where @; « K;—V
for suitable ¢, and @;-(M—U) # @ # Q;-Fr(V). Clearly }@; < Y K;
c MYK;+C and the latter is a connected set lying in M—@ (if @
happens to be in one of the K,’s, do not include that K; in the
sum). This makes ¢ a strong continuum of convergence which is a
contradiction.

Now suppose that M is not connected im kleinen at x. Then there
is an open set U containing x and a non-degenerate continuum C lying
in U and containing z such that ¢ = lim(;, where the C;’s are continua
each lying in a different component @; of U and @;-Q = O for all ¢ where @
is the component of U containing C. Now Q;-(M—U) # @ and since
only a finite number of components of M — C intersect M — U, an infinite
number of the Q;’s must lie in one component of M — (. Then an infinite
number of the C;’s lie in one component of M —C and C is a strong con-
tinuum of convergence which is impossible.
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