LIFTING VECTOR-VALUED MAPS

RY

NGUYEN VAN KHUE (WARSZAWA)

The aim of this paper is to study liftings of continuous and holomorphic functions with values in complex Banach spaces. In Section 1 we consider the case of continuous while in Section 2 the case of holomorphic functions.

1. Lifting vector-valued continuous functions. Given two complex Banach spaces B and \tilde{B} , let $\text{Hom}(B, \tilde{B})$ denote the Banach space of continuous linear maps from B into \tilde{B} endowed with the uniform topology. Put

$$S(B, \tilde{B}) = \{ T \in \text{Hom}(B, \tilde{B}) : \text{Im } T = \tilde{B} \}.$$

Then $S(B, \tilde{B})$ is open ([5]).

Let S be a topological space. By C(S, B) we denote the locally convex space of all continuous maps from S into B endowed with the open-compact topology. Let $g: S \times B \to \tilde{B}$ be a continuous map such that $g_s \in \text{Hom}(B, \tilde{B})$ for all $s \in S$, where $g_s(u) = g(s, u)$ for all $u \in B$. Then g induces a continuous linear map $\hat{g}: C(S, B) \to C(S, \tilde{B})$ by $[\hat{g}\hat{\sigma}]s = g(s, \sigma(s))$.

Now let $g_s \in S(B, \tilde{B})$ for all $s \in S$. In [1] Bartle and Graves proved that the map \hat{g} is surjective if S is paracompact and the map $\tilde{g}: S \to \text{Hom}(B, \tilde{B})$ associated with g is continuous.

In this section we shall find necessary and sufficient conditions for \hat{g} to be surjective.

Definition 1.1 ([5]). Let $g: S \times B \to \tilde{B}$ be a continuous map such that $g_s \in S(B, \tilde{B})$ for all $s \in S$. Then the map g is called *locally uniformly open* if for every $s_0 \in S$ there exists a neighbourhood G of s_0 such that

$$\bigcap_{s\in G} \{g_s u: u\in B, ||u||\leqslant 1\}$$

is a neighbourhood of zero in \tilde{B} .

In [5] Kurato and Kas proved that if \tilde{g} is continuous, then g is locally uniformly open. Let us consider the following examples.

Example 1.1. Let S be a compact space and let $Ev: S \times C(S) \rightarrow C$ be

the evaluation map. Since $Ev_s \{ \sigma \in C(S) : ||\sigma|| < \varepsilon \} \supset \{ z \in C : ||z|| < \varepsilon \}$ for every $s \in S$, the map Ev is uniformly open. Obviously \widetilde{Ev} is continuous if and only if S is finite.

Example 1.2. Let H be a separable Hilbert space with $\dim H = \infty$. Put

$$S_2(H) = \{T \in S(H, H): ||T|| \le 2\}$$

and

$$\varrho(T, P) = \sum_{k=1}^{\infty} ||Tu_k - Pu_k||/2^k (1 + ||Tu_k - Pu_k||)$$

for all $T, P \in S_2(H)$, where $\overline{\{u_k\}} = H$. Consider the evaluation map $Ev: S_2(H) \times H \to H$. Let $\varrho(T_n, T) \to 0$ and $x_n \to x$ in H. Then

$$||T_n x_n - Tx|| \le ||T_n x_n - T_n x|| + ||T_n x - Tx|| \le ||T_n|| ||x_n - x|| + ||T_n x - Tx|| \le 2||x_n - x|| + ||T_n x - Tx|| \to 0 \quad \text{as} \quad n \to \infty.$$

Hence Ev is continuous. Obviously $\operatorname{Im} Ev_T = H$ for all $T \in S_2(H)$. We show that Ev is not locally uniformly open. Contrarily, suppose that there exist $\varepsilon > 0$, $\delta > 0$ and $z_1, \ldots, z_p \in H$ such that for every $T \in W = \{T \in S_2(H): \|Tz_j - z_j\| < \delta\}$ we have $TU_1 \ge U_{\varepsilon}$, where $U_r = \{u \in H: \|u\| < r\}$. For every n put $T_n(u'+u'') = u'/n + u''$, where $u' \in \operatorname{span} \{z_1, \ldots, z_p\}^\perp$ and $u'' \in \operatorname{span} \{z_1, \ldots, z_p\}$. Then $\|T_n\| \le 1$, $\operatorname{Im} T_n = H$ and $\|T_n z_j - z_j\| = 0$ for all $j = 1, \ldots, p$. Hence $T_n \in W$ for all n. Thus $T_n U_1 \ge U_{\varepsilon}$ for all n, whence

$$\sup_{\|u'\| \leq 1} \|T_n(u', 0)\| = \sup_{\|u'\| \leq 1} \|u'/n\| = 1/n \geqslant \varepsilon \quad \text{for all } n.$$

This contradiction shows that Ev is not locally uniformly open. For every topological space S and for every Banach space B we denote by $C_b(S, B)$ the Banach space of all bounded continuous maps from S into B with the supnorm.

Definition 1.2. Let $g: S \times B \to \tilde{B}$ be a continuous map such that $g_s \in S(B, \tilde{B})$ for all $s \in S$. We say that g has the local g-lifting property if for every $g \in S$ there exists a neighbourhood G of $g \in S$ such that $\sup \{||g_s||: s \in G\}$ $g \in S$ and the map $g \in G$ and the map $g \in G$ for $g \in G$ is surjective.

THEOREM 1.1. Let S be a locally paracompact space and $g: S \times B \to \tilde{B}$ be a continuous map such that $g_s \in S(B, \tilde{B})$ for all $s \in S$. Then the following conditions are equivalent:

- (i) g has the local b-lifting property;
- (ii) g is locally uniformly open;
- (iii) the map (id, g): $S \times B \to S \times \tilde{B}$ is open.

Proof. (i) \Rightarrow (ii) Let $s_0 \in S$ and G be a neighbourhood of s_0 such that

 $\sup \{||g_s||: s \in G\} < \infty \text{ and } \hat{g}_G \text{ is surjective. By the open mapping theorem for every } \epsilon > 0 \text{ there exists } \delta > 0 \text{ such that}$

$$\hat{g}_{G}\left\{\sigma\in C_{b}(G, B): \|\sigma\|\leqslant \varepsilon\right\}\supseteq\left\{\sigma''\in C_{b}(G, \tilde{B}): \|\sigma''\|<\delta\right\}.$$

From this relation we infer that

$$\bigcap_{s \in G} g_s U_{\varepsilon} \supseteq \{u'' \in B \colon ||u''|| < \delta\}.$$

Hence g is locally uniformly open.

(ii) \Rightarrow (iii) Let $G \times U$ be an open set in $S \times B$ and let $(s_0, u_0'') \in \in (\mathrm{id}, g)(G \times U)$. Then $u_0'' = g_{s_0} u_0$ for $u_0 \in U$. Take a $\varepsilon > 0$ such that $u_0 + U_\varepsilon \subseteq U$ and a neighbourhood G_0 of s_0 such that $W'' = \bigcap \{g_s U_\varepsilon \colon s \in G_0\}$ is a neighbourhood of zero in \tilde{B} . By continuity of g there exists a neighbourhood $G_1 \subseteq G_0$ of s_0 such that $g_{s_0} u_0 - g_s u_0 \in W_1''$ for all $s \in G_1$, where W_1'' is a neighbourhood of zero in \tilde{B} such that $W_1'' + W_1'' \subseteq W''$. Let $(s, u_0'' + u_0'') \in G_1 \times (u_0'' + W_1'')$. Then

$$g_s u_0 - u'' = (g_s u_0 - g_{s_0} u_0) + g_{s_0} u_0 - u'' \in u_0'' - W''.$$

Therefore

$$u_0'' + u'' = g_s(u_0 + u), \quad u \in U_{\varepsilon}.$$

Hence

$$(s, u_0'') \in G_1 \times (u_0'' + W_1'') \subseteq (\mathrm{id}, g)(G \times U).$$

Consequently (id, g) is open.

(iii) \Rightarrow (i) Let $s_0 \in S$. By hypothesis there exist a paracompact neighbourhood G of s_0 and a $\delta > 0$ such that $\sup\{||g_s||: s \in G\} < \infty$ and $g_s U_1 \supseteq U_\delta''$ for all $s \in G$. It follows that there exists a constant C > 0 such that for every $(s, u'') \in G \times \tilde{B}$ there is a $u_s \in B$ such that $g_s u_s = u''$ and $||u_s|| \leq C ||u''||$.

Let $\sigma'' \in C_b(G, B)$ and $\varepsilon > 0$. By paracompactness of \widetilde{B} it follows that there is $\sigma''_{\varepsilon} \in C_b(G, \widetilde{B})$ such that

$$\|\sigma_{\varepsilon}^{"}-\sigma\| \leqslant \varepsilon, \quad \|\sigma_{\varepsilon}^{"}\| \leqslant \|\sigma^{"}\|$$

and

$$\sigma_{\varepsilon}^{"}(s) = \sum_{i \in I} \varphi_{i}(\sigma^{"} s) u_{i}^{"},$$

where $\{\varphi_i\}$ is a locally finite partition of unity for an open cover of \tilde{B} and $u_i'' \in \sigma''(G)$ for all $i \in I$.

Fix $i \in I$. For every $s \in G$ we choose $u_{s,i} \in B$ such that

$$g_s u_{s,i} = u_i^{"}$$
 and $||u_{s,i}|| \leqslant C ||u_i^{"}||$.

Since g is continuous, there is a neighbourhood $G_{s,i}$ of s in G such that $||g_t u_{s,i} - u_i''|| < \varepsilon$ for all $t \in G_s$. Suppose $\{\varphi_{s,i}\}$ is a locally finite partition of unity inscribed into cover $\{G_{s,i}\}$. Put

$$\sigma_i(t) = \sum_{s \in G} \varphi_{s,i}(t) u_{s,i}.$$

Obviously $\sigma_i \in C_b(G, B)$ and

$$\|\hat{g}\sigma_i - u_i''\| \leqslant \sup_{t \in G} \sum_{s \in G} \varphi_{s,i}(t) \|g_t u_{s,i} - u_i''\| \leqslant \varepsilon$$

as well as

$$\begin{aligned} \|\sigma_i\| & \leq \sup_{t \in G} \sum_{s \in G} \varphi_{s,i}(t) \|u_{s,i}\| \\ & \leq \sup_{s \in G} \|u_{s,i}\| \leq C \|\sigma''\|. \end{aligned}$$

Setting

$$\sigma(t) = \sum_{i \in I} \varphi_i(\sigma_i'') \, \sigma_i(t)$$

we obtain an element σ belonging to $C_b(G, B)$ such that

$$\begin{split} \|\widehat{g}\sigma - \sigma''\| &\leq \|\widehat{g}\sigma - \sigma''_{\epsilon}\| + \|\sigma''_{\epsilon} - \sigma''\| \\ &\leq \varepsilon + \sup_{t \in G} \sum_{i \in I} \varphi_{i}(\sigma''t) \|g_{t}\sigma_{i}(t) - u''_{i}\| \\ &\leq 2\varepsilon \end{split}$$

and

$$\|\sigma\| \leq \sup_{t \in G} \sum_{i \in I} \varphi_i(\sigma''t) \|\sigma_i(t)\| \leq C \|\sigma''\|.$$

Hence

$$\hat{g}\left\{\sigma\in C_b(G, B): \|\sigma\|\leqslant C\right\}\supseteq\left\{\sigma''\in C_b(G, \tilde{B}): \|\sigma''\|\leqslant 1\right\}.$$

Therefore, by the open mapping theorem we infer that \hat{g}_G is surjective.

THEOREM 1.2. Let S be an arbitrary topological space and $\tilde{g}: S \to S(B, \tilde{B})$ be a continuous map. Then the map (id, g): $S \times B \to S \times \tilde{B}$ is locally trivial.

Proof. a) First we assume that S is a contractible metric space and \tilde{g} is bounded. By Theorem 1.1 (or by [1]) the map $\hat{g}: C_b(S, B) \to C_b(S, \tilde{B})$ is surjective. Hence there exists a continuous map $q: C_b(S, \tilde{B}) \to C_b(S, B)$ such that gq = id. Given a commutative diagram:

in which I = [0, 1], k(x) = (x, 0), f_0 and h are continuous and X is an arbitrary topological space. For every $(x, t) \in X \times I$ put

$$f(x, t) = (h^{1}(x, t), q(\overline{h^{2}(x, t)})[h^{1}(x, t)] - q(\overline{h^{2}(x, 0)})[h^{1}(x, t)] + f_{0}^{2}(x))$$

where $\overline{u''}(s) = u''$, $u'' \in \tilde{B}$, for all $s \in S$. Then

$$fk(x) = f(x, 0) = (h^1(x, 0), f_0^2(x)) = f_0(x),$$
 (id, g) $f = h$.

Hence $(S \times B, (id, g), S \times \tilde{B})$ is a fiber space in sense of Hurewicz. By contractibility of $S \times \tilde{B}$ and by [6] we infer that $(S \times B, (id, g), S \times \tilde{B})$ is trivial.

- b) Now we assume that S is a metric space. Without loss of generality we can assume that S is a closed subset in a normed space C. Since $S(B, \tilde{B})$ is open, \tilde{g} can be extended to a continuous map \tilde{f} from an open neighbourhood W of S in C into $S(B, \tilde{B})$. By a) and by the local contractibility of W, the map (id, f): $W \times B \to W \times \tilde{B}$ is locally trivial. Hence (id, g) is locally trivial.
- c) Finally we assume that S is an arbitrary topological space. By $S|_{\varrho}$ we denote the metric space of equivalent classes: $s \sim t \Leftrightarrow g_s = g_t$. This space is endowed with the metric induced by $\varrho(\bar{s}, \bar{t}) = ||g_s g_t||$. Since the map $\tilde{g}_{\varrho} \colon S|_{\varrho} \to S(B, \tilde{B})$ is continuous, by b) the map (id, g_{ϱ}): $S|_{\varrho} \times B \to S|_{\varrho} \times \tilde{B}$ is locally trivial. Thus it is easy to see that the map (id, g_{ϱ}) is locally trivial. \square
- 2. Lifting vector-valued holomorphic functions. Let X be a complex space, B and \tilde{B} be complex Banach spaces. A map $g: X \times B \to \tilde{B}$ is said to be a holomorphic family of continuous linear maps from B into \tilde{B} if $g_z \in \text{Hom}(B, \tilde{B})$ for all $z \in X$ and $g(\cdot, u)$ is holomorphic for all $u \in B$.

By Lemma 2.1, the map $\tilde{g}: X \to \operatorname{Hom}(B, \tilde{B})$ associated with g is holomorphic. Therefore g induces a continuous linear map $\hat{g}: \mathcal{O}(X, B) \to \mathcal{O}(X, \tilde{B})$ defined by

$$[\hat{g}\sigma]z = g(z, \sigma(z)).$$

Here $\mathcal{O}(X, B)$ denotes the locally convex space of holomorphic maps from X into B endowed with the compact-open topology.

In this section we shall prove the following

THEOREM 2.1. Let X be a complex space having a countable topology and let $\mathcal{O}(X)$ determine the topology of X. Then the following conditions are equivalent.

- (i) X is a Stein space.
- (ii) $H^1(X, \mathcal{O}_{\xi}) = 0$ for every sheaf \mathcal{O}_{ξ} of germs of holomorphic sections on X of a holomorphic Banach bundle ξ over X.
- (iii) The map $\hat{g}: \mathcal{O}(X, B) \to \mathcal{O}(X, \tilde{B})$ is surjective for every holomorphic family g on X with values in $S(B, \tilde{B})$ such that Ker(id, g) has a structure of a holomorphic Banach bundle over X for which the canonical map $i: Ker(id, g) \to \underline{B}$ is holomorphic, where \underline{B} denotes the trivial bundle over X with the fiber B.
- (iv) The map $\hat{g}: \mathcal{O}(X, B) \to \mathcal{O}(X)$ is surjective for every holomorphic family $g: X \times B \to C$ of continuous linear functionals on B such that $g_z \neq 0$ for all $z \in X$.

Proof. (i) implies (ii) by a theorem of Bungart ([2]).

(ii) \Rightarrow (iii) By exactness of the cohomology sequence, it is enough to prove that the sequence

$$0 \to \mathcal{O}_{\mathrm{Ker} g} \to \mathcal{O}_{B} \to \mathcal{O}_{B} \to 0$$

is exact, $\bar{g} = (id, g)$.

This statement is an immediate consequence of the following

LEMMA 2.1. Let $g: X \times B \to \tilde{B}$ be a holomorphic family of continuous linear maps from a Banach space B into a Banach space \tilde{B} . Then the map $\tilde{g}: X \to \text{Hom}(B, \tilde{B})$ associated with g is holomorphic.

Proof. We assume that X is an analytic set in an open subset of C^n for some n. Obviously the map $\bar{g} \colon B \to \mathcal{O}(X, \tilde{B})$ associated with g is holomorphic. First we show that the map $\tilde{g}_c \colon X \to \operatorname{Hom}_c(B, \tilde{B})$ is holomorphic, where $\operatorname{Hom}_c(B, \tilde{B})$ denotes the space $\operatorname{Hom}(B, \tilde{B})$ endowed with the open-compact topology. Suppose $\theta \colon \mathcal{O}^*(X) \to \operatorname{Hom}_c(B, \tilde{B}^{**})$ is a map defined by $[\theta \omega(u)](u''^*) = \omega(u''^*\bar{g}u)$, \tilde{B}^* and $\mathcal{O}^*(X)$ are strong dual spaces of \tilde{B} and $\mathcal{O}(X)$ respectively. Since ω is continuous, $\theta \omega(u) \in (\tilde{B}_c^*)^* = \tilde{B}$. Hence, by continuity of \bar{g} , it follows that θ is a continuous linear map from $\mathcal{O}^*(X)$ into $\operatorname{Hom}_c(B, \tilde{B})$. Hence, by a result of Bungart ([3]) we infer that \tilde{g}_c is holomorphic. We check that \tilde{g} is holomorphic. Let $z_0 \in X$. Since \tilde{g}_c is holomorphic, there exist a polydisc $\Delta(z_0, r)$ with centre at z_0 and polyradius r > 0 and $\tilde{f} \in \mathcal{O}(\Delta(z_0, r), \operatorname{Hom}_c(B, \tilde{B}))$ extending of $\tilde{g}_c | \Delta(z_0, r) \cap X$ ([3]). Since $\{\sup \|\tilde{f}z\|: z \in K\} < \infty$ for every compact set K in $\Delta(z_0, r)$ by the Cauchy integral formula we infer that $\tilde{f} \in \mathcal{O}(\Delta(z_0, r), \operatorname{Hom}(B, \tilde{B}))$. Consequently \tilde{g} is holomorphic. \square

Lemma 2.2. Let $g: X \times B \to \tilde{B}$ be as in Lemma 2.1. Let g_{z_0} be surjective. Then $\hat{g}_{z_0}: \mathcal{O}_{\underline{B},z_0} \to \mathcal{O}_{\tilde{\underline{B}},z_0}$ is surjective.

Proof. We can assume X is an analytic set in an open set in C^n for some n and $z_0 = 0 \in X$. By Lemma 2.1 the map $\tilde{g}: X \to \text{Hom}(B, \tilde{B})$ is

holomorphic and therefore \tilde{g} can be extended to a holomorphic map \tilde{f} from $\Delta_{2r} = \Delta(0, 2r)$ into $\text{Hom}(B, \tilde{B})$ with r > 0.

Consider the Taylor expansion of f at zero:

$$f(z) = A_0 + \sum_{|\alpha| \ge 1} A_{\alpha} z^{\alpha}$$

where $z=(z_1,\ldots,z_n),\ z^\alpha=z_1^{\alpha_1}\ldots z_n^{\alpha_n},\ \alpha=(\alpha_1,\ldots,\alpha_n),\ |\alpha|=\alpha_1+\ldots+\alpha_n$. By hypothesis, A_0 is surjective. Hence

$$\frac{1}{2}C = \sup_{\|u^{\prime\prime}\|=1, A_0 u = u^{\prime\prime}} \|u\| < \infty.$$

Let

$$M = \sup \{ ||f_{\xi}|| \colon \xi \in \Delta_r \}, \quad B_0 = A_0,$$

$$B_{\alpha} = r^{|\alpha|} (4MC_1 n)^{-2kn|\alpha|} A_{\alpha}, \quad |\alpha| \geqslant 1$$

and

$$Z = (4MC_1 n)^{2kn} z/r,$$

where C_1 and k are positive numbers such that $C_1 \ge C$, $(MC_1) > 1$ and $(MC_1)^k > C^2$. We can assume that C > 1. Obviously $||B_{\alpha}|| \le (4MC_1 n)^{-kn|\alpha|}$ for all $|\alpha| \ge 1$.

a) Let $u'' \in \tilde{B}$. We find $\sigma \in \mathcal{O}(\Delta_1, B)$ such that

$$F(Z)\sigma(Z) = u''$$
 for all $Z \in \Delta_1$, $||\sigma||_{\Delta_{1/2}} \leq \tilde{C} ||u''||$,

where

$$F(Z) = B_0 + \sum_{|\alpha| \ge 1} B_{\alpha} Z^{\alpha}$$

and \tilde{C} is a constant independent of u''. We can assume that ||u''|| = 1. We find σ from the formula:

$$\sigma(Z)=\sum_{\alpha}u_{\alpha}Z^{\alpha}.$$

From the condition

$$F(Z)\sigma(Z) = u''$$
 for all $Z \in \Delta_1$

we get the relations

$$B_0 u_0 = u^{\prime\prime}$$

and

$$B_0 u_{\beta} = -\sum_{\substack{\alpha + \gamma = \beta \\ 0 < \alpha \leq \beta, \ 0 \leq \gamma < \beta}} B_{\alpha} u_{\gamma}.$$

We choose $u_0 \in B$ such that $B_0 u_0 = u_0''$ and $||u_0|| \le C ||u''|| = C$. Let $u_{\beta} \in B$ for $0 < \beta < \beta_0$ be such that

$$B_0 u_{\beta} = \sum_{\substack{\alpha + \gamma = \beta \\ 0 < \alpha \leq \beta, \ 0 \leq \gamma < \beta}} B_{\alpha} u_{\gamma}$$

and

$$||u_{\mathfrak{g}}|| \leqslant 1.$$

We choose $u_{\beta_0} \in B$ such that

$$B_0 u_{\beta_0} = -\sum_{\substack{\alpha + \gamma = \beta_0 \\ 0 < \alpha \leq \beta_0, \ 0 \leq \gamma < \beta_0}} B_{\alpha} u_{\gamma}$$

and

$$||u_{\boldsymbol{\beta}_0}|| \leq C \Big\| \sum_{\substack{\alpha+\gamma=\boldsymbol{\beta}_0\\0<\alpha\leq\boldsymbol{\beta}_0,\ 0\leq\gamma<\boldsymbol{\beta}_0}} B_{\alpha} u_{\gamma} \Big\|.$$

Then

$$||u_{\beta_0}|| \le C \sum_{0 < \alpha \le \beta_0} C(4C_1 Mn)^{-kn|\alpha|} \le \sum_{|\alpha|=1}^{\infty} (4b)^{-kn|\alpha|}$$

$$\le 2^n (4n)^{-kn} + 3^n (4n)^{-2kn} + \dots \le 1.$$

Since $||u_{\alpha}|| \leq C$ for all α , the series $\sum_{\alpha} u_{\alpha} Z^{\alpha}$ converges to an element $\sigma \in \mathcal{C}(\Delta_1, B)$. Obviously $FZ\sigma(Z) = u''$ for all $Z \in \Delta_1$ and $||\sigma||_{\Delta_{1/2}} \leq \tilde{C}$, where \tilde{C} is a constant independent of u''. Setting

$$\tilde{\sigma}(z) = \sigma((4MC_1 n)^{2kn} z/r)$$

we obtain an element $\tilde{\sigma} \in \mathcal{O}(\Delta_{\delta}, B)$ with $\delta = r/(4MC_1 n)^{2kn}$ such that $\tilde{f}z\tilde{\sigma}(z) = u''$ for all $z \in \Delta_{\delta}$ and $||\tilde{\sigma}||_{\Delta_{\delta/2}} \leq \tilde{C}$. Now let $\sigma'' \in \mathcal{O}_{\tilde{B},0}$ and let

$$\tilde{\sigma}^{\prime\prime}(z)=\sum_{\alpha}u_{\alpha}^{\prime\prime}\,z^{\alpha}$$

be a representative of σ'' on a polydisc Δ_{δ} , $\delta > 0$. For every u''_{α} , by a) there exists $\sigma_{\alpha} \in \mathcal{O}(\Delta_{\delta_0}, B)$ such that

$$\tilde{f}z\sigma_{\alpha}(z)=u_{\alpha}^{"}$$
 for all $z\in \Delta_{\delta_{\alpha}}$

and

$$\|\sigma_{\alpha}\|_{\Delta_{\delta_{\alpha}/2}} \leqslant \tilde{C} \|u_{\alpha}^{"}\|$$
 for all α

where δ_0 , \tilde{C} are constants independent of u_a'' . Hence, setting

$$\sigma(z) = \sum_{\alpha} \sigma_{\alpha} z^{\alpha}$$

we get an element $\sigma \in \mathcal{O}_{B,0}$ such that $\hat{g}_0 \sigma = \sigma''$. \square

LEMMA 2.3. Let $g: X \times B' \to B$ be a holomorphic family of isomorphisms g_z from a Banach space B' into a Banach space B and let $\sigma: X \to B'$ be a map such that $\hat{g}\sigma$ is holomorphic. Then σ is holomorphic.

Proof. First we show that $(id, g): X \times B' \to X \times B$ is an embedding. Suppose $(z_n, g(z_n, u_n)) \to (z, u)$. Then $z_n \to z$ and therefore by Lemma 2.1, $g_{z_n} \to g_z$. We show that $\{g_z u_n\}$ is a Cauchy sequence in B and therefore $u_n \to u$. Since g_{z_n} is surjective and the map $\tilde{g}^*: X \to \operatorname{Hom}(B^*, B'^*)$ is continuous, it follows that $\tilde{g}_{z_n}^*(U^*) \supseteq \varepsilon U'^*$ for some $\varepsilon > 0$ and for all $n > n_0$ ([5]), where U^* and U'^* are unit balls in B^* and B'^* respectively. Therefore for $n > n_0$ we have

$$\varepsilon ||u_n|| = \sup |u^*(u_n)| \leqslant \sup_{\|u^*\| \leqslant 1} |\tilde{g}_{z_n}^* u^*(u_n)|$$

$$= \sup_{\|u^*\| \leqslant 1} |u^* g_{z_n} u_n| \leqslant \sup_{n} ||g_{z_n} u_n|| < \infty.$$

Hence

$$||g_z u_n - g_z u_m|| \leq ||g_{z_n} - g_z|| \, ||u_n|| + ||g_{z_n} u_n - g_{z_m} u_m|| + ||g_{z_m} - g_z|| \, ||u_m|| \to 0.$$

Thus σ is continuous. Hence, in order to prove that σ is holomorphic it is enough to prove that $u^*\sigma$ is holomorphic for all $u^* \in B'^*$ ([3]).

Let $z_0 \in X$ and $u^* \in B'^*$. By Lemma 2.2 there exists $\gamma \in \mathcal{O}(U, B^*)$, where U is a neighbourhood of z_0 , such that $g_z^* \gamma(z) = u^*$ for all $z \in U$. Therefore we have

$$u^* \sigma(z) = [g_z^* \gamma(z)] \sigma(z) = \gamma(z) (g_z \sigma(z)).$$

Since $\hat{g}\sigma$ is holomorphic, we infer that $u^*\sigma$ is holomorphic. \Box

- (iii) \Rightarrow (iv) Proof is trivial, because $\operatorname{Ker} g_z$ is complemented in B for all $z \in X$ and therefore $\operatorname{Ker} \bar{g}$ is a holomorphic Banach bundle.
- (iv) \Rightarrow (i) By [4] it is enough to prove that $X = \mathfrak{M}(\mathcal{O}(X))$, where $\mathfrak{M}(\mathcal{O}(X))$ denotes the spectrum of $\mathcal{O}(X)$. Since $\mathcal{O}(X)$ determines the topology of X it suffices to show that $V_{\omega} = \{z \in X : \sigma(z) = 0, \ \sigma \in \text{Ker } \omega\} \neq \emptyset$ for all $\omega \in \mathfrak{M}(\mathcal{O}(X))$. For a contradiction, let $V_{\omega_0} = \emptyset$ for some ω_0 . Since $\mathcal{O}(X)$ is a separable Fréchet space there exists $\{\sigma_n\} \subset \text{Ker } \omega_0$ such that

$$\bigcap_{n=1}^{\infty} \{z \in X : \ \sigma_n(z) = 0\} = \emptyset \quad \text{and} \quad \sigma_n \to 0.$$

Consider the holomorphic family $g: X \times l^1 \to C$ of continuous linear functionals on I^I defined by

$$g(z, \{\xi_n\}) = \sum_{n=1}^{\infty} \xi_n \sigma_n(z).$$

Since $\bigcap_{n=1}^{\infty} \{z \in X : \sigma_n(z) = 0\} = \emptyset$ we infer that $g_z \neq 0$ for all $z \in X$. By hy-

pothesis, it follows that there exists a sequence $\{\beta_n\} \subset \mathcal{O}(X)$ such that

$$\sum_{n=1}^{\infty} \beta_n(z) \, \sigma_n(z) = 1 \quad \text{for all } z \in X.$$

This relation shows that $\operatorname{Ker} \omega_0 = \mathcal{O}(X)$. But this is impossible, because $\omega_0 \neq 0$. \square

REFERENCES

- [1] R. Bartle and L. Graves, Mappings between functions spaces, Transactions of the American Mathematical Society 72 (1952), p. 400-413.
- [2] L. Bungart, On analytic fiber bundles, I. Holomorphic fiber bundles with infinite-dimensional fibers, Topology 7 (1968), p. 55 68.
- [3] -, Holomorphic functions with values in locally convex spaces and applications to integral formulas, Transactions of the American Mathematical Society 111 (1964), p. 317-343.
- [4] R. C. Gunning and H. Rossi, Analytic functions of several complex variable, Prentice-Hall, Englewood Cliffs, N.J., 1965.
- [5] A. Kurato and M. P. Kas, *Theorems on lifting of vector-values functions*, Izvestija Akademii Nauk SSSR. Serija Matematičeskaja 4 (1975), p. 911-925.
- [6] S. Teleman, Topologie und differenziebare Manigfaltigkeiten, Berlin 1968.

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA, POLAND

Reçu par la Rédaction le 20.10.1979 en version modifiée le 18.10.1982