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A continuation method on locally convex spaces
and applications to ordinary differential equations
on noncompact intervals

by MassiMmo Furi and Patrizia Pera (Firenze)

Abstract. We prove a continuation result in locally convex topological vector spaces which
contains (in the context of Banach spaces) the well-known Leray-Schauder continu-
ation principle as well as (in the context of locally convex spaces) the famous Schauder—
Tychonofl fixed point theorem. We give some applications to boundary value problems for
ordinary differential equations in noncompact intervals.

Introduction. One of the most important topoldgical tools to prove the
existence of a solution for a system of n nonlinear equations in R" is the
following straightforward consequence of the Brouwer topological degree
theory:

THeoreM A (continuation principle in R"). Let U be an open subset of R”
and let ®: U x[0, 17— R" be a continuous mapping. Assume that

(@) the map ®,: U — R", given by x+®(x, 0) is linear (or, more general-
ly, affine);

(b) the equation ®(x,0) =0 has a solution in U;

(c) @~ 1(0) is a compact subset of U x[0, 1].

Then the equation ®(x, 1) =0 has a solution in U.

Observe that, because of the assumption (c), the linear (or affine) map @,
of Theorem A is invertible. Therefore, the equation ®(x, ) =0 can be
equivalently put into the form

0.1) x = T(x, 4),

with ' U x[0, 1] — R" continuous and such that T(x, 0) = &, ' (0)e U.
Now, as in R", many nonlinear equations in Banach spaces can be
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transformed into fixed point problems of the type
(0.2) x = ¥(x),

where ¥: U — E is a compact mapping defined on the closure of some open
subset of a Banach space E. This fact (and the difficulties in finding an
appropriate bounded closed subset of U which is mapped by ¥ into itself)
induced in 1934 [3] J. Leray and J. Schauder to introduce, in the Banach
spaces context, a topological degree theory for compact perturbations of the
identity. In particular, they obtained the following extension of Theorem A:

THEOREM B (Leray-Schauder continuation principle). Let U be an open
subset of a Banach space E and let T U x[0, 1] — E be a continuous map,
sending bounded subsets of U x[0, 1] into relatively compact subsets of E.

Assume that

(@) T(x,0) =x0eU for all xeU,;

(b) the fixed point set

F={xeU: x=T(x, 1) for some ie[0, 1]}

is bounded and does not meet the boundary 0U of U (i.e., F is a compact subset
of U).

Then the map x+— T(x, 1) has a fixed point in U.

In spite of the fact that the Leray-Schauder degree theory has been
extended to the context of locally convex spaces (see [4], [8]) the following
simple example shows that the Leray-Schauder continuation principle can-
not be extended just replacing the Banach space E by an arbitrary locally
convex (or even Fréchet) space:

Let C[0, o) denote the Fréchet space of all the continuous real
functions defined on the half line [0, o) with the topology of the uniform

convergence on compact subsets of [0, c0). Define the map ¥ from C [0, o)
into itself by

P (x)(1) = [(1+x(s)?)ds.
0

Clearly ¥ is continuous and by Ascoli’s theorem sends bounded sets into
relatively compact sets. Moreover, since the integral equation

x(t) = A 3'(1 +x(s)?)ds
0

admits a solution in C[0, v) only when A =0, the fixed point set
F = xeC[0, v): x =A¥(x) for some A1€[0, 1]} is a compact subset of
U = C[0, o©0). On the other hand, the equation x = ¥(x) does not admit
a solution in the space C[0, o).
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The reason why Nagumo’s degree does not apply to the above example
is probably due to the fact that a Hausdorff locally convex space does not
admit bounded open subsets, unless it is normable. On the other hand, in the
Nagumo notion of degree for a map x+—x— ¥(x) one needs to assume ¥
defined on an open subset of the space, and with image contained in a
compact set. This condition is clearly not restrictive in normed spaces (since,
in this case, compact maps are also locally compact) but very much so in
locally convex spaces, even in the case of linear operators.

In [8] an alternative extension of the Leray—Schauder degree theory for
map x+—x—¥(x), where ¥ needs not send the whole domain into a
relatively compact set, has been given. In that extension, however, the
domain U of ¥ is a finitely bounded open subset of the space E (i.e, the
intersection of U with any finite dimensional subspace of E is bounded).
Unfortunately, there are no such open sets in many important locally convex
spaces (C [0, oo) included).

Our aim is to prove an extension of the Leray-Schauder continuation
principle in locally convex spaces (Theorem 1.2 below) which contains, as a°
special case, the well-known Schauder-Tychonoff fixed point theorem.
Roughly speaking, our result establishes the existence of fixed points for
locally compact operators which are defined on a relatively open subset U of
a closed convex subset Q of the space E and which take values in E (and not
merely in Q). When Q = E, and E is Banach, our result coincides with the
Leray-Schauder continuation principle, while, when U = Q we get a gener-
alization of the Schauder-Tychonoff fixed point theorem. As far as we know
such an extension seems to be unknown even in the case E = R".

The reason why we prefer to deal with maps defined on convex sets
instead of on open subsets of the whole space is motivated by the applica-
tions to boundary value problems for ordinary differential equations in
noncompact intervals. In Examples 2.1 and 2.2 below we shall use in fact a
result of [1] on the continuity and compactness of operators associated to
boundary value problems for ODE’s in noncompact intervals. We point out
that in [1], for any given differential equation

0.3) xt)y=1(t, x(t), tel,

with f continuous and J a real interval, the space E considered is always the
same, no matter what boundary condition is associated with (0.3); namely, E
= C(J, R"), the Fréchet space of all the continuous real functions x: J — R"
with the topology of uniform convergence on compact subintervals of J. On
the other hand, when J is noncompact, the operator associated with a
boundary condition for (0.3) is usually not defined (or, if defined, not locally
compact) in an open subset of C(J, R"), but it does have nice properties
when restricted to a suitable subset of the space (see [1], [7]). Many authors
who deal with the asymptotic behavior of differential equations prefer to
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associate to any given boundary condition for (0.3) an appropriate Banach
space in such a way that the integral operator corresponding to that
condition turns out to be well defined on an open set of the considered
space. However, when using this method, the continuity and compactness
properties of the operator turn out to be, sometimes, really hard to check.
On the other hand, as it was pointed out in [1], given a boundary value
problem for an ODE, the continuity and the compactness in C(J, R") of the
related operator are straightforward consequences of the existence of suitable
a priori bounds for the solutions of the given boundary value problem. We
believe that the effort in proving the existence of such a priori bounds cannot
be avoided with any other method.

1. Abstract continuation principles. Let E be a Hausdorff locally convex
topological vector space and let 2 be a family of seminorms p: E— R,
generating the topology of E. In the sequel we will denote by &/ the partially
ordered and direct set

o = {a=(p,e). pe?, &> 0}

where for 2 =(p, €), B =(q, n)e & we have a < B if and only if p(x) < g(x)
for all xeE and ¢ > 7.

Theorem 1.1 below prepares the proof of a more general continuation
principle which will be stated in Theorem 1.2. Anyhow, we point out that
Theorem 1.1 is sufficient for all the applications to differential equations we
are interested in (see Section 2).

THEOREM 1.1. Let Q be a convex closed subset of E and let T: Q %[0, 1]
— E be a continuous map with relatively compact image.

Assume that

(i) T(x, 0)eQ for any xeQ;

(it) for any (x, A)e 0Q x[0, 1) with T(x, A) = x there exist open neighbor-
hoods U, of x in E and I, of A in [0, 1) such that T(U,n Q) xI;) = Q.

Then the equation

x=T(x, 1)

has a solution.

Remark 1.1. If E is metrizable, assumption (ii) can be expressed equiv-
alently in the following form

(i) if {(x;, 4))}jen is a sequence in 0Q x[0, 1] converging to (x, A) with
T(x,A)=x and 0< A <1, then T(x;, 4)eQ for j sufficiently large.

Remark 1.2. We point out that Q always coincides with dQ when E is
not normable and Q is bounded (as it happens, for instance, in the examples
given in Section 2).

In proving Theorem 1.1 we need the following
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Lemma 1.1. Let Q be as in Theorem 1.1 and let K be a compact subset of
E such that K nQ # Q. Then, for any o = (p, £)c A, there exists a continuous
map y,: K — E whose image is contained in a finite dimensional space and such
that

(a) 7.(KnQ) =0,
(b) p(y.(x)—x) <& for all xeK.

Proof. Let a =(p, €) be given. For any xeE, denote
U,(x) = {yeE: p(y—x) <e}.
Since KmQ is compact, there exist x;, X;,..., X,e KnQ such that
KnQc U U,(x;). Consequently, K\ U U,(x;) does not intersect K NQ
and so, smce it is itself a compact set there exnst g0 <& and

x,+,...,xeK\Lr)U,(xi) such that K\UU(x)c U U, (xi) and

i=r+1

(K Q) U U,,(x)) = @, where ao = (p, &o).

i=r+1

Let ¢o;: K — R, be given by
s_p(x_xi)’ era(xl')’ l=1s 23-'-5 r,
i(x) =

0, elsewhere,
(x)__ ao_p(x_xl')’ erao(xi)3 i=r+1’ ceey 8
e\ = 0, elsewhere,

s

and define y,: K — E by y,(x) = ) 0;(x) x;, where o;(x) = g, (x)( Z g,(x))
i=1
Clearly, y, is continuous, its image is contained in a finite dlmenswnal
s

space and p(y,(x)—x) < Y 6;(x) p(x—x;) <e. Moreover, if xeKNQ then
i=1
g(x)=0fori=r+1,...,s so that, for xe KnQ, y,(x) turns out to be in
fact a convex combmatlon of the elements x,, ..., x, of Q. Thus, since Q is
convex, 7,(K nQ) is contained in Q. Q.E.D.
Proof of Theorem 1.1. Let us suppose first dim E < oo. Without loss
of generality we may assume that E is endowed with an euclidean norm. So,

the map r: E — Q which associates to any x the closest point of Q is well-
defined.

Set
F = {xeE: T(r(x), A) = x for some i€[0, 11},

F,={xeE: T(r(x), ) =x}.
Since for each 1e[0, 1] the map x — T(x, A) has relatively compact
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image, from the Brouwer fixed point theorem, it follows that F, is nonempty
for every A. Moreover, F and F, are compact sets and, by (i), F, is contained
in Q.

We have to show that F, nQ # @. By contradiction let us suppose the
emptiness of F;, Q. Let V be any open neighborhood of Q such that
F,nV =@. We will prove that there exists (y, )€ V' x[0, 1) such that
T(r(y), 4) = y. Suppose not and define o: E— [0, 1] by

dist (x, F n V) 0
dist(oV, Fn V) |’

Clearly ¢ is continuous and o(x) =1 in Fn V¥, o(x) =0 in E\ V. Hence, by
using again Brouwer’s theorem, we obtain that there exists ye E such that
T(r(y), a(y)) = y. Since, by (i), Fo = Q = V, we deduce immediately that y is
in fact belonging to V. Thus, a(y) =1 so that ye F, NV, contradicting the
definition of V.

Let now &€ > 0 be such that dist(F,, Q) > ¢ and define

o (x) = max {] -

V; = (xeE: dist(x, Q) <¢/j}, jeN.

By the above considerations, for each je N there exists (y;, 4;)e oV; x [0, 1)
such that T(r(y;), 4;) = y;. Without loss of generality we may assume 4; —» 1
and y; — Xe dQ, so that T(X, ) = X. Observe that it also results 4 < 1 since
we are supposing F; nQ = Q. Hence, by (ii), there exist open neighborhoods
Us and I; such that T((U;n3Q) xI;) < Q. On the other hand, (r(y)), 4;)
belongs to (Uz ndQ) xI; for j > j but T(r(y;), ;)¢ Q contradicting (ii). Thus
F,nQ # @ and the theorem is proved in the case dimE < 0.

Let us now consider the general case. Observe that the assertion of the
theorem is equivalent to the following:

(1.1) inf {p(x—T(x, 1)): xeQ]} =0 for all pe 2.
In fact, if the above infimum is equal to zero for all pe &, then for any
a = (p, £)e o there exists x,€Q such that p(x,— T(x,, 1)) <e&. Thus the net
fx,— T(x,, 1): ae o/} converges to zero and since the set {T(x,, 1): ac 4]
is relatively compact, without loss of generality we may also assume
the convergence of T(x,, 1) to some X. So x, converges to X as well and
T(x, 1)=x.

We therefore will establish (1.1). By contradiction, suppose there exist
pe? and € > 0 such that

(1.2) inf {p(x—T(x, 1)): xeQ} =¢.
Then, in particular, x # T(x, 1) on 0Q so that, by assumption (ii), there exists
an open subset Q of 4Q x[0, 1] containing the compact set (x, A)e

00 x[0, 1]: T(x, ) = x} and such that T(Q) = Q. By an argument similar
to the one used above, it is not hard to see that the pair (p, & can also be



Method on locally convex spaces 337

chosen in such a way that
{(x, He 0Q x[0, 1]: p(x—T(x, J)) <&} < Q.

Let K =T(Q x[0, 1]). K is a compact set and K nQ # @ because of
(i). Take y,: K— E, «a = (P, &), as in Lemma 1.1 and denote by E, the finite
dimensional space spanned by the image of y,. Let T: (E, nQ) x[0, 1] — E,
be defined by T, = y,0T Clearly, T, is continuous and 7,(x, 0)e Q for all
xe Q. Moreover, if x belongs to the (relative to E,) boundary of E; nQ and
T.(x, 2) = x for some Ae[0, 1), then, in particular, xe 6Q and p(T(x, 1)—x)
< €. Consequently (x, 4)e 2, which implies that T(x, 4) and, thus, T,(x, 4)
belong to Q. Therefore, the first part of our proof applies to the map T,
yielding the existence of XeQ such that T;(X, 1) = X. Thus, p(X—T(%, 1)) <&
contradicting (1.2). Q.E.D.

Sometimes, condition (ii) of Theorem 1.1 can be easily checked if one
knows suitable a priori bounds on the image set T(Q x[0, 1]), that is, in
other words, T(Q x [0, 1]) lies in an appropriate subset £ of E. We have in
fact the following consequence of Theorem 1.1.

CoroLLARY 1.1. Let T: Q x[0, 1] — 2 < E be continuous with relatively
compact image. Assume that

(i) T(x,0eQ for all xeQ,;

(11) for any Ae([0, 1], the map x+ T(x, A) does not admit fixed points on
the boundary of Q relative to Z (X\Q N Q).

Then the equation x = T(x, 1) has a solution.

Let us now establish the following generalization of Theorem 1.1.

THEOREM 1.2. Let Q be a convex closed subset of E and U a (relative to
Q) open subset of Q. Let T: U x[0, 1] — E be a locally compact continuous
map and let T,: U — E denote the map T,(x) = T(x,0), xeU.

Assume that

(i) To(U) is a subset of Q;

(ii) the map T, admits a continuous extension Ty: Q — Q with relatively
compact image and without fixed points in Q\U;

(iil) the set {xeU: T(x, ) = x for some Aef0, 11} is compact;

(iv) for any (x, )e(U ndQ) x[0, 1) with T(x, A) = x, there exist open
neighborhoods U, of x in U and I, of A in [0,1) such that
T(U.néQyxI;) < Q.

Then the equation

x=T(x, 1)

has a solution in U.
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Proof. Since Tis locally compact and since, by assumption (iii), the set
F={xeU: T(x, A) = x for some Ae[0, 1]}

is compact, there exists an open neighborhood V of F in U such that V < U
and T(Vx[O, 1]) is relatively compact. Without loss of generality we may
assume that the family of seminorms £ which generates the topology of E
has the property that if pe 2 and A > 0, then Ape 2. So, for any xeF, let
px€ #? be such that

inf {p,(y—x), yeQ\V} > 2
and denote Up,.1n(x) = {yeE: p,(y—x) < 1}. There exist x,, ..., x,e F such

that {J U, .1)(x;) = F. Moreover,
i=1 '

U Vg () 0(Q\V) = ©.
Define 6: R— [0, 1] by

1, t <1,
6()=1<2-1, 1<t
0, t =2,

and let ¢: Q —[0, 1] be given by o(x) =4 (min {p, (x—x), i=1,...,s}).
Clearly we have o(x) =1 for xeF and o(x) =0 for xeQ\V.
Let us now define T: Q x[0, 1] — E as follows

T(x, 0(x)4), (x, )eU x[0, 1],
To (x), (x, He(@\U) x[0, 1].

By (i) and (ii), and since o(x) =0 in U\V, it follows that the map T is
continuous, has relatively compact image and T(x, 0)eQ for all xeQ.
Observe also that xe Q satisfies T(x, 4) = x for some e [0, 1] if and only if
xeF and T(x, 4) = x. So, if (x, A)e Q x [0, 1) is such that T(x, A) = x, then
o(x) = 1 and, by assumption (iv), one can find neighborhoods U, = U, and
I, = I, such that 7‘(([7, N 0Q) xIAA) < Q. Therefore, the map T satisfies all the
assumptions of Theorem 1.1 and, thus, there exists XeQ such that T(x, 1)
= X. As observed above, this implies that ¥ is a fixed point also of T(-, 1).
Q.E.D.

Remark 1.3. Assumption (i) and (ii) of Theorem 1.2 are clearly satisfied
in the case when T(x, 0) = xoe U for all xe U.

Easy consequences of the above theorems are the following classical
results:

CoroLLARY 1.2. [2] (Schauder-Tychonoff fixed point theorem). Let Q be

Tix, 4) = {
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a convex closed subset of a Hausdorff locally convex topological vector space E
and let T: Q — Q be a continuous map with relatively compact image. Then T
has a fixed point.

CoroLLARY 1.3 [6] (Rothe’s type theorem). Let Q be a convex closed
subset of a Banach space E and let T: Q — E be a continuous map with
relatively compact image and such that T(0Q) = Q. Then T has a fixed point.

Proof. Take x,eQ and apply Theorem 1.1 to the map (x, A)e
Q x[0, 11— AT (x)+(1 —2A) xo. Q.E.D.

The next result 1s an extension of the Leray-Schauder Continuation
Principle and reduces to it when the convex set Q is the whole space.
Moreover, it also turns out to be a generalization of Schauder’s fixed point
theorem.

CoroLLARY 1.4. Let Q be a convex closed subset of a Banach space E and
U a (relative to Q) open subset of Q. Let T: U x[0, 1] — Q be a compact map
(i.e, T sends bounded sets into relatively compact sets)y such thatr T(x, 0)
=xoeU for all xeU.

Assume that the set

{xeU: T(x, 1) = x for some 1[0, 1]}

is a compact subset of U.
Then the equation

T(x, 1) =x
has a solution in U.

2. Applications to differential systems. Let J be a (possibly noncompact)
real interval and let C°(J, R") denote the Fréchet space of all continuous
functions x: J— R" with the topology of the uniform convergence on
compact subintervals of J. As a generating family of seminorms for this
topology one may consider {p,: I compact subinterval of J}, where p,(x)
= sup {|x(?)], te1}. We recall that a subset 4 of C°(J, R" is bounded if and
only if there exists a positive continuous function ¢: J— R such that
[x(t)] < @(t) for all teJ and xe A.

Consider the boundary value problem

x()=f(t, x(), teld,

xeSs,

(2.1)

where f: J x R" — R" is a continuous {unction and S is a nonempty subset of
C°(J, R™. Observe that, since S is contained into C°(J, R"), any solution of
(2.1) is defined on the whole interval J.

Our aim is to show how the abstract continuation principles obtained in
Section 1 can be used to deduce existence results for probiem (2.1). To this
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end, it turns out to be convenient to apply a sort of Schauder’s linearization
technique to the system

x(t)=g(t, x(1), x(1), ), teld, Ae[0, 1],

xe s,

(2.2

where g: J x R* x R" x[0, 1] — R" is a continuous homotopy which, for A = 1,
coincides with f on the diagonal of R" x R". More precisely, we can state the
following existence result:

THEOREM 2.1. Let g: J x R* x R" x[0, 1] — R" be continuous and such that
glt,s,s, 1)=f(t, s) for all (t,s)eJ xR".

Assume that

(c,) there exist a convex closed subset Q, of C°(J, R") and a bounded
closed subset S, of S such that the problem

%(0) = g(t, x(0), q(0, 2), teJ, Ae[0, 17,

X Esl,

(2.3)

is uniquely solvable for each (q, A)e Q, x[0, 17];

(c,) the solution of (2.3) corresponding to any (q, 0) belongs to Q,;

(ca) if Wxj, A))}jen is a sequence in S, x[0, 1], with 4;— 4€[0, 1) and x;
converging to a solution xe Q, of (2.2) (corresponding to 1), then x; belongs to
Q, for j sufficiently large.

Then system (2.1) has a solution (in Q, N §,).

The proof of Theorem 2.1 requires the following continuity and com-
pactness result obtained by Cecchi-Furi-Marini in [1].

LEmMMA 2.1. Let h: J xR x R™ — R" be a continuous function and let S be
a nonempty subset of C°(J, R".
Assume that

(a;) there exists a bounded subset B of C°(J, R™) such that for any be B
‘the boundary value problem

X(ty = h(t, x(1), b(t)), tel,
xes§,

admits a unique solution x = H (b);
(a;) H(B) is bounded.
Then H(B) is a relatively compact subset of C°(J, R".

Moreover, if S is closed, the operator H: B— S is continuous provided
(a,), (a;) are satisfied.

Proof of Theorem 2.1. Let T: Q, x[0, 1] — S, be the operator which
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associates to any (q, 4) the unique solution x = T(q, 4) of (2.3). Clearly, any
fixed point of T(-, 1) is a solution of (2.1) belonging to @, NS,.

Observe first that the bounded set Q, »S, is nonempty since, by (c,),
T(q, 0)eQ, for each q. Hence, co(Q, nS,) — the closed convex hull of
Q. NS, — is bounded as well and so, by applying Lemma 2.1 with

B={beC’(J, R "): b(t) = (g(1), 4), qeco(@, NSy), 4e[0, 1]},

we obtain that the operator T E(Ql nS,) x[0, 1] — S, is continuous and
has relatively compact image. We are, therefore, led to the situation consid-
ered in Theorem 1.1 with now T as above and Q@ = co(Q,; N S,). Assumption
(i) of Theorem 1.1 obviously follows from condition (c,). In order to verify
(i), it suffices to show that if {(g;, 4))};cv is a sequence in (é‘E(Q1 N Sy))
x[0, 1] with 4; - A€[0, 1) and g; converging to a solution xeQ@; N §; of
(2.2) corresponding to 4, then T(q;, lj)eéB(Ql N S,) for j large enough (recall
Remark 1.1). In fact, the sequence {T(g;, 4))};v =S, converges to x, so that,
by assumption (c,), T(g;, 4;) belongs to Q, and, thus, to co(Q; N S,) for j
sufficiently large. Q.E.D.

Theorem 2.1 contains, in particular, the following existence result which
has been proved in [1] with the aid of the Schauder-Tychonoff fixed point
theorem.

CoroLLARY 2.1. Let g: J xR"xR"— R" be continuous and such that
g(t,s,s)=f(t,s) for all (t,s)eJ xR". Assume there exist a convex closed

subset Q, of C°(J, R") and a bounded closed subset S; of S ~Q, which make
the problem

X(t)=g(t, x(1), q(0), teJ,
xXes,,

uniquely solvable for each qeQ,.
Then problem (2.1) admits a solution.

Proof. It suffices to observe that assumptions (c;) and (c3) of Theorem
2.1 are obviously satisfied since S, is contained in SN Q,. Q.E.D.

The next result which is concerned with boundary value problems
associated with scalar differential equations, is an easy consequence of
Theorem 2.1 and, although a little involved in its general formulation, it
permits one (see Example 2.1 and 2.2 below) to deal directly with the scalar
equation instead of transforming the equation into a system.

For any nonnegative integer ie N, we will denote by C'(J) the Fréchet
space of all C* functions x: J — R with the topology of uniform convergence

on compact subintervals of J of the functions and of all their derivatives up
to the order i.
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Clearly, a subset 4 = C'(J) is bounded if and only if there exists a
positive continuous function ¢: J — R such that

xP () < @(t) for all xed, 0<j<i, ted.

However, it is known that to show the boundedness in C(J) of a subset 4 it
suffices to prove the existence of a positive continuous function ; J — R
such that
(Ix@+Ix@) <y (t) for all xe A, tel.
Observe also that C'(J) can be embedded as a closed subspace in
C°(J, R*") by means of the map x—(x, xV, ..., x@).
THEOREM 2.2. Consider the boundary value problem

xXP() =f(t, x(0), xV@), ..., x"" (), ted,
xes,

where f: J xR"— R is continuous and S is a subset of C°(J).
Let g: J xR* xR' x[0, 1] — R (k < n, I < n) be a continuous function such
that

(2.4)

g(t; SOa sy Sk—l; SO) sy Sl*l; l) =f(t; SO; DR sn-l)
for all (t; sq, ..., S4—1)€J xR".
Assume that

(v1) there exist a convex closed bounded subset Q, of C'~'(J) and a
bounded closed subset S; of C*~'(J) contained in S such that the problem

xP(1) =g(t, x(@), ..., x* V), q(), ..., ¢ V), 4), teJ,

xes,,

(2.5)

is uniquely solvable for each (q, A)e Q, x[0, 1]:
(v2) the solution of (2.5) corresponding to any (q, 0) belongs to Q,;

(va) if (x;, A)}jen is a sequence in C"'(J))nS, x[0, 1], with 1,
— A€[0, 1) and x; converging in C"~'(J) to a solution xeQ, of

x"(t) =g(t, x(t), ..., x*7 (), x(1), ..., x\" (), 4), ted,

xel,

(2.6)

then x; belongs to Q, for j large enough.

Then problem (2.4) has a solution (in Q, N S)).

Proof. By (y,), the set 0, NS, is nonempty. So, since Q, NS, and S,
are bounded in C'"!(J) and C*~!(J) respectively and g is continuous, it
follows that the solutions xeS; of (2.5) corresponding to pairs
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(g, Ae(@Q, nS,) x[0, 1] and their derivatives of order n are uniformly bound-
ed by a positive continuous function ¥: J — R. Therefore, as previously
observed, this guarantees the existence of a positive continuous function
¢: J — R such that [x9(f)] < ¢(t), 0<j<n teJ. Hence, the set

S, =8, 0{xeC" () X"V (1) < @ (1)

is a nonempty closed bounded subset of C*~'(J).

Let now @, denote the closure in C"~! of the convex hull of @, NS,
and observe that, for any (g, )eQ, x[0, 1], problem (2.5) has a unique
solution xe S,. Moreover, by assumption (v,), if \(xj, 4;)}jen 1s @ sequence in
S, x [0, 1] with 4;— 4€[0, 1) and x; converging (in C" 1'(J)) to a solution
xeQ, of (2.6), then x; belongs to Q, for j large enough. Therefore,
since O, and S, can be embedded into C°(J, R") via the mapping
x—(x, xV .., x"™ V), by regarding (2.4) as a first order differential system,
the assertion of the theorem will follow directly from Theorem 2.1. Q.E.D.

We illustrate now Theorem 2.2 presenting some applications to differen-
tial equations on noncompact intervals.

ExampLE 2.1. Consider the second order boundary value problem

@7 X()+%(0) = (¢, x(1)), te[0, + o),
' x(©)=0, lm x(1)=0,

where f: [0, +00) xR — R is a continuous function satisfying the following
hypotheses:

(H,) there exists a positive constant M such that f(t, s);-o for |s| =2 M
and all t > 0;
(H,) for all R >0,

[ar()dt <o and limag(t) =0,

t— o
where agx(t) = lsup |f (¢, 9).
s|<R

Our aim is to prove the existence of a (classical) solution of (2.7). We
will apply Theorem 2.2 with n=2, k=2 1=1, g: [0, ) xR* xR x[0, 1]
— R given by g(t, sq, s1;70; A) = A (t, ro)—s,. In order to construct the
subsets O, and S,, observe first that, if x is a solution of (2.7) such that
max |x(t)] = |x(tg)) > M, then xX(tg) =0 and, by (H,), X(to) signx(to)

20
=f(to, x(to)) Signx(to) > 0, which is a contradiction. Hence, the possible
solutions of (2.7) must satisfy the a priori bound

Ix()) <M for all t 20.



344 M. Furi and P. Pera
Consider the convex closed subset of C°([0, x))
Q, = {qeC°([0, 0)): gl < M+1 for t > 0}.
It is not hard to see that, for any (g, A)e Q; x[0, 1], the linear problem
X(+%() =Af(t, q@), =0,

x(0) =0, lim x(t) =0,

1o+ o

(2.8)

has a unique solution x given by
x(t) = —,I[j'f(t, q(‘c))dt+e"(je‘f(r, q(v))dr— [f(x, q(t))dr)].
1 0 0
Hence

x(Ol <(1—e™) _[O!MH(T)dT+e—‘(je'aM+1(T)d‘t+jau+1(f)df)
t 0 0

and x(t) =0eQ, for A =0 and all geQ,.
Let y(t) denote the right-hand side of the above inequality. Clearly, y(0)
=0 and, by standard calculations, one may check that lim y(f) = 0.

Moreover, o
@ =[A(e™ [f(r, a@)dr—e™* [€'f (z, q(x))dr)
0 0
<(e™ gauﬂ (‘c)dt+e"£e'au+1(‘r)dt) =7, (¢).

Therefore the set
S, = {xe C'([0, )): Ix (O < 7(t), X() < y,(0)}

is a (convex) bounded closed subset of C! ([0, o)) containing the solutions of
(2.8) which correspond to pairs (g, )eQ, x[O0, 1].

In order to apply Theorem 2.2, it remains only to verify assumption (y;).
Take a sequence {(x;, 4))};ev = S; x[0, 1], with 4;—~ 4 and x; converging in
C! to a solution x; of

() +x(t) = A (t, x(®)), =0,
x(0)=0, Lmx()=0.

t—=a

Thus, since y(0) =0 = lim y(t), there exist ¢t,, t,€[0, ©) such that

ft—2@®
lx;(0)) < y(8) < M+1 for all te[0, t)) U(t,, ) and all je N. On the other
hand, the sequence {x;}; converges uniformly to x, in the compact interval
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[t0, t] and an estimate similar to the one obtained above for the solutions
of (2.7) shows that |x,(¢t)] < M for all t. Therefore,

Ix;(0l <« M+1  for te(to, to) and j > jo,

which implies that x; belongs to Q, for j large enough as required.
ExampLe 2.2. Let f: [0, 1] xR — R be continuous and such that:
(K,) there exists M > 0 such that f(t, s)y»0 for |si = M and te[0, 1].

Consider the problem

(@) =f(t, x(®)), t€(0,1),
lim x(t) = lim x(t) =0.
t=0t t=17-
By a solution of (2.9) we mean a function xeC’((O, 1)) satisfying the
boundary condition
x(0*) = lim x() =0, x(17)= lim x(t) =0.
-0t t—1"
As in Example 2.1, assumption (K,) guarantees that all the possible
solutions of (2.9) satisfy the a priori bound |x(¢)) < M for te(0, 1). Again, a
suitable choice of the convex set Q, turns out to be

(2.9)

0, = {geC°((0, 1)): lg()) S M+1 for 0 <t <1}.

Observe that, for any (g, )eQ, x[0, 1], the linear problem

t3(t) =AM (t, q(), te(0,1),

= x(09) = x(17) =0,

is uniquely solvable. To see this it suffices to observe that the solution of the
Cauchy problem

f(t, q()
t

X(t) =4 , x@=0, x(=0, re(0,1),

is defined and uniformly continuous in the interval (0, 1). Thus, it extends
continuously to [0, 1].

Let now o and § denote respectively the solutions of the boundary value
problems

ti()=K, x(0%)=x(1")=0, 1re(0,1),
and
tX(t)= —K, te(0,1), where K= sup |f(t,s).

tg0,1)
IslsM+1

x(0*) =x(17) =0,
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A simple calculation shows that a(f) <0 < B(¢) for each te(0, 1). More-
over, if x is any solution of (2.10) corresponding to some (q, )eQ, %[0, 1],
then x—a is concave and x—f is convex, so that a(f) < x(t) < f(¢) for
te(0, 1).

Hence, setting S; = {xe C°((0, 1)): a(t) < x(t) < B(r)} and recalling that
a(0*)=a(17)=0, B(0*) = B(17) = 0, by an argument analogous to the one
used in Example 2.1, we obtain that if {(x;, 1)}y is a sequence In
S; x[0, 1], with 4;—»4e[0,1) and x; converging to a solution (which,
clearly, belongs to Q,) of

() =Af (¢, x(®), x(O0T)=x(1")=0, 1e(0,1),

then x; belongs to Q, for j sufficiently large.

Consequently, in this problem (2.9), the existence of a solution follows
directly from Theorem 2.2. Observe finally that the above argument yields
the same conclusion even in the case when f is defined only in (0, 1) xR
provided f is assumed to send bounded sets into bounded sets.
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