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1. Introduction

Let f(x) be a real function defined in Q := [0, 1]. The Bernstein polynomial
associated with f is defined by

M) B"(f;x):= Zoﬁ-(:_')x"(l—x)"“, x€Q,
where f;:= f(i/n) for i=0,1,...,n.

Joining ((i—1)/n, f;-,) and (i/n, f;) by a line segment, for i =1, 2, ..., n,
we get a piecewise linear continuous function which is denoted by f(x) and
called the Bézier polygon of B"(f; x).

It is easy to show that:

(i) If f,(x) is convex in Q then so is B"(f; x).

(i) If f(x) is convex in Q then

) B'(f;x)=2B""'(f;x), n=1,2,..., for xeQ.
(i) The variation diminishing property holds, i.e.
) VIB"; Q1< Vi [/ Q).
with equality if and only if f,(x) is convex or concave. Here
d*B"
(4 V B"' = d ’
) [ ’ Q] g dxz X
. n—2 :
(5) Vilfa; @Q1:=n Y 14 f},
i=0

Afii=fio—f,, i=0,1,...,n=-1.

[45]
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G. Chang, P. Davis and J. Hoschek (see [1], [3]) extended these results
to the Bernstein polynomials over triangles. In the present paper we attempt
to extend these results to the Bernstein polynomials over a k-dimensional
simplex Q. In this case the definition of a variation like (5) called now the
variation of the Bézier net is more complicated, but in the case of k =1, 2 it
coincides with the variations as given in [2], [3]. We also give an answer to
the problem whether the variation of the Bézier net is equal to Var(4f)).
Here the Laplace operator 4 is taken in the distribution sense (see a remark
in Section 3). These problems were suggested to me by Professor Z. Ciesiel-
ski.

2. Notation

Let us begin with some definitions. Let Q:=[P,, P,, ..., P,.,] be the
k-dimensional simplex with vertices P,, P,,..., P,,,, where P,eR* for
i=1,2,...,k+1. By Q, (1 <a<k+1) we denote the (k—1)-dimensional
face of the simplex Q which does not contain the vertex P,. By
W:=[T,, T, ..., ,+;] we denote the simplex with the vertices
=0,..011,..1), wherei=1,2,...,k+1, and by K,(W) the sub-
division of the simplex W such that a simplex Q belongs to K,(W) if and
only if

Q=4 . +v

igig...ig

where

Aliyiy = Wx1s ..., %) ER*; 0 < X, SX, S ... 8 X5, S 1/n},
iy, i3, ..., i is a permutation of {1,2,...,k}, and the coordinates of the
vector v = (v,, Vs, ..., U;) €R* satisfy the following conditions:
@) nu,eN=10,1,2,...) for i=1,2,...,k,
(i) 0<v, <1, ... < <1
Now, let L: R* - R* be an affine transformation such that

L()=P, fori=1,2,... k+1.

Then L transforms the subdivision K,(W) of the simplex W to some
subdivision of the simplex Q, which we denote by S,(Q). It is known that
each point PeQ can be uniquely expressed as

k+1
P= Z u,-P,-
i=1

1]
with u;+u,+ ...+ =1L 4, 20, 1 <i<k+1.

The numbers u,, u,, ..., 4., are called the barycentric coordinates of P
with respect to the simplex Q. We identify the point P €Q with its barycen-
tric coordinates and write P = (u,, u,, ..., 4,,,). For neN and a given
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function f: Q =R we define
F,:= {ﬁﬁfﬂ 1=f<§>, peN**1, |8l = n}

k+1

ﬂ=(ﬁl’ ﬂ29--~9 ﬂk+l) and lﬂ' Z ﬂl

where

We also define

(6) B"'(f; P)= Z JgJp(P) for PeQ
1Bl=n
where
n! n! Y 8
(7) Ji(P):= LYY ARTAIRT LA

B! Bi!Ba!... Brsy!
and P = (uy, Uy, ..., U4 1).
The polynomials Jz(P) are called the basic Bernstein polynomials.
B"(f; Py is called the n-th Bernstein polynomial over the simplex Q. Setting

By :=(P.f): _(& ﬁg _ Bk+l fp)

n’

we get a point on the surface associated with the function f(P). The points
Py with |f] =n are called the Beézier points of B"(f; P). For any simplex
Q€S,(Q) we have k+ 1 Bézier points. Joining them by a k-dimensional plane
we obtain a continuous piecewise linear surface f,(P), which is called the
Bézier net of B"(f; P) over the simplex Q.

Let E; (1 <i<k+1) be the partial shift operator defined by

Ei .fﬂ = ‘fﬁ+e‘i

where |f| =n—-1, & =(0,...,0,1,0, ..., 0 eR¢*1,

For convenience we introduce
®) Dij(fg):= —(E;—Ei+ )(E;—Ej41) fp

where |} =n—2, 1 <i<j<k+1 and E,,,:=E,.

3. Results

The first theorem generalizes a result of G. Chang and P. Davis [1].

THEOREM 1. The convexity of the Bézier net f,(P) over Q is equivalent to
the following inequalities:

©) D;j(fg) 20
Jor 1<i<j<k+1, |fl=n-2
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The proof is standard and will be omitted.
The next theorem is also a multidimensional analogue of a.theorem of
G. Chang and P. Davis.

THEOREM 2. (i) If the Bézier net f,(P) over Q is convex then so is the
Bernstein polynomial B"(f; P).
(i) If f(P) is convex in Q then we have

(10) B*(f; P)>B"*'(f;P) for PeQ,n=1,2,...

Proof. (i) The proof is based on the well-known convexity test for any
function in C?(Q) and the following

LEMMA 1. For the Bernstein polynomial B"(f; P) we have the equality

@B"(f; P) _n(n—1) T z’: ne 104, )

(11) =
0x, 0, klel Bl=n—2 1€i<j<k+1 a=i+1
J
X( Z nalQaIs er')Du(fﬂ)J;(P) fOi’ r, r’=1, 2,---9k
a=i+1

where PeQ, e,=(0,...,0,1,0,...,0)eR*, r=1,2,...,k |Q|:=vol,Q,

10, := vol,_ 1 (Q,), (*, *) is the scalar product in R*, and n, is the unit outward
normal vector to Q,.

The tedious proof will be omitted.

(i) G. Chang and P. Davis ([1]) proved the statement for k = 2. For
k > 2 the proof is similar. )

Now, we define a variation of the Bernstein polynomial B"(f; P) by

(12) VIB"; Q]:= [|4B"|
e

where for simplicity B" stands for B"( f; P) and 4 is the Laplacian. The
variation V,{f,, Q] of the Bézier net f,(P) is defined by
- n!(k—1)! J

13) W Q):= |Dy; (fp)l N Q||
13 Vil Q1= G oIl 2 1es Bnen L 2, el
where [|-}I7 = (-, °). )

For k = 2 the variation V, [f,; Q] of the Bézier net coincides with the
variation introduced by T. Goodman [3]. Our next theorem generalizes the
result obtained by G. Chang and J. Hoschek [2].

THEOREM 3. For the Bernstein polynomial over the simplex Q the variation
diminishing property holds. More precisely, we have

(14) V[B"; Q1 <V, [f,; Q]

with equality if and only if f,(P) is either convex or concave.
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For k =1, 2 the theorem was proved by G. Chang and J. Hoschek [2].
For k > 2 the proof is similar.
Since

(15) V[B"; Q] = Var(4B")
where Var(4B") is the total variation of the measure

v(4):= | 4B",
4

the question arises whether the equality

(16) Vi[fs; @1 = Var(4f)
holds.

Remark. Here the Laplace operator 4 is taken in the distribution sense
and because Af, is a measure (not necessarily non-negative), the total

variation Var(4f) is well defined.
The following lemma solves this problem for k =1, 2.

LemMma 2. For k =1, 2 the equality (16) holds.

Proof. For k =1 the proof is very simple.

If k = 2 the simplex Q = [P,, P,, P;] with vertices P, = P,(x,, y,), P,
= P,(x,, y3), P3 = P3(x3, y3) is a triangle. Without loss of generality we can
assume that

Xy —X3 Xp—X3
det[P,—P;, P,— P,]:=det > 0.
[Py =Py, Po=Ps]:=d l.v -3 yz—st
The Stokes theorem yields

(17) (A1) (0) = jf..Afp

6f,,m2 (pda)

-- 3 (5 Tmpdo+ |

nes,,«z)

(aaf"m,(pda+j mztpda>
ﬂes..(Q)r— dy

where ¢ eD(Int Q), the space of test functions, (m,, m,) is the unit outward
normal vector to the boundary 02, and o is the Lebesgue measure on 0Q.
First we consider the sum

A

(18) S [ %o pdo.
NeSy(Q) 1y Oox

If Q, &Q (for Q€S,(Q)) we can find a second triangle €' such that Q, = Q.

4 — Banach Center 1. 22
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Thus the sum (18) is equal to

(19) ) (j' “m, pdo+ j' @r"mltpda)
28, \y
2 ¢0y
Since (m), my) = —(m,, m,) the expression (19) is equal to
1 o T\,
(20) = ( ——— ]| @odo
0 £0y

where f:,I,,, f.l, are the restrictions of fito @, Q, respectively. We can assume
that the barycentric coordinates of the vertices of the triangles
= [Ul’ UZ’ US]’ Q= [U’ ’ '2’ U’3] ES,,(Q) (Ql ¢ Ql’ Ql = Qll) are the fol-
lowing:

. k ‘_1 { 1 k '—l j k l
Ul = (Lg —]_9 _)9 U2 = (l_—a .i, _)’ U3 = (l_’ ‘L’ L )’
nnn n n n n.on n

i—2 j+1 k+1 i—1 j+1 k o fi=1 j k+1
U’l=( ,J ’ )1 ’2=< ’J a_)a U3=( "L, )9
n n n

for i+j+k=mnj k=20,i=2
Now by elementary calculations we get

det[ Yi—)s Y2=—J)3 :|
1) ¥la - _n f(i.j.k)— G- 1,4,k+1) f(i—1,1+1,k)"' G—1.j.k+1)
0x det[Pl—P3 PZ—P3] ’
det[ ya—n Y2a—)3 ]
(22) ANl =n f(i—z.j+1.k+1)— Gi-1,5.k+1) f(i-l.jn,k)—f(i—l,j.kn)
ax dct[Pl—P3 PZ—P3] ’
Ya—Yy2 X3 —X3
23) m = , My = .
‘ =Te 0 ™ T
Thus the sum (20) is equal to
n(y,—y3)?
(24) ' Z _2é”Q—3l(ﬁi—l.j+l,k)+ﬁi—l,j,k+l)_ (i,j,k)_f(i—z.jn,kn)) .‘ @do
e : M
iz2
"()’2"‘.\’3)2
- - B2V b furie | @da
Zk 21Ql1g,| T fi
jk2
iz2

"(}’2 J’3)
= — Jis @do.
H,;Z 2 210101 ””"’,{

i 20
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In a similar way we obtain

@ Y [Fmedo=- ¥ MEXp f (edo.
oSy o ivjeh=n-2 21001Qsl &
Hence
& . P ) n|Q|
26) (——m +=—m do = ——D,3 f do.
( )QESZ,(QHS‘; ) R M 1T ”"“’5"’
Now it is easy to check that
af;. af; ) n|Q,l
27 —my+—m, |pdo = — ——Dy, fi do,
( )neg:,,(o):!z(ax ' dy 2 )? |+j+kzn 2 2|0l 12Ji “)j(p '
& & ) n|Qs|
28 ( m+—m (pda—— Dys fujn | @do.
( )neg,:,(mdf; x Ty ,‘Zz 2101 ¥ “"’Js
By (26), (27), (28) the variation of f, is equal to
Var (4f)
1
=300, 1@ 1D Sl +1Qal 1Dz Sl +1Qal D22 S
i+j+k=n—-2
= Vi [/x Q1.

In case k > 2 Equality (16) does not hold. More precisely the two variations
Var(4f,), V,[f,; Q] are incomparable.

ExampLE 1. Let
1 for B =ne
= Dodi=1,2,...,k+1, |l =n.
S {o for B #né, *L Afr=n
One can prove that the following equalities hold:

n! (k l)' k+1

Vil 01 = iz 2, Pe1 Urpe 10511

k+1

a 1
Var(4f,) = k—lQTnk_—z;:Zl IDj j+1 (fpjﬂ)| 1954113,

Wh“e ﬂj=("—2)éj for j=1,2,..,k+1 and Dyi1442:=Diss1r Brsa:
=Bl9 Qk+2:=Q1.

Now, it is easy to see that

Vilf., Q1> Var(4f) for k=3,4,...,n=23,...
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Because the Bézier net is convex (by Theorem 1) we obtain (by Theorem 3)
Var(4B" =V, [f,; Q1 > Var(4f)).

Hence, the multidimensional version of the variation diminishing property
for the Laplacian does not hold for k > 2.

ExampLE 2. Let n=p(k+1)+2, -k, peN, p = 3. Define

1 for B=(p,p,..., p, p+2) eNk*1,
Jp= r+1 Bl=n.
0 for B#(p,p,....,p, p+2)eN*"",

One can prove that the following equalities hold

R n!(k—1)! J ,
V s = Dl' 2 |1%a ’
R T TR SN L
Var(4f) _ (k=D y Y DUl i n. |Qall|?
T kIQIT T S ai G D G

Now, it is easy to see that
Vi[f.; 0] <Var(df) forn=2,3,...,k=3,4,...
Fortunately, we can estimate the variation Var(4f) by V; [f,; Q).
LemMMA 3. For the Bézier net f, we have the inequalities

(n+k=2! - 7 1
29 — = "ill Q1 2 Var(4) > k—=1)!

n~2n!
k=1,2,...,n=2,3,...
The tedious proof will be omitted.

Theorem 3 and the above lemma yield the “multidimensional version of
the variation diminishing property for the Laplacian”.

AV}

THEOREM 4. For the Bernstein polynomial B,(f ; P) over the k-dimensional
simplex Q the following inequality holds:

(30) Var(4B") < (k—1)! Var(4f),
where for large n the constant (k—1)! is best possible.
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