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0. Introduction. Let M be a manifold with a covariant derivative. The
parallel displacement along any piecewise differentiable curve y: [0, 1] - M
defines some isomorphism of the fibre E,,, onto the fibre E,,;,. Thus it is
appropriate to consider an object consisting of all linear isomorphisms of a
fibre onto a fibre. The object has a natural structure of the so-called Lie
groupoid. The above idea of calling these objects into existence comes from
Ehresmann [3]. It turned out later that many problems from differential
geometry of higher order are defined, in a natural manner, by means of a Lie
groupoid. This gave rise to developing many theories concerning these
objects, including the general theory (see, e.g., [1], [2], [6], [8]-[17])). In
papers [4] and [5] the author made a uniform approach to the above-
mentioned theory. This paper is their continuation.

1. Inducing Lie subgroupoid by Lie subalgebroid.

DeriniTioN 1.1, Let A =(4, [,],7) and A4’ =(4, [,], ¥) be Lie alge-
broids (briefly, L.a.’s) ([4], [12]) over any manifold M. We say that A’ is a Lie
subalgebroid (briefly, L.suba.) of A4 if

(a) A’ is a linear subbundle of A,

(b) the inclusion i: A" < A gives a homomorphism of the L.a. (see [4]).

(1.1) If (A, [,], y) is an L.a. and A’ is a linear subbundle of A, then on A
there exists a structure of an L.suba. of A«iff

(@) y]A': A"—= TM is an epimorphism,

(b) [o, 06']€eC>(A) for a,0'eC™(A).

(1.2) If a Lie groupoid (briefly, Lg.) @' is a Lie subgroupoid (briefly,
L.subg) of some @ and i: @ < & is the inclusion, then 1?,,,: A—Ais a
monomorphism of their L.a’s.

Therefore, one may identify the L.a. of the Lsubg. @' with an L.suba.
of A

THeOREM 1.1. Let & =(®, («, f), M, *) be an Lg. and let
A=(*(T"9), [,]. B)



40 J. KUBARSKI

be its L.a. ([4], [12]). Then for every L.suba. A" of A there exists exactly one
connected L.subg. of @ with algebroid equal to A'.

Proof. We take an arbitrary point xe M and the principal fibre
bundle @, (see [4] and [15]). We define a distribution B on the manifold &,
by the formula

Bh = (¢h)*‘ﬂh [A,lﬂh] for he ¢x°

It is a smooth involutive distribution. Let C be a connected maximal integral
manifold of B passing through /..

(a) BIC: C— M is a surmersion.

Since B|C is coregular, it remains to show that the mapping is “onto”.
Supposing that B|C is not “onto”, let ye M\ B[C] be any point from the
boundary of the set [C] and let x % y be an element of @, with target at y.
Consider a connected maximal integral D of the distribution B passing
through z. Then for every element ge &, ,, the manifold D, = R,[D] is also
a connected maximal integral of B and it passes through z-g and B[D]
= B[D,]. Let us take a set

Q=p"'[B[DP]] N,
Then
Q= | D,
9¢%(x,x)

Since the sets B[C] and B[D] are open, we have B[C]nB[D] # @. Let
x %t be an arbitrary element of C such that te B[C]~B[D] and let
ge P, be such that z’eD,. Hence C = D, and yeB[D,] = B[C], which
contradicts our assumption.

(b) G =(BIC)" ' ({x}) has a structure of a Lie subgroup of ® .

Since G is an embedding submanifold of C, it has a countable basis. The
inclusion i: G < @, ,, is smooth. If ze C and ge P, ,), then z:-ge C iff geG.
The mapping

GxG S Py XDy ) = Py

is also smooth and its image lies in G. Since it lies also in C, and C is a
connected integral of involutive distribution, -: G xG — G is smooth. Anal-
ogously, we can prove the smoothness of ~!: G — G. Hence G is a Lie
subgroup of @, ,,. Of course, the mapping

' =(CxG3(z, g)—~z-geC)
is also smooth, and the system
C=(C, BIC, M, G,")

is a principal fibre bundle. Moreover, € is a subbundle of &,, and the
inclusion C < @, is an immersive homomorphism which defines an immer-
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sion homomorphism of the L.g. i: €€~ ! — ¢ (see [3] and [7]). The image ¥
=i[CC~ 1] is a connected subgroupoid of @. On ¥ there exists exactly one
differential structure of a manifold such that i is a difffomorphism. We
obtain an L.subg. ¥ of &, which is the desired object.

(c) The La. of ¥ is A

For ye M and ze ¥ with target at y we have

T,(¥) = T, (9. [C) = (®),, -1 [T, C] = (D), -1 [(®,- 1), [4},]] = 4,

(d) Uniqueness.

Let H be a connected L.subg. of & with algebroid equal to 4’. Then H
has the following properties:

(i) H, is an integral of B passing through I ;

(i) the connected component (H,), of I, is an open submanifold of H,;

(@) BL(HJol =M, xeM.

To see (iii) observe that the set W = B[(H,),] is open in M. Assume that
W # M and let ye M be any point from the boundary of W. We take an
arbitrary element x % y of H,, a connected neighbourhood U of y, and a -
section ¢: U — H, such that a(y) = h.

The mapping

6 =(U xH, ,,3(s, g) 0 (s)-ge(BlH) ' [U])

is a diffeomorphism. Hence every connected component of (B|H,) ' [U] is
the image under 6 of some connected component of U xH, ,,. Every such
component is equal to U x K, where K is a coset in H, ,, with respect to the
connected component G of I, in H, ,,. Since y lies in the boundary of W, we
have UnW # Q. Let yoe U W, ze(H,)y, and B(z) = y,. There exists a
coset K, such that zed[U xK,]. Hence ¢[U xK,] =(H,), and, conse-
quently, yeU < [(H,)o] = W, which gives a contradiction to y¢ W.

Properties (i) and (ii) imply that (H,), is an open submanifold of C. The
set Q =(H,)o(H,)o' is open in ¥ and, by (iii), it contains all units. Hence Q
generates ¥ and H. The equality ¥ = H follows from Theorem 1.3 in [§].
Thus the proof is complete.

2. Inducing a local homomorphism of Lie groupoids by a homomorphism
of Lie algebroids. The problem of the existence of a local homomorphism of
L.g’s with a given homomorphism of L.a’s was considered by means of
other methods in [16].

Let & = (P, (¢, f), M, ) and &' = (¥, (¢, f), M, ') be any L.g’s with
the same monifold of units and with algebroids 4 and A4

THEOREM 2.1. For every homomorphism y: A — A’ there exists a local
homomorphism F from @ into &' such that F,, =1y. Any two such local
homomorphisms coincide in some neighbourhood of all units. If @ is connected
and there exists a global homomorphism F, then F is uniquely determined.
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Remark. By the Whitney product A x A’ of the L.a’s 4 and A’ we mean
the La. (A x4, [,]”, ") in which

(1) AxA = (v, V)eABA": y(v) =7 (V)};

(2) 6, teC*(A"), 6 =(u, ) and © =(d, &'), where u, e C*(A) and
i, 8eC*(A) imply [o, ] = ([u, 6], [w’, &']);

(3) " (v, V') = 7(v) for (v, v)eA x A"

If & x®' is a Whitney product of the L.g. (see [15]) and i: M — &,
" M-, i": M— @ x® are natural embeddings, then

J=("(T*(® x ) 3w (my, W, Ty Wei*(T* D) xi™*(T* P)),

where n,: @ x® — & and n,: @ x P’ — P’ are projections, is an isomor-
phism of the L.a.
Proof of Theorem 2.1. We take the subset ¢ of the vector bundle

C = i*(T*®) xi’* (T ¥

consisting of all elements of the form (v, y(v)), vei*(T*®'). The set ¢ has a
natural structure of an L.suba. of 4 xA'. Let & be a connected L.subg. of
@ x &’ with algebroid ¢ We take a homomorphism =) such that the
following diagram is commutative:

3!

E — D

e

D xD

If v is an a-vertical tangent vector at [, then wvei*(T*9®),,
(v, y(v)ei*(T* &), and =}, (v, y(v)) = v. Hence

(1] Edur,: T (6 — T (Py), xeM,

is a linear isomorphism and such is also (n}),; . Consequently, the mapping

ny is a diffeomorphism in some neighbourhood of each unit. After compli-
cated calculations we shall find a neighbourhood @ < @ which contains all
units and the mapping H: @ — & which is a diffefomorphism onto an open
set, being inverse to ny. Then F = n, o H is the desired local homomorphism.

We consider two local homomorphisms F,, F,: #|Q — &' such that
fl, = F,,. For some open set U, — R™ star-shaped with respect to O R™
the mapping

Exp, (o) = (Un3(a', ..., @™ - (Exp, Y. @' &)(x0)€ By,),

i=1
where cross-sections ¢, ..., &, e C3 (i* (T* ®)) are a basis of i* (T* ®) over an
open set U>3Xx,, is a difftfomorphism onto the open set U,xo c @, (see [4]).
The inverse mapping is denoted by Log and called an exponential coordinate
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system on @, . If (@', ..., a™eU,, then there exists ¢ > 0 such that, for |t|
< 1+¢, we have

(Expt z d&)xo)eUy,
and
F((Exp zm: a &)(xo)) = Exp(F, O(i @ £))(xo)
(see [4]). Hence, for . B
j=(R">(a, ..., a" »—»il a' e C§ (i*(T*®))

and for ge U, N Q, we obtain
Fi(g) = (Exp(Fl.oz(Log(g)))(xo) (Exp(F 24 0j(L0g(9)))) (xo) = F2(9).

Now, it is easy to see that F, and F, coincide in some neighbourhood
containing all units.

Finally, we assume that F,, F,: & — @' are global homomorphisms
such that F 15 = F 2%~ Clearly, F,|Q = F,|Q for some open set Q containing
all units. Since Q generates &, an arbitrary point ze @ is equal to z,-... z,
for some neN, z,, ..., z,€ 2. As a consequence we obtain

Fi(2)=Fy(zy...o2) = Fy(zy) ... Fy(2,) = F2(2y) ...  F3(2,)
=F,y(zy:...72) = F,(2).

CoRrOLLARY. Two L.g.’s are locally isomorphic if and only if their L.a’s
are isomorphic.

3. Some characterization of subalgebroid. It is easy to see that if ¥ is an
L.subg. of & (see [5]), then the set Cg (i*(T* ¥)) coincides with the set of
those £eC§ (i*(T* ®)) for which the mapping

E = (M x R3(x, t) —(Expté)(x) € )

has the values in ¥ and, while regarded as the mapping E: M xR — ¥, it is
continuous.

COROLLARY. If two connected L.subg’s ¥, and ¥, of @ coincide as
topological spaces, then they coincide as Lg.s.

This corollary will be considerably strengthened by using the following

THeoReM 3.1. Let ¥ be an L.subg. of ®. Then the set C§(i*(T*¥)) is
equal to the set of those {eCg (i*(T*®)) for which (Expté)(x)e¥ for
(x, t)e M xR.

Proof. Take any vector subbundle m of i*(T*®) such that i*(T" ®)
=i*(T*°P)®m. Let &, ..., £, e CO(*(T* W) and &,y qs ..., Epeme CT (M) be
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cross-sections which are bases of i*(T* ¥) and m, respectively, over an open
subset U 5x. Then the system of cross-sections &,, ..., &, Ensts -ooy Epamis @

basis of i*(T*®) over U. Let Exp, and Exp, be defined for the above cross-

sections. There exist neighbourhoods U’ < U of x, U, < R™ of 0, and
U, = R" of 0 such that the mapping A: U, xU, xU’ — @ defined by

A(a, b, y) = Expe((a, 0), BOExXp, ((0, b), ¥))- Expy ((0, b), )

for aeU,, be U, and ye U’ is a diffeomorphism onto its open 'image O (see
[4]) and Exp,: U,xU — ¥ is also a diffeomorphism onto an open set Q
such that its topology is induced from @. Since the mapping

y = (Un xU3(b, y) ~BoExp, ((0, b), y)e M)

is smooth and y(0, x) = x, there exist some open neighbourhoods U,, < U,
of 0 and U' < U of x such that y[U,, xU'] « U. For yeU’ we put

a, = 'be U, Exp,((0, b), y)e¥! and O = A[U,xU, xU’].

Hence
&'n¥, =\ Exp, [U, x {0} x {B0Exp,((0, b), y)}]-Exp, ((0, b), y)
an
and the set

Exp, [U, x {0} x {d}] = Exp, [U, x d}]
is open in ¥,, where d = BOE—E,,((O, b), y). Consequently, the set
Expy[U, x {0} x {d)]-Exp,((0, b), y)

is open in ¥, for bea, yeU'. For different be a, these sets are disjoint,
which follows from the injectivity of A. The set q, is then at most countable.
We put

(m: ©,— Uy) =(pry04;"),

where @, denotes the topological space @,/ (4 denotes the set of points
of the space A). Then = is continuous and

7 (Exp, ((a, 0), BOExp, ((0, b), ) Exp,((0, b), y)) = b
for (a, b)e U, xU,,. Thus
n@,n¥,: 6,|6; ¥, - U,
is alsq continugus and n [—éz_ N & ] = q,. Therefore, it induces the continuous
mapping
n: 6,10, ¥, —q,
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From the fact that every connected subset of a countable set in R" is
one-point it follows that the image of the connected component of [ in

0,0, "¥, =8,|0, N Y,

under 7 is one-point, of course 0. Since the set
7~ [10}] = Expy [U, x 1y}]
is connected, it is a component of [, in @,|@;, NY,.

We consider again the mapping E, an open neighbourhood U” < U of
x, and ¢ > 0 such that E[{U"” xI,] < @'. Since the mapping

E,=(I.2t—E(y, Ve d,)

is continuous for yeU” and E,[I,] = ©' nY¥,, we infer that
E:I,—-9®|0.nY,

is also continuous. The set E [I.] is connected and E,(0) =1, so it is
contained in the connected component of [, in &0, ¥, ie, iIn

Expy [U, x !y}]. This proves that E[U” xI,] is contained in Exp, [U, x U"]
and, consequently, in Q < ¥. Therefore,

E\U" xI,: U'xI,— ¥

is continuous and, of course, smooth. Hence E|U"” xI, generates a cross-
section of i*(T* ) over U” (see [4] and [6]), of course, £|U". Since xe M is
arbitrary, (e C§ (i*(T* P)).

CoroLLARY. If ¥, and W, are two connected L.subg’s of @ whose sets
of points are equal, then ¥, is equal to ¥, as an Lg.

CoroLLARY. Let K and H be L.subg’s of @ and let K be connected.

If the set of points of K is contained in the same one of the H, then K is
an L.subg. of H.

4. Images and pre-images.

THEOREM 4.1. Let F: & — ¥ be an L.g. homomorphism and let t =imF,
be a vector subbundle of i*(T*¥). Then

(a) t determines a subalgebroid of i*(T* ¥), say k,

(b) on im F there exists a structure of the L.subg. of ¥ with algebroid k.

Proof. It is easy to find that t determines an L.ssuba. Let H be
a connected L.subg. of ¥ with algebroid k. For xe M and e Cg (i*(T* ®)),
the elements (Exp,{)(x) generate &, so the elements

F((Expy &) (x)) = Expy (F, 0&) (%)

generate imF. Hence imF is generated by (Expyn)(x) for xe M and
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ne Cy(D. Since these elements generate also H, the equality H = im F holds.
This completes the proof.

Let F: & — ¥ be an L.g. homomorphism. Let us take an L.subg. ¥' c
¥ having the topology induced from ¥. Put H,=F !'[¥] and u
=F + '[*(T*¥')]. Assume that u is a vector subbundle of i*(T* ®); then u
determines an L.suba. of i*(T* @), say u.

THEOREM 4.2. Let H be a connected L.subg. of @ with algebroid u.
Then on H, there exists a structure of L.subg. of ®, say H,, with topology
induced from ® and such that H is an open L.subg. of H, with topology
induced from H,.

Proof. It is enough to prove that

(1) H=H,,

(2) the topology of H is induced from H,,

(3) H is open in H,.

To verify (2) it suffices to prove (1), (3) and to see that
(4) H is closed in H,.

(1y For £ C& (1) we have F,ofeCP(i*(T°¥') and

F((Exp¢)(x)) = (Exp(F, 0&)(x)e ¥,
whence (Exp &)(x)e H,. Since the elements of the form (Exp £)(x) generate H
(see [4]), we get H < H,.
(3) Take an arbitrary point xoe M and some cross-sections

Ervoiy E€CRW), &y, by Eanry oo EECO(i* (T2 D)),
M -oos MmECE(* (T P)),  Myseevs Ny Mmt1s -+ -» MECT (* (T P))

such that over an open set U 3x, they are bases of the corresponding vector

bundles. Let E_xp, and E—xp.,, be defined for these cross-sections. Choose
neighbourhoods U, = R* of 0, U,_, < R*" *of O, U, < R" of O, U,_, < R"™™
of 0, and U' < U of x, such that the mappings

Expy: U, xU,_ xU' - ® and Expy: Uy xU,_,xU =¥
are diffecomorphisms onto their open images, and
Exp,[U, x {0} x U') = Exp, [U, x U, xU'I nH,
Expy [Up, x (0} x U] = Expy [Up xU,_n xU] A .
We put
i=(UgxU,_yxU’3(a, b, x) '_’_Zs:l aé (x)+fz_::b" Eori(x)E D),

J=(UnxU,_,x U's(c, d, x) - i c"q,-(x)+’imd" Nm+i(X)€ P).
i=1 i=1
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Let U, < U; and U,_; = U,_, be neighbourhoods of 0 and let U” = U be
a neighbourhood of x,. Suppose

F iU, xUy_yxU"]] €j[UpxU,_pxUT].
Putting Q = Ex—p,, [U:xU,_,xU"], we obtain an open subset of ¢
containing Ixo, and H; nQ = H. Indeed, for ze H; nQ we have F(z)e ¥,

and z =—ETp¢((a,, a,), x) for a,e Uy, a,eU,_,. If

((by, b2), x) =j1(F,(i(ay, a2), X)),
then b,eU,,, b,eU,_,, and
F(z) = Expy (b1, b2), X)€ Expy [Up x U, xU' TN ¥’
= Expy [U,, x 10} xU"].

Hence b, =0 and F(z) = Expy(((bs, 0), x)), (by, Y€ U, xU’, and
i(by, x)ei*(T*¥’), which means that

F,(i((ay, ay), x))ei*(T*¥).
Therefore i((a,, a,), x)e U, whence a, = 0. Finally,
z = Expo((ay, a,), x) = Exp,((a;, 0), x)e H.

We now take ze H such that B(z) = xo. Let 6: U’ — H be an arbitrary
a-admissible f-section such that ¢ (xo) = z. Put W=«a[o[U']] and f =« 0.
Let

L=(a"'[U]3gg-0,,ca”'[W])

be a right translation in @ by ¢. Then L[] is an open set of z. It is easy to
see that '

L[Q1nH,cH.

Since x, is an arbitrary point, H is open in H,.

(4) We prove first that H, is closed in (H,), for an arbitrary xe M. Let
x % y be an element of H,\H. Then &,: (H,), — (H,), is a homeomorphism
and &,[H,] is open in the space (H,), disjoint with H, and containing z.
Hence (H,),\H, is open in (H,),, and so H, is closed in (H,),.

We now take a sequence z,— z, as n— o0, z,e H. Let a(z,) = x, and
B(z,) = y,. Then x, — xo and y, — y, as n— oo, where a(z9) = xo and B(z,)
= y,. For an arbitrary sequence t,e€ H such that a(t,) = xo, B(t,) = x,, and
th— ey WE have Znth =29l =20 as n— 0. Since z, t,e H,;, we have
zo€eH,,,
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