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Smoothness of solutions for a system
of first order non-linear partial differential equations

S. BAL (Rzeszow)

1. In this paper we shall deal with the system of partial differential
equations of the type

(1) u::=fi(way’ul"“"un7u;)7 t=1,2,..,n.

We show (Theorem 1) that first order derivatives of solutions for
(1) are Lipschitz-continuous provided f* satisfy suitable inequalities.
We give (Theorem 2) a simple estimation for the Lipschitz constant.

This result is non-trivial even for solutions of class C®. Analogous
problems for a single equation were treated by T. Wazewski in [4],
A. Pli§ in an unpublished paper and S. Bal in [1].

2. We now give the idea for the proof of Theorem 2. We have to
prove that a function ¢ is Lipschitz-continuous. Consider the function

m(l) = max[|g(@, 2)—g(z, y)|/(z—y+ )]

for (z, ¥, 2)eP;, where P, is a suitable subset of the semi-space z > y, P,
depends on the non-negative variable [ and ¢(z, ¥) is a continuous function.
We use a sufficiently small positive number 8 to avoid the singularity
of the quotient under consideration for 2 = y, 6 = 0. Set P; is defined
in such a manner that the function m(l) satisfies a differential inequality
of the type y' > ky? (k > 0).

From the asymptotical properties of solutions for the equation
y' = ky® and from a theorem on differential inequalities it follows that
the value m(0) must be bounded. For 6 — 0 this implies that ¢ satisfies
the Lipschitz condition.

3. Now we shall prove the following lemma:

If a function m(l), continuous and non-decreasing on [0, a], satisfies
on (0, a) the differential inequality

(2) D.y(l) > Byy*—B,y—B, for y>K,
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where By, By, By, a are positive constants, then m(0) < K, where K
— max[2/B,a, (B,+VBI+2B,B,)/B,], and

I+ Al —y(l
D, y(l) = limsup y{+Ab=y{®) .
Als+0 Al

Proof. Suppose the contrary: m(0) > K. This implies that m(l) > K
on the whole interval [0, a]. Inequality (2) can be written in the form
D,y > Byy%/2+ (Byy%/2—B,y—B,), where D,y denotes a right-hand
derivative of the function y.

For m(l) > K the expression in parenthesis is positive; therefore
we have on [0, a) the inequality

D,.m(l) > }B,m*(l) for 0 <1< a.

Consider the equation p’(l) = 4 B,p2(l).
The solution of this equation with the initial condition p(0) = m(0) is

(3) P = 2p(0)/(2—B,lp(0).

The denominator vanishes for I, = 2/B,p(0).

In virtue of p(0) = m(0), K > 2/Bya, we have 0 < I, = 2/B,p(0) < a.
On [0,1,], by the theorem on ordinary differential inequalities [3], we
obtain the inequality p (I) < m(l) for 0 <1 < 1,; therefore p () is bounded
on 0 <l <1,. We have got a contradiction of (3).

4. Now we shall formulate and prove two theorems. The first one
deals with the smoothness of derivatives for a solution. The second one
gives an estimation for the Lipschitz constapt.

THEOREM 1. If functions fi(x,y,u', ..., u" q) are of class C* on an
open subset 8 of R*** and f}, + 0, then the derivatives u)(z,Yy), ..., ul(z, ¥)
of an arbitrary wvector function u(x,fq) = (ul(a;, Y), ...,u”(m,y)) which
are of class C* on a certain open set w, w = R? and satisfy system (1) are
Lipschitz-continuous on o.

THEOREM 2. Suppose that the functions fi(x,y,s, q") are of class C*
on the set

Q ={=,9,%,9: (r,y)eP, lsi—'sgl < b, lqi_qgi <h,t=1,2,...,n},
where s = (s ...,8"), ¢ = (¢4 ..., ¢"),
P = {(w,y): [w—ax| < a, |y—y,o < b+ Ca},

a, b, h, C are positive constants and salisfy the inequalities |fi|, |f*+¢'fil,
lf:/"i'qkflu < C onQ, where fi = :k’f; =f;i’ tk=1,2,...,n, andfi%i# 0,
1=1,2,...,m, on Q.

The derivatives w)(x,y), ..., s (z,y) of an arbitrary solution of (1),
of class C" on P and satisfying the inequalities
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lu' (@, y)—s5| < hy ..., |u"(z,y)—s5| <h,
luy (@ M) —qol < hy ..oy lugl@, y)—qo| < B
on the rectangle P, satisfy the imequalities
[t (4, 2)— s (20, ¥)| < K |2—yl, i'=1,2,...,n,
K = max[2/0ya, (C,+ V(2 +2C,C,)/C,],

where

C, —mln[lqu(myy’ ,q ’lqu 7y737qn)l] on Q,

C, = max|f; |+ 2,: max |¢’| |f},| + max|f} |+ kZlmax |fil 1g¥1+ 2: max |f}|
i= = i=

on Q,i =1,2,...,n,

C, = max |f$y|+k2 max |f,.] Ig°1+ 3 max|¢’| |f;,|+ 3 max|q| kZ | Fal 16°]
=1 j=1 =1 =1
on Q,t=1,2,...,m,
where fz;k =f1/is"’7 flé; :fsiksfi f;q Zf&:’:qi) fz;q Zf';q"; szq :‘f:’cqi'
5. Proof. Let us define a function of three variables

nla'x[lu;(my z)_uzl/(wy Plyoeey |'”':(a71 z)_'“';;(w’ I
z2—y+90

on R = {(x,vy,2): (z,y)eP,(x,2)eP,y <z}, where u ={u‘(w,y),...
U (x ,y)) is a given solution of (1) and é a positive constant. The
function W(z, v, 2) is continuous on R with respect to all three variables.
Now consider the following functior of a real variable I: y(!)

= max W(x,y,z2), where
(z,y,2)e Py

Py ={(m,y,2): [o—x| <1, [y—Yol,y l2— 1ol < b+Cl,y < 2,0 <1< a}.

Wz,y,2) =

y(l) is a function continuous on [0, a} because it is a maximum of
a continuous function. Hence follows the boundedness of the func-
tion y(1).

The definition implies that y(!) is non-decreasing. We shall show that
if y(I) > K for l¢[0, a), then the function y(l) satisfies the differential
inequality
(4) D, y(l) > Coy?—0,y—0,.

From the definition of y(l) it follows that y(l) = W (&, 7, ), where
(T, 9, 2)eP.

In virtue of the inequality K > 0 and the equality W(z,y,2) =0
for 2z =y, we have 7 < Z.
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There exists a subseript ¢ such that

_ 14(E, 2)— %z, )|

W(Z. 7.3
(Z, 7, 2) g+ 0
Consider the equation
(5) Y =‘—f; ((b‘, Y, u' (2, Y)y .oy uw(z,9), uf/(a;y y))

From the theorem on cha,rapterist'{ics (2] it follows that there exist
two systems of functions, y(x), s*(®), ¢*(#) and z(x), w'(x), p'(x), satisfy-
ing the following system of ordinary differential equations:

?/' = —f;(wryy '”'l(a"" Y)y “-7'“”(1"7?/)3 qi)’
qi’ =f;($1 yv“l(wr Y)y .-y u (2, y), qi)‘l"

+kz—:lu$($, y)flt(mv Y, “l(‘vr Y)y .oy u (@, y), qi)’

where ¥y = y(x), 2z = 2(z) are two solutions of (5) satisfying the initial

conditions § = y(%), Z = 2(z), and defined on a neighbourhood of Z.

These functions satisfy the inequalities on a neighbourhood of Zz.
The functions s'(x), ¢*(x), w'(x), p'(x) satisfy the initial conditions

§(%) = v'(%, y(@) = v'(F, §), @ =z, y(@) = vz, ),
w'(Z) = u'(Z, 2(Z) = u'(Z, 2), PYT) =u(Z,2(T) =ui(Z,2)
and the identities
s'(@) = u'(z, y (), w(x)=u'(r,z2(w)),
¢'(@) = uy(z, y(@), p'(@) =ulz,2()

on a neighbourhood of Z.
These functions satisfy the inequalities

@) —sgl <k, Ig(x)—g5l < h,
[w0'(@)—sil <k, [P (@)—gil<h

on a neighbourhood of z.

Under our assumptions the inequality y(z) < z(x) is satisfied on
a certain neighbourhood of Z.

We shall use the following notation:

(@) = u*(z, y(x), w(@) =u*(z,2(x)),
qk () = '“',; (‘”_1 y(m))y pk(m) = u:(m, z(w))r

k=1,2,...,n, on a neighbourhood of Zz.
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The functions
p*(@)— ¢ (=)
2(@)—y(@)+ 6’
are of class C' on a neighbourhood of z.
We shall denote v*(x) by v(z), omitting the superseript 4.
We shall show that the function v»(z) satisfies the inequality ' (%)
= Co (v(Z)] —Cy1v(Z)| — 0.
‘We have

| P —d@ \
o)== (z(w).—y(w)+6)

_ ') (e—y+ ) (0"~ (ze—y)
(z—y+ o)

[r:00—£i®)+ 2 (P*FE () — ()| +

¥ (@) =

= 1,2, --.’n,

z— y-{—é

+- ﬂ(w)

[fq(M) —f(8)1,

where

8 = (wr y(w)y sl(a’)y ceey 8”(‘l’)r qi(ﬁv))y M = (xy z(w)fwl(w)’ ceey 'wn(w):pi(w))-

We apply the mean value theorem: .

1 . - o L, -~ L.
V(@) = o g S =)+ D Fin(8) (w0 — 89+ £,(8) (' — )] +
k=1

1 . 7 ] : . . .
o & P D F @)+ 0~ D)+

v(w

O ity y e D) 0 9 4 F B 0 — )]
y-l—é k=1
where § = (%, 4, 8, ...,8", ), M = (z, 5, @', ..., %", p') are on the seg-
ment between § and M,

V' (Z) =

+ = |58 =)+ I B A+ 1B ' ] +

k=1

). Z [P 5,) e—) 40 D FN) (ka8 +

k=1

+ P LN (0 — &)+ (0 — ) ()] +

+ () [fW(M)(z—-y)+ quk(M)(w — %)+ (ﬁ)(p"— i)],

z—y+9o k=1
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!
where N; = (%, Yy 8 .- .,s}",qﬁ),j =1,2,...,m, are on the segment
between the points S and M.
After rearranging the terms, we get

V' (@) = fo (M) (v(@)+

igi it J
+ () [f,,q(S)-I-ZP fia(3) +fw(M) y+ o +quk( __m]_'_
_|_E:v1f'(,3' -;-fW(S) 5T Zﬁk( I'y yia +

j=1

+prﬁ,( 1) +6+2P fok( g)92 —}?{6

where q{‘ == y(m,yl), @ = uy(a:,yz), Y1, Y, are points on the suitable

segments. .
Consider the case where f,, > 0 on @.
We obtain on a neighbourhood of Z the inequality

V' (@) > o' — 0(a)] [lf:q|+_2 FARVARRVARE 2 | lat1]—

= 2 W1 1S = 1 — 2 il 1€ — 2 21 1, — 2 I 2 PRV AP

J=1 =1
Therefore v'(x) > Cyv2—C,|v|—C,; on a neighbourhood of Z where

Cy = min[lf-;q1’ |fgq|] on Q,

¢, = maxif,,ql+2maxiq’f | fal - max | £, + Zmax fal 11+ S max ||

i=1 j= 1
onQ,¢t=1,2,...,n,

0y = max|fl, |+ D max | f| 1¢|+ ) max|¢| |f5 1+ Y max|g'| D) fhl "
k=1 j=1 i=1 k=1
onQ,:i=1,2,...,n

Obviously such constants C,, C,, C, exist because the functions
f* are of class C* on Q.

Now we shall show the inequality D_ y(l) > v'(%).

The definitions of %, v imply that y(I) = |[v(Z)| > K.

Consider the difference quotient

I+ Al)y—y(l
y(+A; y()’ where 41 >0 and I+ Al < a.
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From the definition of P, and the inequality |y'| = |fi|< O, |¢']
= |fi<C it follows that (T+Aw,y(ZT+Ax),2(T+ Ax))eP,;, ., wWhere
|Ax| = 4l. If y(I) = v(Z) > K and 4z = Al, then we have the inequality

y(I+4l)—y(@) - 2@+ dz)—v(z)
Al - Az ’

If y(I) = —o(z), then for 4l >0 and A4l = —Ax we have

y(A4+Al)—y(1) - —0(Z+dx)+0(Z)  v(@+An)—v(7)
Al = A o Az ’

Therefore in both cases we get the inequality D y(l) > v'(Z). Thus,
we have

D, y(l) = v (&) = Co(v(T))— 01 |0(F)]| —C, = Coly (1)) —Cry(1)—C, > 0.
In the case where f;, < 0 on @ we can get the inequality
v (Z) < —Co(0(@)+0,0(@)|+Cay,  —0' (%) = Oy (0(Z)f —C, |v(E)| —C,
and
D, yl) = —v'(T) = Colv(Z))*—C, v (@) —C; = Coly (M —Cry(1)—C, > 0.
In all cases we have
(6) D, y() = Coly)—0C,y()—C; > 0.

‘ Since ! is arbitrary 0 <! < a, inequality (6) holds on the whole
interval [0, @), and in virtue of the Lemma we get y(0) < K.
Therefore

lug(wm z)—us(a’oy NI<K(E—y+d), 2>y,k=1,2,...,n.
Passing to the limit we get
|y (o5 2) — (%0, ¥)| < Klz—yl.

The proof of Theorem 2 is thus complete.

Theorem 1 is a corollary to Theorem 2.

We consider a neighbourhood with its closure contained in 2. In
virtue of the regularity of the respective functions there exist constants
0y, 04, C;, C3. Using these constants we can define a rectangle P and
a set ) contained in the neighbourhood. The assumptions of Theorem 2
being satisfied, we obtain Theorem 1.



48

(1}
[2]

[3)
[4]

S. Bal

References

8. Bal, Uber die Losungen der michtlinearen partiellen Differentialgleichung erster
Ordnung, Zesz. Nauk. UJ, Zeszyt 10 (1965), pp. 7-11.

A. Plis, Characteristics of non-linear partial differential equations, Bull. Acad.
Polon. Sei., CL III, 2 (1954), pp. 419-422.

J. Szarski, Differential inequalities, Warszawa 1965.

T. Wazewski, Sur I'équation aux dérivées partielles du premier ordre essentiellement
non linéaire, Ann. Soc. Polon. Math. 13 (1934), pp. 10-12. '

Regu par la Rédaction le 27. 7. 1968



