Smoothness of solutions for a system of first order non-linear partial differential equations

S. BAL (Rzeszów)

1. In this paper we shall deal with the system of partial differential equations of the type

(1)
$$u_x^i = f^i(x, y, u^1, ..., u^n, u_y^i), \quad i = 1, 2, ..., n.$$

We show (Theorem 1) that first order derivatives of solutions for (1) are Lipschitz-continuous provided f^i satisfy suitable inequalities. We give (Theorem 2) a simple estimation for the Lipschitz constant.

This result is non-trivial even for solutions of class C^{∞} . Analogous problems for a single equation were treated by T. Ważewski in [4], A. Pliś in an unpublished paper and S. Bal in [1].

2. We now give the idea for the proof of Theorem 2. We have to prove that a function g is Lipschitz-continuous. Consider the function

$$m(l) = \max[|g(x,z)-g(x,y)|/(z-y+\delta)]$$

for $(x, y, z) \in P_l$, where P_l is a suitable subset of the semi-space $z \geqslant y$, P_l depends on the non-negative variable l and g(x, y) is a continuous function. We use a sufficiently small positive number δ to avoid the singularity of the quotient under consideration for z = y, $\delta = 0$. Set P_l is defined in such a manner that the function m(l) satisfies a differential inequality of the type $y' \geqslant ky^2$ (k > 0).

From the asymptotical properties of solutions for the equation $y' = ky^2$ and from a theorem on differential inequalities it follows that the value m(0) must be bounded. For $\delta \to 0$ this implies that g satisfies the Lipschitz condition.

3. Now we shall prove the following lemma:

If a function m(l), continuous and non-decreasing on [0, a], satisfies on (0, a) the differential inequality

(2)
$$D_{+}y(l) \geqslant B_{0}y^{2} - B_{1}y - B_{2}$$
 for $y > K$,

42 S. Bal

where B_0 , B_1 , B_2 , a are positive constants, then $m(0) \leq K$, where $K = \max[2/B_0a, (B_1 + \sqrt{B_1^2 + 2B_0B_2})/B_0]$, and

$$D_{+}y(l) = \limsup_{\Delta l \to +0} \frac{y(l+\Delta l) - y(l)}{\Delta l}.$$

Proof. Suppose the contrary: m(0) > K. This implies that m(l) > K on the whole interval [0, a]. Inequality (2) can be written in the form $D_+ y \ge B_0 y^2/2 + (B_0 y^2/2 - B_1 y - B_2)$, where $D_+ y$ denotes a right-hand derivative of the function y.

For m(l) > K the expression in parenthesis is positive; therefore we have on [0, a) the inequality

$$D_{+}m(l) > \frac{1}{2}B_{0}m^{2}(l)$$
 for $0 \leqslant l < a$.

Consider the equation $p'(l) = \frac{1}{2}B_0p^2(l)$.

The solution of this equation with the initial condition p(0) = m(0) is

(3)
$$p = 2p(0)/(2-B_0 lp(0)).$$

The denominator vanishes for $l_0 = 2/B_0 p(0)$.

In virtue of p(0) = m(0), $K \ge 2/B_0 a$, we have $0 < l_0 = 2/B_0 p(0) < a$. On $[0, l_0]$, by the theorem on ordinary differential inequalities [3], we obtain the inequality $p(l) \le m(l)$ for $0 \le l < l_0$; therefore p(l) is bounded on $0 \le l < l_0$. We have got a contradiction of (3).

4. Now we shall formulate and prove two theorems. The first one deals with the smoothness of derivatives for a solution. The second one gives an estimation for the Lipschitz constant.

THEOREM 1. If functions $f^i(x, y, u^1, ..., u^n, q)$ are of class C^2 on an open subset S of R^{n+3} and $f^i_{qq} \neq 0$, then the derivatives $u^1_y(x, y), ..., u^n_y(x, y)$ of an arbitrary vector function $u(x, y) = (u^1(x, y), ..., u^n(x, y))$ which are of class C^1 on a certain open set $\omega, \omega \subset R^2$ and satisfy system (1) are Lipschitz-continuous on ω .

THEOREM 2. Suppose that the functions $f^i(x, y, s, q^i)$ are of class C^2 on the set

$$egin{aligned} Q &= \{(x,\,y,\,s,\,q)\colon\, (x,\,y)\,\epsilon P,\, |s^i-s^i_0|\leqslant h\,,\, |q^i-q^i_0|\leqslant h\,,\, i\,=1\,,\,2\,,\,\ldots,\,n\}, \ where\,\, s &= (s^1,\,\ldots,\,s^n)\,,\,\, q\,= (q^1,\,\ldots,\,q^n), \end{aligned}$$

$$P = \{(x, y): |x-x_0| \leqslant a, |y-y_0| \leqslant b + Ca\},$$

a, b, h, C are positive constants and satisfy the inequalities $|f_q^i|$, $|f^i+q^if_q^i|$, $|f_y^i+q^kf_k^i| \leq C$ on Q, where $f_k^i=f_{sk}^i, f_q^i=f_{q^i}^i, i, k=1,2,...,n$, and $f_{q^iq^i}^i\neq 0$, i=1,2,...,n, on Q.

The derivatives $u_y^1(x, y), \ldots, u_y^n(x, y)$ of an arbitrary solution of (1), of class C^1 on P and satisfying the inequalities

$$|u^{1}(x, y) - s_{0}^{1}| \leq h, \ldots, |u^{n}(x, y) - s_{0}^{n}| \leq h,$$

 $|u_{v}^{1}(x, y) - q_{0}^{1}| \leq h, \ldots, |u_{v}^{n}(x, y) - q_{0}^{n}| \leq h$

on the rectangle P, satisfy the inequalities

$$|u_y^i(x_0, z) - u_y^i(x_0, y)| \le K|z - y|, \quad i = 1, 2, ..., n,$$

$$K = \max[2/C_0 a, (C_1 + \sqrt{C_1^2 + 2C_0 C_2})/C_0],$$

where

$$C_0 = \min[|f_{aq}^1(x, y, s, q^1)|, \dots, |f_{aq}^n(x, y, s, q^n)|]$$
 on Q ,

$$C_1 = \max |f_{yq}^i| + \sum_{j=1}^n \max |q^j| |f_{jq}^i| + \max |f_{qy}^i| + \sum_{k=1}^n \max |f_{qk}^i| |q^k| + \sum_{j=1}^n \max |f_j^i|$$

$$on \ Q, \ i = 1, 2, ..., n,$$

$$C_2 = \max |f_{yy}^i| + \sum_{k=1}^n \max |f_{yk}^i| |q^k| + \sum_{j=1}^n \max |q^j| |f_{jy}^i| + \sum_{j=1}^n \max |q^j| \sum_{k=1}^n |f_{jk}^i| |q^k|$$

$$on \ Q, \ i = 1, 2, ..., n,$$

where
$$f^i_{yk} = f^i_{ysk}$$
, $f^i_{kj} = f^i_{sk}{}_{s^j}$, $f^i_{qq} = f^i_{q^iq^i}$, $f^i_{yq} = f^i_{yq^i}$; $f^i_{kq} = f^i_{sk}{}_{q^i}$.

5. Proof. Let us define a function of three variables

$$W(x, y, z) = \frac{\max[|u_y^1(x, z) - u_y^1(x, y)|, \dots, |u_y^n(x, z) - u_y^n(x, y)|]}{z - y + \delta}$$

on $R = \{(x, y, z): (x, y) \in P, (x, z) \in P, y \leq z\}$, where $u = \{u^1(x, y), \ldots, u^n(x, y)\}$ is a given solution of (1) and δ a positive constant. The function W(x, y, z) is continuous on R with respect to all three variables.

Now consider the following function of a real variable $l: y(l) = \max_{(x,y,z) \in P_l} W(x,y,z)$, where

$$P_l = \{(x, y, z) \colon |x - x_0| \leqslant l, |y - y_0|, |z - y_0| \leqslant b + Cl, y \leqslant z, 0 \leqslant l \leqslant a\}.$$

y(l) is a function continuous on [0, a] because it is a maximum of a continuous function. Hence follows the boundedness of the function y(l).

The definition implies that y(l) is non-decreasing. We shall show that if y(l) > K for $l \in [0, a)$, then the function y(l) satisfies the differential inequality

(4)
$$D_{+}y(l) \geqslant C_{0}y^{2} - C_{1}y - C_{2}.$$

From the definition of y(l) it follows that $y(l) = W(\bar{x}, \bar{y}, \bar{z})$, where $(\bar{x}, \bar{y}, \bar{z}) \in P_l$.

In virtue of the inequality K > 0 and the equality W(x, y, z) = 0 for z = y, we have $\bar{y} < \bar{z}$.

44 S. Bal

There exists a subscript i such that

$$W(\bar{x}, \bar{y}, \bar{z}) = \frac{|u_y^i(\bar{x}, \bar{z}) - u_y^i(\bar{x}, \bar{y})|}{\bar{z} - \bar{y} + \delta}.$$

Consider the equation

(5)
$$y' = -f_q^i(x, y, u^1(x, y), \dots, u^n(x, y), u_y^i(x, y)).$$

From the theorem on characteristics [2] it follows that there exist two systems of functions, y(x), $s^{i}(x)$, $q^{i}(x)$ and z(x), $w^{i}(x)$, $p^{i}(x)$, satisfying the following system of ordinary differential equations:

$$y' = -f_q^i(x, y, u^1(x, y), ..., u^n(x, y), q^i),$$

$$q^{i'} = f_y^i(x, y, u^1(x, y), ..., u^n(x, y), q^i) +$$

$$+ \sum_{k=1}^n u_y^k(x, y) f_k^i(x, y, u^1(x, y), ..., u^n(x, y), q^i),$$

where y = y(x), z = z(x) are two solutions of (5) satisfying the initial conditions $\bar{y} = y(\bar{x}), \bar{z} = z(\bar{x})$, and defined on a neighbourhood of \bar{x} . These functions satisfy the inequalities on a neighbourhood of \bar{x} .

The functions $s^i(x)$, $q^i(x)$, $w^i(x)$, $p^i(x)$ satisfy the initial conditions

$$s^{i}(\overline{x}) = u^{i}(\overline{x}, y(\overline{x})) = u^{i}(\overline{x}, \overline{y}), \qquad q^{i}(\overline{x}) = u^{i}_{y}(\overline{x}, y(\overline{x})) = u^{i}_{y}(\overline{x}, \overline{y}),$$

$$w^{i}(\overline{x}) = u^{i}(\overline{x}, z(\overline{x})) = u^{i}(\overline{x}, \overline{z}), \qquad p^{i}(\overline{x}) = u^{i}_{y}(\overline{x}, z(\overline{x})) = u^{i}_{y}(\overline{x}, \overline{z})$$

and the identities

$$s^{i}(x) = u^{i}(x, y(x)), \quad w^{i}(x) = u^{i}(x, z(x)),$$

 $q^{i}(x) = u^{i}_{y}(x, y(x)), \quad p^{i}(x) = u^{i}_{y}(x, z(x))$

on a neighbourhood of \bar{x} .

These functions satisfy the inequalities

$$|s^i(x)-s^i_0|\leqslant h$$
, $|q^i(x)-q^i_0|\leqslant h$, $|w^i(x)-s^i_0|\leqslant h$, $|p^i(x)-q^i_0|\leqslant h$

on a neighbourhood of \bar{x} .

Under our assumptions the inequality $y(x) \leq z(x)$ is satisfied on a certain neighbourhood of \bar{x} .

We shall use the following notation:

$$s^{k}(x) = u^{k}(x, y(x)), \quad w^{k}(x) = u^{k}(x, z(x)),$$

 $q^{k}(x) = u^{k}(x, y(x)), \quad p^{k}(x) = u^{k}(x, z(x)),$

k = 1, 2, ..., n, on a neighbourhood of \bar{x} .

The functions

$$v^{k}(x) = \frac{p^{k}(x) - q^{k}(x)}{z(x) - y(x) + \delta}, \quad k = 1, 2, ..., n,$$

are of class C^1 on a neighbourhood of \bar{x} .

We shall denote $v^i(x)$ by v(x), omitting the superscript i.

We shall show that the function v(x) satisfies the inequality $v'(\bar{x}) \ge C_0(v(\bar{x}))^2 - C_1|v(\bar{x})| - C_2$.

We have

$$egin{aligned} v'(x) &= \left(rac{p^i(x) - q^i(x)}{z(x) - y(x) + \delta}
ight)' \ &= rac{(p^i - q^i)'(z - y + \delta) - (p^i - q^i)(z - y)'}{(z - y + \delta)^2} \ &= rac{1}{z - y + \delta} \left[f^i_y(M) - f^i_y(S) + \sum_{k=1}^n \left(p^k f^i_k(M) - q^k f^i_k(S)
ight)
ight] + \ &+ rac{v(x)}{z - y + \delta} \left[f^i_q(M) - f^i_q(S)
ight], \end{aligned}$$

where

$$S = (x, y(x), s^1(x), \ldots, s^n(x), q^i(x)), M = (x, z(x), w^1(x), \ldots, w^n(x), p^i(x)).$$
We apply the mean value theorem:

$$egin{aligned} v'(x) &= rac{1}{z-y+\delta} \left[f^i_{yy}(ilde{S})(z-y) + \sum_{k=1}^n f^i_{yk}(ilde{S})(w^k-s^k) + f^i_{yq}(ilde{S})(p^i-q^i)
ight] + \\ &+ rac{1}{z-y+\delta} \sum_{j=1}^n \left[p^j ig(f^i_j(M) - f^i_j(S) ig) + (p^j-q^j) f^i_j(S)
ight] + \\ &+ rac{v(x)}{z-y+\delta} \left[f^i_{qy}(ilde{M})(z-y) + \sum_{k=1}^n f^i_{qk}(ilde{M})(w^k-s^k) + f^i_{qq}(ilde{M})(p^i-q^i)
ight], \end{aligned}$$

where $\tilde{S} = (x, \tilde{y}, \tilde{s}^1, ..., \tilde{s}^n, \tilde{q}^i)$, $\tilde{M} = (x, \tilde{z}, \tilde{w}^1, ..., \tilde{w}^n, \tilde{p}^i)$ are on the segment between S and M,

$$\begin{split} v'(x) &= \frac{1}{z - y + \delta} \left[f^i_{yy}(\tilde{S})(z - y) + \sum_{k=1}^n f^i_{yk}(\tilde{S})(w^k - s^k) + f^i_{yq}(\tilde{S})(p^i - q^i) \right] + \\ &+ \frac{1}{z - y + \delta} \sum_{j=1}^n \left[p^j f^i_{jy}(N_j)(z - y) + p^j \sum_{k=1}^n f^i_{jk}(N_j)(w^k - s^k) + \\ &+ p^j f^i_{jq}(N_j)(p^i - q^i) + (p^j - q^j) f^i_{j}(S) \right] + \\ &+ \frac{v(x)}{z - y + \delta} \left[f^i_{qy}(\tilde{M})(z - y) + \sum_{k=1}^n f^i_{qk}(\tilde{M})(w^k - s^k) + f^i_{qq}(\tilde{M})(p^i - q^i) \right], \end{split}$$

where $N_j = (x, y_j, s_j^1, ..., s_j^n, q_j^i), j = 1, 2, ..., n$, are on the segment between the points S and M.

After rearranging the terms, we get

$$\begin{split} v'(x) &= f_{qq}^{i}(\tilde{M}) \big(v(x)\big)^{2} + \\ &+ v(x) \bigg[f_{yq}^{i}(\tilde{S}) + \sum_{j=1}^{n} p^{j} f_{jq}^{i}(N_{j}) + f_{qy}^{i}(\tilde{M}) \, \frac{z-y}{z-y+\delta} + \sum_{k=1}^{n} f_{qk}^{i}(\tilde{M}) \, q_{1}^{k} \, \frac{z-y}{z-y+\delta} \bigg] + \\ &+ \sum_{j=1}^{n} v^{j} f_{j}^{i}(S) + f_{yy}^{i}(\tilde{S}) \, \frac{z-y}{z-y+\delta} + \sum_{k=1}^{n} f_{yk}^{i}(\tilde{S}) \, q^{k} \, \frac{z-y}{z-y+\delta} + \\ &+ \sum_{j=1}^{n} p^{j} f_{jy}^{i}(N_{j}) \, \frac{z-y}{z-y+\delta} + \sum_{j=1}^{n} p^{j} \sum_{k=1}^{n} f_{jk}^{i}(N_{j}) \, q_{2}^{k} \, \frac{z-y}{z-y+\delta} \, , \end{split}$$

where $q_1^k = u_y^k(x, y_1)$, $q_2^k = u_y^k(x, y_2)$, y_1, y_2 are points on the suitable segments.

Consider the case where $f_{qq}^i > 0$ on Q.

We obtain on a neighbourhood of \bar{x} the inequality

$$\begin{split} v'(x) \geqslant f_{qq}^i v^2 - |v(x)| \Big[|f_{yq}^i| + \sum_{j=1}^n |p^j| \ |f_{jq}^i| + |f_{qy}^i| + \sum_{k=1}^n |f_{qk}^i| \ |q_1^k| \Big] - \\ - \sum_{j=1}^n |v^j| \ |f_j^i| - |f_{yy}^i| - \sum_{k=1}^n |f_{yk}^i| \ |q^k| - \sum_{j=1}^n |p^j| \ |f_{jy}^i| - \sum_{j=1}^n |p^j| \sum_{k=1}^n |f_{jk}^i| \ |q_2^k| \,. \end{split}$$

Therefore $v'(x)\geqslant C_0v^2-C_1|v|-C_2$ on a neighbourhood of \overline{x} , where $C_0=\min[|f_{qq}^1|,\ldots,|f_{qq}^n|]$ on Q,

$$C_1 = \max |f_{yq}^i| + \sum_{i=1}^n \max |q^i| |f_{jq}^i| + \max |f_{qy}^i| + \sum_{k=1}^n \max |f_{qk}^i| |q^k| + \sum_{j=1}^n \max |f_j^i|$$
 on $Q, i = 1, 2, ..., n,$

$$C_2 = \max |f_{yy}^i| + \sum_{k=1}^n \max |f_{yk}^i| |q^k| + \sum_{j=1}^n \max |q^j| |f_{jy}^i| + \sum_{j=1}^n \max |q^j| \sum_{k=1}^n |f_{jk}^i| |q^k|$$
on $Q, i = 1, 2, ..., n$.

Obviously such constants C_0 , C_1 , C_2 exist because the functions f^i are of class C^2 on Q.

Now we shall show the inequality $D_+y(l) \geqslant v'(\bar{x})$.

The definitions of y, v imply that $y(l) = |v(\bar{x})| > K$.

Consider the difference quotient

$$\frac{y(l+\Delta l)-y(l)}{\Delta l}$$
, where $\Delta l>0$ and $l+\Delta l< a$.

From the definition of P_l and the inequality $|y'| = |f_q^i| \leq C$, $|z'| = |f_q^i| \leq C$ it follows that $(\bar{x} + \Delta x, y(\bar{x} + \Delta x), z(\bar{x} + \Delta x)) \epsilon P_{l+\Delta l}$, where $|\Delta x| = \Delta l$. If $y(l) = v(\bar{x}) > K$ and $\Delta x = \Delta l$, then we have the inequality

$$\frac{y(l+\Delta l)-y(l)}{\Delta l}\geqslant \frac{v(\overline{x}+\Delta x)-v(\overline{x})}{\Delta x}.$$

If $y(l) = -v(\bar{x})$, then for $\Delta l > 0$ and $\Delta l = -\Delta x$ we have

$$\frac{y(l+\Delta l)-y(l)}{\Delta l}\geqslant \frac{-v(\overline{x}+\Delta x)+v(\overline{x})}{\Delta x}=\frac{v(\overline{x}+\Delta x)-v(\overline{x})}{\Delta x}.$$

Therefore in both cases we get the inequality $D_+y(l)\geqslant v'(\bar{x}).$ Thus, we have

$$D_+y(l)\geqslant v'(\bar{x})\geqslant C_0(v(\bar{x}))^2-C_1(v(\bar{x}))-C_2=C_0(y(l))^2-C_1y(l)-C_2>0.$$

In the case where $f_{qq}^i < 0$ on Q we can get the inequality

$$v'(\overline{x}) \leqslant -C_0 (v(\overline{x}))^2 + C_1 |v(\overline{x})| + C_2, \qquad -v'(\overline{x}) \geqslant C_0 (v(\overline{x}))^2 - C_1 |v(\overline{x})| - C_2$$

and

$$D_+y(l)\geqslant -v'(\bar{x})\geqslant C_0(v(\bar{x}))^2-C_1|v(\bar{x})|-C_2=C_0(y(l))^2-C_1y(l)-C_2>0$$
.

In all cases we have

(6)
$$D_{+}y(l) \geqslant C_{0}(y(l))^{2} - C_{1}y(l) - C_{2} > 0.$$

Since l is arbitrary $0 \le l < a$, inequality (6) holds on the whole interval [0, a), and in virtue of the Lemma we get $y(0) \le K$.

Therefore

$$|u_y^k(x_0,z)-u_y^k(x_0,y)| \leqslant K(z-y+\delta), \quad z>y, k=1,2,\ldots,n.$$

Passing to the limit we get

$$|u_y^k(x_0,z)-u_y^k(x_0,y)| \leqslant K|z-y|.$$

The proof of Theorem 2 is thus complete.

Theorem 1 is a corollary to Theorem 2.

We consider a neighbourhood with its closure contained in Ω . In virtue of the regularity of the respective functions there exist constants C_0 , C_1 , C_2 , C_3 . Using these constants we can define a rectangle P and a set Q contained in the neighbourhood. The assumptions of Theorem 2 being satisfied, we obtain Theorem 1.

References

- [1] S. Bal, Über die Lösungen der nichtlinearen partiellen Differentialgleichung erster Ordnung, Zesz. Nauk. UJ, Zeszyt 10 (1965), pp. 7-11.
- [2] A. Plis, Characteristics of non-linear partial differential equations, Bull. Acad. Polon. Sci., Cl. III, 2 (1954), pp. 419-422.
- [3] J. Szarski, Differential inequalities, Warszawa 1965.
- [4] T. Ważewski, Sur l'équation aux dérivées partielles du premier ordre essentiellement non linéaire, Ann. Soc. Polon. Math. 13 (1934), pp. 10-12.

Reçu par la Rédaction le 27. 7. 1968