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On non-localized oriented angles

by L. DuBixAJTIS (Torun) and M. Kuczma (Katowice)

In the plane Euclidean geometry there are several distinct notions
referred to by the same name: angle. One of the most important ones
and with the largest area of applications is the notion of an oriented angle.
introduced with the aid of the following

DEFINITION 1. An oriented angle is an ordered pair of rays with a com-
mon origin. First of these rays is called the initial arm of the angle, the
other is called the terminal arm, and their common origin is called the
vertex of the angle.

If we denote by PQ~ the ray issuing from P and passing through
the point @, then the oriented angle (AB~, AC™> will be denoted by
XBAC™.

We meet oriented angles in particular in the plane trigonometry,
not in the part concerned with solving the triangles, but in the more
theoretical one, devoted to the investigation of the trigonometric func-
tions (and, in particular, reduction and summation formulas).

For oriented angles we may introduce an equivalence relation by the
following

DerINrrIoN 2. Two oriented angles.are equivalent iff there exists
an even isometry () of the plane which transforms ome of these angles
onto the other (of course, in such a manner that the initial arm of one
angle is mapped onto the initial arm of the other).

There are far reaching analogies between the notion of an oriented
angle and that of a localized vector. In particular:

1. a localized vector is an ordered pair of points, an oriented angle
is an ordered pair of rays;

(1) The group of the even isometries of the plane consists of all the rotations
and paralle]l translations of this plane. One defines the groups of parallel translations
and rotations, as usual, by means of the analytical formulas (1) and (2) (with addi-
tional condition (8)), respectively.
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2. for both these notions one defines special equivalence relations.

The latter remark sunggests that the procedure leading to the defi-
nition of a non-localized vector (as an abstraction class of equivalent lo-
calized vectors) may be applied as well to oriented angles. Namely, we
may adopt the following (?)

DEFNITION 3. Non-localized oriented angle generated by an oriented
angle << ABC™ is the set of all the oriented angles (PQR™ equivalent
to the angle <XAB(™,

In the present paper we shall use lower case bold-face Greek letters
(e.g. a, p) to denote non-localized oriented angles. The set of all non-
localized oriented angles will be denoted by «.

The notion of a non-localized oriented angle, though as a rule omitted
in the mathematical considerations, is very convenient (%) and it is just
thig nption that we have in mind when in the elementary geometry we
compare or add angles.

This notion is also closely connected with that of the rotation. A rota-
tion of the plane may be uniquely determined by specifying the centre
of rotation and so-called “angle of rotation”; the latter is nothing else
a§ just a certain non-localized oriented angle. This follows from the fact
that every non-identical rotation is an isometry which hag exactly one
invariant point S (the centre of rotation) and has the property that for
all points A # § of the plane and for their images A’ the oriented angles
< A8A'™ are equivalent, i.e., they belong to the same non-localized ori-
ented angle a. This non-localized oriented angle a is called the angle of
rotation, or else, we say that the mapping considered is the rotation
around the centre § by the angle e.

The connection described between non-localized oriented angles and
rotations allows one to notice further analogies between non-localized
oriented angles and non-localized vectors. Namely, similarly as there is
a one-to-one correspondence between the set of all the parallel translations
and the set of all the non-localized vectors, there is also a similar corre-
spondence between the set of all the rotations of the plane around a fixed
centre and the set «.

This correspondence allows us (the coordinate system being fixed)
to assign to every non-localized oriented angle a pair of real numbers
which are an analogue of the components of a non-localized vector. To
this purpose let us fix a (rectangular) Cartesian coordinate system on the

(®) Analogously one defines the notion of a non-localized nom-oriented angle
(ef. [2], p. 109).
() Cf. [3], p. 17: “angle”.
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plane. In this coordinate system the translation by a.vector v is described
by the formula

(1) 8 =ota Yy =y+b.

The pair of numbers <a, b) is called the components of the non-local-
ized vector wv.

Analogously, the rotation around the origin of the coordinate system
by & non-localized oriented angle a is described by the formula

(2) o =avt+by, ¥ = —brtay,
in which the coefficients a, b fulfil the additional condition
(3) at4+b2 =1,

Similarly as formula (1) establishes a one-to-one correspondence
between the collection of all pairs of real numbers {a,d> and the set of
all non-localized vectors, also formula (2) establishes a one-to-one corre-
spondence between the collection of all pairs of real numbers {(a, d> ful-
filling condition (3) and the set of all non-localized oriented angles .
Oongequently, making a profit of this analogy, we may call the pair of
the coefficients (a, d> occurring in formula (2) the components of the
non-localized oriented angle a (in a fixed Cartesian coordinate system).

We know from the elementary geometry that the successive per-
formance of two rotations around a point § by angles e, and a,, regpec-
tively, results in the rotation around the same centre S by a certain angle
oy, where the angle a; depends only on the angles a, and a,, but not on
the particular choice of the centre of rotation §. Hence we may define
the addition of non-localized oriented angles as follows:

DeriNitioN 4. The sum a,;+ a, of non-localized oriented angles a,
and a, i8 the non-localizecl oriented angle a; such that the composition
of the rotations by the angles a, and e, around an arbitrary centre S is
the rotation around S by the angle e;.

Here again we have an analogy with non-localized vectors, the addi-
tion of which may be defined in the following way: if we are given two
translations, by vectors @, and a,, respectively, then their composition
is the translation by a vector a, called the sum of the non-localized vectors
a, and a,.

It can be easily shown that the addition of the non-localized oriented

angles (similarly as the addition of the non-localized vectors) is associa-
tive and commutative. Similarly as one defines the non-localized null
vector and non-localized opposite vector, we may define the non-localized
oriented null angle and non-localized oriented opposite angle. Making
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use of the fact that if angles @ and p belonging to & fulfil the condition
p-+ 6 = p, then for every non-localized oriented angle a the equality

(4) a0 =a

holds, we may adopt the following

DErFINITION B. A non-localized oriented angle 6 is called the null
angle iff it fulfils condition (4) for every ae /.

It is easily seen that in the get o there exists exactly one null angle
and so we may introduce for it the fixed symbol 8.

It can be also easily shown that, for every ae &, there exists a unique
angle fe & such that
(6 atp =20,

which allows us to adopt the following

DEFINITION 6. If ae &, then the unique angle fe < fulfilling (5) is
called the opposite angle to a.

‘What has been said above implies the following

THEOREM 1. The set <« with the operation of the addition of angles
forms a commuiative group; the neutral element of this group is the null
angle 0, and the inverse element of an angle from £ 1is its opposite angle.

Regarding the components of the non-localized oriented angles we
have the following

THEOREM 2. In a fized Cartesian coordinate sysiem the sum of angles
with the components {a,, b,y and (ay, by) has the components {a;a,— b,b,,
a; b+ bias).

In order to prove Theorem 2 it is enough, making use of formula (2),
to find the formula for the superposition of two rotations.

One can also prove the following .
THEOREM 3. Independently of the ohoice of a Cartesian ooordinate
system the null angle 8 always has the components (1, 0.

A simijlar property is found with the flat non-localized oriented angle.
This is the non-localized oriented angle generated by any oriented angle
<X AB(C™, where B is a point lying between 4 and C. Namely, in every
coordinate system this angle has the components (—1, 0). Thus we may
adopt

DErINITION 7. The symbol z will denote the mon-localized oriented
Slat angle, i.e. the angle whose components (in every Cartesian coordinate
system) are (—1, 0).

Now we shall introduce a certain relation which is a pseudo-order
in the set 7. First of all let us fix a certain length unit and let PQ denote
the distance between the points P and @.
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It is well known from the elementary geometry that if we are given
two non-localized oriented angles e, and a,, and two pairs of distinct
points 8, 4, and B, B,, and if 4, denotes the image of the point 4, under
the rotation of the plane around the centre § by the angle a;, and B,
denotes the image of the point B, under the rotation of the plane around
the centre J2 by the angle a; (i = 1, 2), then the inequality

(6) Agd; < A4,

holds if and only if we have BB, < B,B,.

This fact allows us to adopt the following

DEFINITION 8. We say that a non-localized oriented angle a, is larger
than «,, and we write a, 3 a,, iff for every pair of distinet points S and, 4,
condition (6) is fulfilled, where 4, denotes the image of the point 4,
under the rotation of the plane around the centre § by the angle a;
(i=1,2).

It must be stressed, however, that the addition of angles is not mono-
tonic with respect to the relation -3, i.e. the condition e, 3 a; does not
imply a;+ B -3 ax+ B. A

The main problem with which we are going to deal in the present
paper is the gquestion of defining a magnitude of non-localized oriented
angles. As is known from the elementary geometry, the most commonly
used one is the radian measure of angles, or other proportional measures
(e.g., the measure in degrees). For a determination of a non-localized
oriented angle also its trigonometric functions can be used, e.g. the cosine
and sine. The numbers o and b, called in the present paper the compo-
nents of an angle, are just the cosine and sine of this angle.

In the metric geometry there is an essential difference between the
definition of the trigonometric functions of an angle and the definition
of the measure of an angle. The trigonometric functions of an angle ae &
generated by a localized oriented angle <XAB(C™ may be expressed as
algebraic functions of the distances of the points 4, B, 0. So, e.g.,

BA*4 BC*— AC?

().
2BA - BC

cosa =

In the case of the radian measure (or any other measure) of an angle
the sitnation is different. Such a measure cannot be expressed as an alge-
braic function of the distances of points, since the circular functions are
transcendental. Therefore all usual definitions of the radian measure

(1) The sine and the remaining trigonometric funetions also can be expressed
a8 algebraic functions of distances, although the necessity of taking into account the
orientation of the angle causes some complications.
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require a direct or indirect use of limit processes (sum of a series, integral,
the are length of a curve, or the limit of diadic approximations of the
measure of the angle).

The problem which we have put forward in the present paper is to
find a definition of a measure of angles which might be formulated in
an entirely elementary manner. More precisely, we have aimed at finding
an axiomatic definition of a measure of angles, a definition which would
define the measure possibly uniquely and could be formulated without
referring to limit processes (%).

At first let us establish what do we understand by a measure of angles
and what elementary properties should such a measure have.

The meagure we are looking for is a function ¢ which maps the set &
onto a set # referred to as the range of . The function ¢ should be single-
valued, i.e. it should fulfil the condition

(%) a; 7 a, implies @(a;) # p(as).

Moreover, in the range # of the measure ¢ an addition should be
defined and the function ¢ should fulfil the condition

() p(ar+ ay) = @(a)+p(a)

for every a,;, ay belonging to «. In equation (%*) the sign 4 on the left-
hand side denotes the sum of non-localized oriented angles introduced
in Definition 4, whereas the sign -+ on the right-hand side denotes the
addition that must be defined in the set #.

Since the function ¢ is a one-to-one map of the set & onto the set %,
it follows from condition (**) in view of Theorem 1 that the set # must
be a commutative group with respect to the addition defined there, and
we have even the following

THEOREM 4. The groups:

& — of non-localized oriemted angles, and

Y — of the values of a measure p of these angles, fulfilling (*) and (%*)
(together with the operations of addition defined therein), are isomorphio.

Now we shall show that the range % of a measure ¢ fulfilling (*) and
(**) cannot be a subgroup of the additive group of real numbers, for the
latter is ordered (by the relation <), whereas we have the following

THEOREM 5. If & funcltion ¢ defined on the set o fulfils conditions (*)
and (#%), then its range ¥ cannot be an ordered group, and henoe it cannot

be a subgroup of any ordered group, in particular of the addittve group of
real numbers.

(°) Such a definition is given for non-oriented (eonvex) angles in [2], p. 123-124.
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Proof. Let uy note that the flat angle = (cf. Definition 7) fulfils the

relation
(7 nt+n =0

and z # 6. By Definition 5 we have also
(8) x+ 0 = m.

If the group & could be ordered, then, according to Theorem 4, also
the isomorphic group & could be ordered. We shall show, by an indirect
proof, that it is impossible. So let us suppose that there exists a relation <
ordering the group . Then we must have either 8 < n or n < 6. In the
first case, adding the angle = to both the sides of the inequality, we
obtain

n+0< n+ =,

or, according to (7) and (8), = < 8, a contradiction. A similar argument
leads to a contradiction also in the other case.

Now let us consider the measure of angles most frequently used, viz.
the radian measure, which in the sequel will be denoted by ¢,. It asgigns
to a non-localized oriented angle a the set of all real numbers of the foxm

(9) a2k,

where a is a certain real number, uniquely determined for a given a,
fulfilling the inequality
(10) —n<a< T,

and k runs over the get of all integers. Thus the function ¢, assigns to an
angle & a whole class of real numbers congrunent modulo 2=. The range
of ¢, i.e. the set of all thoge classes, is the quotient group of the additive
group of real numbers #Z by the relation of congruence modulo 2x. In the
sequel the symbol #,, will denote the quotient group of the additive group
of real numbers £ by the relation of congruence modulo m. Thus the mea-
sure ¢, has the range %,..

By Theorem 4 the ranges of all possible measures of angles (fulfilling
(*) and (**)) are isomorphic with- each other. Therefore we may contine
ourselves to considering measures with a fixed range only. In fact, suppose
that #, and %, are two groups isomorphic with ., and hence with each
other, and let ¥ be an isomorphism of %, onto #,. If ¢, is a measure of
angles with the range @, then ¢,(a) = » (p;(a)) also is a measure of angles
(l.e., fulfils (%) and (**)) and has the range #,.

In the light of the above remark it is no restriction to consider only
the measures with the range £,,.

Among other possible ranges we mention the groups #,, (in partic-
wlar, %y, is the range of the measure in degrees); and also the group &



234 L. Dubikajtis and M. Kuczma

of the complex numbers of the absolute value 1, with the operation of
multiplication. The latter group has an obvious geometrical interpreta-
tion. Finally, we would like to call the reader’s attention to the group s
congisting of all the real numbers a fulfilling (10), with the operation +
defined as follows:

at+b if —n<aefb<gm,
(11) a+b ={a+b—2n if a4 b >,
a4-b+2x if a+b< —m.

All these groups #,, &, J are isomorphic with %,.. In particular,
an isomorphism between # and £, is established by the function 7 which
assigns to an a< S the class (9):

(12) 7(a) = {a+2k~n}.

Our choice of #%,, as the standard range is motivated by the fact
that the most important measure of angles, the radian measure g,, has
just the range %,,.. We know that ¢, is a function with the domain 27 and
the range #,, fulfilling conditions () and. (¥*). We may ask in how far
it is determined by these conditions.

ProsLEM 1. Decide whether ¢(a) = @o(a) is the only function with
domain & and range %, fulfilling conditions (*) and (%*).

Unfortunately, the answer to this problem is negative, as may be
seen from the following

THEOREM 6. There ewist infinitely many distinot functions ¢ fulfilling
the conditions speoified in Problem 1.

Proof. Let 52 be an arbitrary fixed Hamel basis of the set of real
numbers such that 2z¢ # and let f, be an arbitrary permutation of 5
(a one-to-one map of s onto itself) such that

(13) fo(2m) = 27,

Ag is well known ([1], p. 35), f, can be uniquely extended to an
additive function f on the whole set of real numbers:

(14) fle+y) = f(2)+1(y).

We shall show that f(z) = 0 implies # = 0. In fact, # may be uni-
quely written in the form

(1.6) % = Zﬁhu h;e #, r; rational,
and we have

(16) f@) =£( D) rih) = i folhe).
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But, since f, is a permutation of 5#, the set of f,(%,) occurring in (16)
is linearly independent over the set of rationals (¢).

Thus the value (16) may be zero if and only if all »; are zero, which
implies # = 0. Hence it follows that f is invertible, for f(#z) = f(y) implies
by (14) f(x—y) = 0, whence » = y.

The range of f i8 the whole set of real numbers. For suppose that
we are given an » written in form (15). Since f, is a permutation of 2,
we can find hye # such that fy(h;) = h;, whence for o' = 3'v,h; we have

f@) = Dlrfolh) = vk =a.

Now let us take an ae & and let

(17) eo(a) = {a+ 2k},
where k& runs over the set of integers. We write
(18) p1(a) = {f(a)+2kn}.

The right-hand side of (18) is independent of the choice of & in (17).
In fact, if {a,+2kx} = {a,+2kn}, then a,—a, = 2Ir, where I is an inte-
ger, and by (14) f(a:))—f(as) = f(a1— as) = f(2Ir) = If (2m) = Ifo(2m)
= 2In, whence {f(a,)+2kn} = {f(a;)+2k}. Oonsequently ¢, is by (17)
and (18) unambiguously defined on & and its range is 4,,, since the range
of f is the whole set of reals. The function ¢, fulfils (*) in virtue of the
invertibility of f and ¢,, and fulfils (**) by (14) and the additivity of ¢,.

There are as many functions g, as permutations of the (uncountable)
set 2 fulfilling (13), i.e., 2°.

Since the answer to Problem 1 is negative, we must seek further
conditions (7) which imposed on the function ¢(a) allow us to eliminate
superfluous solutions. This could be easily achieved if we could impose
onto ¢ the condition of the monotonicity. However, in view of Theorem 5,
this is impossible, since there exists no relation ordering the group #,,.
Anyhow we shall introduce a certain relation in #,, which, being not
an order (nor even a pseudo-order), nevertheless will allow us to compare
the elements of %, (8). We start with the following

(") The basis #, as well as every its subsef, is linearly independent over the
rationals.

(") The problem of determining the angular measure by means of functional
equations is not novel. In 1933 S. Golab considered analogous problems in general
spaces (cf. [4]).

() The relation which we are going to define is a pseudo-order in the set %y,
but it is not a pseudo-order in the group #ar, because the addition in this group is
not monotonic with respect to the relation 3.
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DEFINITION 9. The norm of an ae %,, (°) is-the real number ||a| defined

by
(19) lla|| = min |2},

xea

It is readily seen that for any ae %,, we have the inequalities
0 < llaf| < =

Instead of comparing the elements of the group #,, we shall compare
their norms with. the aid of the usual relation of majority for real numbers,
Taking into account Definitions 8 and 9 we easily see that the condi-
tions @; 3 @, and |jpe(ay)| < llpo(az)|| are equivalent. Thus the function

@(a) = po(a) fulfils for all a;, a;e &/ the condition
(k) a; -3 @y implies |lp(ay)l| < llp(an)ll.

Now we may ask whether conditions (*), (*%) and (***) determine
the radian measure uniquely, i.e., we have the following

ProBLEM 2. Decide whether p(a) = p,(a) is the only function with
domain & and range %,, fulfilling conditions (*), (**) and (#**).

Now, the answer to Problem 2 is essentially positive: the function ¢
is determined up to the sign. Moreover, it is superfluous to assume that
the range of ¢ is £,,, it is enough to assume that the range is contained
in %,,. Thus we shall prove the following theorem which is the main
result of the present paper:

THEOREM 7. There ewist ewactly two distinal functions ¢ which are
defined on Z, take values in the group Ry, and fulfil for every ay, aye o
conditions (*), (¥%) and (x*x). These funotions differ only by the sign.

Proof. Let ¢(a) be a function fulfilling the conditions of the theorem
and let ws write

(20) g(@) = v p(es (=),

where 7 is the isomorphism of # onto £,, defined by (12). The function g
has the domain .# and its range is contained in #. Conditions (*) and (x*)
and the analogous properties of ¢, and = imply that

(21) g(@) # g(3,) for @, # @y, @1, Wye S,
and
(22) 9@+ @) = g(@,)+9(w2) for wy, mpe S,

Further, in view of (12) and (19) we have

(23) Ie{a)l = lal.

(°) Note that if ae #y,, then a is a set of real numbers,
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Relation (23) and condition (¥**) for ¢, and ¢ imply in view of (20)
that

(24) lws] < || implies |g(;)| < |g(w,)].
Setting @, = w, = 0 in (22) we obtain by (11)
(25) g(0) = g(0)44(0),
whence (10)
(26) g(0) = 0.
Similarly, setting »;, = @, = =, we have by (11), (22) and (26)
(27) g(m)+g(m) =0,
whence either
(28) g(m) =0,
or
(29) g(r) = =.

But in view of (21) and (26), relation (28) is impossible and thus
necessarily (29) holds. Finally, setting o, = @, = 3w, we get by (11), (22)

and (29)
(30) g(§n) 4 g(3m) = m,
whence either g(3r) = 4w, or g(in) = —3}w, at any case
(31) l9(3m)| = 3.
Relations (24) and (31) imply that we have
(32) lg(®)] < 3n  for |®| < ¥m;

and since for [#] < 4m operation (11) reduces to the usual addition, we
obtain by (22)

(33) 9@+ @) = gl@)+g(w,) for |my] < I, |2y < &,
It follows from (33) and (24) (cf. [1], p. 43-46) that for |#| < 4=
(34) g(@) = o

with a certain real constant ¢, and it is readily seen from (32) that |o| < 1.
For $r < |#| < = we obtain from (22) and (34) in view of (11)

g9(2) = g(3o+ $0) = g(§2)+ g (49) = dow + fow = oz,

i.e., (34) holds for all # with |¢| < =. Relation (31) yields now o] =1
and taking into account (29) we obtain () g(#) = @ for all e # or g(x)

(1) In order to solve quickly equations like (25), (27) or (30) one can replace
by the isomorphic group &. Then (25) is equivalent to & = ¢, ¢¢ &, (27) is equivalent
to 22 =1, z¢ £, and (30) is equivalent to 22 = — 1, ze &.

(') Here —z denotes the element inverse to » with respect to operation (11).
This is identical with the usual opposite number except for # = =, for which —n = =.
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~ —-o for all we £. This implies in view of (20) that either ¢ (a) = g,(a) for
ae &, or p(a) = —o,(a) for ae &, which was to be proved.

As we know, the rotations of the Euclidean plane may be performed
in two directions referred to as orientations of the plane (clockwise and
anti-clockwise). Depending on which of these orientations is distinguished
as positive, we may fix the radian measure of oriented angles in two pos-
gible ways. According to tradition we usually choose the anti-clockwise
orientation as posgitive, however, there is nothing hampering us from
accepting the clockwise orientation as positive. Both the radian measures
obtained in this way fulfil all the conditions of Theorem 7, so we have

THEOREM 8. Both funotions whose ewisience results from Theorem 7
are radian measures of the orienied non-loocalized angles with two possible
orientations of the plane acocepted as positive.

The results of the present paper can be applied in the teaching in
secondary schools. One of the serious difficulties is presented by the prob-
lem of introducing the notion of the radian measure of oriented angles
which would be correct and at the same time short and easily understand-
able. And such a measure is necessary for building up the trigonometry.

The above Theorem 8 may serve as a simple axiomatic definition
of that measure. However, in order to make it accessible to the pupils’
level, we must introduce some modifications, in particular to remove the
quotient group #,.. Our proposal reads as follows.

We introduce the following notions:

1. non-localized oriented angles (Definition 3);
2. their sum (Definition 4);
3. the comparison of angles (Definition 8);

and then we give the following

DerINITION 10. The basto radian measure of non-localized oriented
angles is any function f with the following properties:

(i) f is a one-to-one function assigning to non-localized oriented
angles real numbers from the interval (— =, -+ x];

(ii) for any two angles e and g there exists an integer % such that
fla+B) = f(a)+F(B)+ 2kr;

(if) it a3 8, then |f(a)| < |f(B)].

After this definition we give either as an axiomat (%), or as a theo-
rem, the proof of which is omitted, the following

THEOREM 9. There ewist evactly two different basic radian measures

(1) Note that in Z. Krygowska's textbook [5] for the first course there occurs
the axiome WYV concerning the natural ordering of points on the line, which is quite
analogous to our Theorem 9 below.
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of mon-localized oriented amgles: fi(a) and f,(a); moreover, for every angle a
with the exception of the flat angle, we have fi(a) = —f,(a).

Afterwards we can introduce the generalized measure of non-localized
oriented angles by the rule that, the basic measure f being fixed, we assign
to any angle « not only f(a), but all the numbers of the form f(a)+ 2%kx.

Begides the method described above there iz also another way of
axiomatic introducing the radian measure of oriented angles. It consists
on introducing first non-oriented angles and their addition and the measure
of those angles (cf. [2]), and then extending that measure onto oriented
angles. This method, however, requires a rather involved argument to
prove that the extended measure also satisfies equation (**).
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