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satisfying the triangle mean value property
for harmonic polynomials, II

by SHiIGERU HAruki (Okayama, Japan)

Abstract. Il f;: C — R satisfy the quasi-triangle mean value property fo(x +y)+f; (x +0y)+
+f2(x+6%y) = 3f3(x) for all x, yeC, 6 = exp(2mni/3), then there exist generalized quadratic
polynomials such that f;(x) = Q?+ Q] (x)+ Q7 (x) for all xe C. In addition if f; are bounded on a
set of positive Lebesgue measure, then f; are given by harmonic polynomials of degree < 2.

3. Reduction to generalized quadratic polynomials. In the previous note
(*) we found the continuous solution of equation (M). In this note it is our
purpose to prove the following two .extensions of a theorem proved in (*).

One of them is:

THEOREM 1. Let R be the set of all real numbers and ler C be the set of all
complex numbers. If f; (j =0, 1, 2, 3): C— R satisfy the quasi-triangle mean
value properry

2

(M) 2 Silx+07y) = 3(x)

j=0

for all x, yeC, where 0 is a number exp(2ni/3), then there exist generalized
quadratic polynomials (') such that

(3.1) [i(x) =07 +Q} () +07 ()
for all xeC and for each j=0,1, 2,3, where
(i) Q) are real constants,
(i) Qj: C — R are additive functions and
(i) QF: C — R are symmetric bi-additive functions, i.e., Q}(x) = Q; ,(x, x)
and Q;.(x,y): CxC — R are symmetric bi-additive.
The other is:

THEOREM 2. Let p denore Lebesque measure on Rx R and let Q@ < RxR
be a measurable subset with () > 0. Let the functions fi(x) = u;(x,;, X,):

(*) Ann. Polon. Math. 33 (1977), 219-221.
(") See (11, [4].
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RxR—R, j=0,1, 2,3, be solutions of (M). Then f; are given by (3.1) for
all xeC. In addition, if u; are bounded on Q, then u; are continuous every-
where and are harmonic polynomials of degree < 2.

4. Proof of Theorem 1. Rewrite (M) as
(4.1) (B+ TP+ T2 =3T9)f () =0
for all x, ye C, where the shift operator is previously defined by
T f(x) =fi(x+2) and TPf(x)=f;(x)

for each j=0,1, 2,3 and for all x, zeC.
Replace x by x—0z, and y by y+z, in (4.1). Then clearly

—0)z 2 2_ z — oz
(4. (T 4 I+ 1T 3T ) =0

for all x, y, z, eC.
If the difference operator 4, is defined by

4,0;(0) =(T7-T)f(x) for all x, yeC,
then by taking a difference of (4.2) and (4.1) one obtains
(4.3) Au~a)z1f0(x+)’)+A(oz—o)zlfz(x'*'ez Y)=34_q, f3(x) =0.
Similarly, by replacing x by x—6?z, and .y by y+z, in (4.3), we infer
44 A(l—ﬂ)zlfO(x+y+(l_02)22)+A(02—9)21f2(x+02y)—
_3A—0:1f3 (x—=0%z) =0
for all x, y, z,, z,€C, which with (4.3) implies
4.5) A1 -pyzy A1 -02)z,Jo(x+Y) =344, A_p2.,f3(x) = 0.
Finally, set y =z, in (4.5). Then
A1 -oyzy A -0z, Jo(x+23)—34_¢g, A_p2,,f3(x) =0
which with (4.5) implies the desired equation
Bia-0z) A1 _ 6212, B2y fo(x) = 0
for all x, z,, z,, z€C, and therefore
(4.6) 4;, fo(x) =0 for all x, z;eC.
Hence it immediately follows from the results of S. Mazur and W. Orlicz
[3] with equation (4.6) that there exists a quadratic polynomial such that
4.7 fo(¥) =Q0+Q5(x)+Q3(x) for all xeC,

where functions @4, j =0, 1, 2, 3, are defined in Theorem 1.
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In view of equation (M) it is clear that obvious modifications can be
repeated for the terms f;, f, and f; to obtain

43f;(x)=0 for each j=1,2,3 and for all x, ueC,

since 8™ # 67, m # p for m, p=1, 2, 3. Theorem 1 is ‘proved.
5. Proof of Theorem 2. By (4.7) and the additivity of Q} we obtain ([3])

(5.1) fo(Nx) = Q3+ NQL(x)+ N2Q23(x) for N=1,2, 3.
~ System (5.1) is clearly solved for @}, j=0,1, 2, in terms of f,(Nx),

N =1, 2, 3, since the Vandermonde determinant

1111
ll 222
13 32

But |fo(x) = |ug(x,, X,)| is bounded for all (x,, x,)eQ. Hence Q3, Q5(x) and
Q2(x) for all x are bounded on a set of positive Lebesgue measure. Further,
the identity

# 0.

Qo.2(x, ) =4(Qo.(x+y, x+y)— Qo2 (x—y, x—))

for all x, ye C shows that Q, ,(x, y) is also bounded on a set of positive
Lebesgue measure, since Qo ,(x+y, x+y) = Q3(x+y) and Q3(x—y) are
bounded. If one briefly defines Qq 5(x, y) = Q0,5 (xy, X3, X3, X4), then by the
bi-additivity of Q,; one readily obtains

(5.2)
Qo.2(xy, X2, X3, X4) = a1 (xy, X3)+az(x1, Xg)+a3(x2, X3)+ay(x3, X4),

where a,, a,, a3, a,: Rx R — R are additive in the first and second variables
separately. Moreover, (5.2) implies

a, (xla xa) = QO.Z(xls X2, X3, x4)+QO.2(xla — X2, X3, —x4)+
+Qo.2(x;, —x3, X3, x4)+Qo.z(x1, X3, X3, —Xg).

This shows that a; is bounded. Similarly, a,, a3, a, are bounded.

It now follows by well-known theorems of additive functions (%) that Qj,
j =1, 2, 3, must be continuous everywhere and, by (5.1), so is f,. Similarly, if
luj <k, k>0, j=0,1,2, for all (x,, x;)e, then f;,f; and f; are also
continuous everywhere. Hence the theorem in (*) immediately implies that f,
j=0,1, 2,3, are given by harmonic polynomials of degree < 2. This proves
Theorem 2.

6. Corollaries. As consequences of Theorem 1 and Theorem 2, we obtain
the following corollaries.

() See [2]
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CoroLLARY 1. A function f: C — R or C satisties the triangle mean value
property

2
(6.1) Y f(x+&y) =3f(x) for all x,yeC
j=0

if and only if there exists a generalized quadratic polynomial such that
(6.2) f(9)=Q°+Q (x)+Q2%(x) for all xeC,

where Q° is a real or a complex constant and an additive function Q': C - R
or C and a symmetric bi-additive function Q*: C — R or C must satisfy the
equation

2
(63) Y [Q'(¢Y+2Q:(x, #y)+Q* (0’ y)] =0 for all x, yeC.
j=o

Proof. By Theorem 1 we obtain (6.2). Substitute (6.2) in (6.1) to obtain
(6.3).

CoroLLaRry 2. Let f: C — C. Then the measurably bounded solution of
(6.1) is given by a complex polynomial such that

(6.4) f(x) =ao+a, x+a,%+a; x*+a, x¥+as 3
s

where a,, k=0, 1, ..., 5, are complex constants.

Proof. If fi C — C satisfies (6.1), then f is given by (6.2). It readily
follows from a similar proof of Theorem 2 that Q!, Q%: C - C are also
bounded on a set of positive Lebesgue measure and hence are continuous
everywhere. The continubus additive function Q': C — C is given by Q'(x)
= ax + bx for all xe C where X denotes the conjugate of x. Hence, by the bi-
additivity of Q2 we obtain

(65) Qz(xl, XZ) = a(.\'z).xl +b(X2)fl

for all x;, x,eC, and a, b: C - C. But by the symmetry of Q, we have

(6.6) a(xy) x; +0(x2) X; = a(x;)x, +b(x,) X,.
Set x;, =1 and x; =i in (6.6) to obtain

(6.7) a(xy)+b(xy) =a(l)x; +b(1)%,
and a(x,)i—b(x,)i =a(i)x,+b(i) X, which implies

(6.8) —a(xy)+b(x,) = al(i)ix, +b(i)ix,.

If we solve equations (6.7) and (6.8) for a and b, then b(x,) = ¢y x,+¢, X,
and a(x,) =c3;x,+c, X, with complex constants c¢,, ¢, ¢3 and c¢,, which
with (6.5) yield Q2(x) =ayx*+a,xX+asx2. Hence we obtain (6.4).
Conversely, (6.4) satisfies (6.1).
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