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The sufficient condition for linear constant
time-lag systems to be normal systems

by J. KrocH (Krakéw)

Abstract. In this paper we consider two problems: the sufficient conditions under
which a control system is a normal system and an estimation of & number of switching
times for bang-bang control.

Introduction. A system of differential equations with a retarded
argument is a mathematical model of many physical and technological
processes. The topic treated is a study of time-optimal steering described
by a linear stationary system of differential equations with retarding in
state variables.

Weé consider here two important problems: One — given in detail
in Section 2 — concerns conditions under which a control system is a normal
system (cf. Definition 1.3), the other — contained in Section 3 — deals
with an estimation of the number of switching times for bang-bang control.

In Section 1 we summarize briefly a number of questions from opti-
mal control theory which will play a basic role throughout the paper.
We give also some examples illustrating the main theses.

Some knowledge about the solutions and Pontriagin’s maximum
principle allows us to find an effective time-optimal control, but in the case
where a control system is not normal, Pontriagin’s maximum principle
does not give any information about the time-optimal control.

Analogous problems for processes described by a linear stationary
system of ordinary differential equations have already been solved (cf.
[4]). However, retardings of the argument in a control process give dif-
ficulites of theoretical and calculatory nature. Eoughly speaking, the
components of any solution of a linear stationary system of differential
equations are analytic functions whereas the components of any solution
of the same system with a retarded argument are, in general, only con-
tinuous. | '

In order to overcome these difficulties we apply a method which
consists in changing “it every step” a linear stationary system of differen-
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tial equations with a retarded argument by an equivalent (cf. Definition
2.1) linear homogeneous stationary system of ordinary differential equa-
tions.

This change is possible only when the initial function for a system
with a retarded argument fulfils certain assumptions and it is made at
the cost of raising in the order of the system of homogeneous ordinary
differential equations. ‘

The author wishes to express his gratitude to Professor A. Turowicz,
who called his attention to this subject and whose valuable suggestions
helped him greatly to obtain the results presented here.

1. Consider the linear control process with time delay
(1) #(t) = Aw(t)+ Bo(t—h)+ Cu(t) +4(1),

where 0 < h < oo is constant, the state vector o(t) is an n-vector, the con-
troller «(t) is an r-vector, A and B are (n xn) real constant matrices, C
is an (n xr) real constant matrix, and g(?) is a continuous n-vector funetion.

The problem is to find a measurable control function %(¢) on [0, ¢,]
from the given compact, but not necessarily convex, restraint set @ = R"
which steers the system response #(t) from the given continuous initial
function ¢(¢), — k < £< 0, to continuously moving closed target set G(t) « R®
in minimum time t* (t* < t,). '

The following theorems will be used only in the exact formulation
of some problems. Therefore we omit the proofs, which can be found in
(2] and [B].

DeFINITION 1.1. The obtainable set X'(f;) of system (1) with the
initial function ¢(t) is the set of all endpoints ®(¢,) which can be obtained
from the initial function ¢(¢), —h<¢<0, at ¢ =1¢, by the use of all
measurable controllers «(f) with u(¢)eQ on [0,#]

DEFINITION 1.2. A controller %(#) will be called exiremal on [0, t,]
it it steers the corresponding response #(¢) to the boundary 9. (¢,) of the
obtainable set X (t,) at ¢,, that is, @(¢,) e 0 (¢,).

THEOREM 1.1. Consider system (1). A controller u(t)eQ on [0,1,] 18
extremal if and only if there emists a non-trivial solution n(t) of the adjoini
equation
A(t) = —q)A—n(¢+m)B, 0
n(t) = —n(t)4, t—h

SISt —h,
(2)
<<

J

17%)
such that
7(t) Cu(t) = maxn(t) Cu
ueQ

almost everywhere on [0, t,]. thermoro; 7(ty) 18 outward normal to X (1,)
at o(t,).
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DEeFINITION 1.3. System (1) will be called normal (see also [2]) on
[0,¢] if no component of 7(t)C is identically zero on any subinterval
of [0, ¢,] for all non-zero vectors %(¢,).

The following is a uniqueness condition for extremal controllers:

THEOREM 1.2. Consider system (1) with a compact restraint set Q « R
containing more than one point. If the system is normal on [0, t,], then
A () is strictly convex and hence it has a non-empty interior in R™. Further-
more, if two controllers uy(t) and uy(t) steer their corresponding responses
@, (t) and @,(t) to the same boundary point of X (1,), i.e., ®,(t;) = @,(t;)
€ 30X (1,), then u,(t) = uy(t) almost everywhere on [0, ¢,].

The following theorem gives the existence of a time optimal controller:

THEOREM 1.3. Consider system (1) with a compact controller restraint
set Q@ c R" and a continuously moving olosed target set G(t) — R™ If there
ewisls one measurable controller wu(t)e Q@ which steers the imitial fumction
@(8) to the target set G(t) at t = t, < oo, there emists a time optimal controller
u*(t)e Q on 0 < t.< t*, where t* < t,.

The following theorem gives a necessary condition for a time optimal
controller:

THEOREM 1.4 (Maximum principle). The time optimal control u*(t)e Q
on [0, t*] of Theorem 1.3 is an eatremal control, i.e., u*(t*)e 04 (1*) and 3o,
by Theorem 1.1, there emists a non-trivial adjoint solution n7(t) such that

n(t)Cu* (1) = max (1) Cu
ueQ

almost everywhere on [0, 1*], where q(t‘) 18 an outward normal to X (t‘)
at 2*(t*).

From Theorem 1.2 it is apparent that if the system is normal, then
the time optimal control is unique. Since the optimal control is given
by n(t)Cu*(t) = ma.qxn(t)c‘u, if @ is a given hypercube |u,|<1,i =1, 2,

ue

...y 7ythen
u*(t) = sgnn(t)C,

whefe sgnv = 8gn(v,, ¥gy ..., ¥,) = (8g07,, Sg0%,, ..., 8g0v,), and s0 u*(?)
is & bang-bang controller.

In the next part of the paper we will use the following terms:

DEFINTTION 1.4. If ¢, denotes a vector whose components are the
elements of the s-th column of matrix C (¢ =1, 2, ..., r), then the scalar
function o,(¢) = n(#)o, is called the switching function. In other words,
the switching function is the scalar product of the vectors 7(¢) and ¢,.

DEFINITION 1.5. System (1) is called 8-normal on [0,%,],8 =1, 2,
.., r, if for every %(¢,) # 0 the switching function o,(?) is non-ldentlcally
zero on any subinterval of [0, ¢,].
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DEerINITION 1.6. If system (1) is 8-normal on [0, 1,8 =1,2,...,7,
then the zeros of the swithing function o,(?) will be called the swithing
times for s-th component of the controller u(t).

Olearly, system (1) is normal on [0, ¢,] iff the system is s-normal
on this interval for each 8 =1, ..., 1.

2. We shall now formulate the conditions for the matrices A, B and
C under which system (1) is normal. Let us notice that if weput t >~ —t4-¢,
in the adjoint system (2) and denote z(t) = n(—%¢41,), then system
(2) assumes the form: ‘ '

(3) 2(t) = z(1)A+2(t—h)B
with the initial conditions
(4) 2(t)y =0, te[—h,0); 2(0) =2 =g(t).

Let us write
Bloyy = {te [0, 4] 0,(8) = 2(t)e, = 0}.
Since o,(t) is piecewise analytical, we can formulate the following-
Rem::.rk 1. System (1) is s-normal on [0, ¢,] iff the set Ef,,; is finite
for each 2z # 0 (¢, < o0).

Naturally, if system (1) is s-normal on [0, ¢,], then is also normal
on every [0, ¢*], where t* < {,.

In the case where the matrix B is a null-matrix, the system is described
by a system of equations of the form

) a(8) = Aa(t)+Cu(l), (0) = .
A n.a.s.c. for s-regularity of this system on each [0, T'] is
rank (c,, Ac,,'..., A" e,) = .

The following example can show the difficulties in formulating con-
ditions for the matrices 4 , B and C which guarantee the finiteness of Ef, ; ,for

0
every 2z # 0.
ExaMpPLE. Consider the system

4(t) = 2()A +2(t—1)B,,

a
10 0 Zte 1
A= )’ Bc= ’ G=01=
02 a 0 1

with the initial condition
2(t) = .(zl(‘)i zz(‘)) =(0,0), te[—1,0); 2(0) =(e, —1).

where
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z(t) = (', —¢*) is the solution of this system on [0, 1]. However,
on [1, 2], the system has the form

L) = zlm—ei;e“, 27(1) = e,

25(t) = 22,(t) + (%'{"e)e‘y 23(1) = —e?,

and the solution is

n() = (—‘:-—l-e)e‘—-gi’e“,
2t = —(g+e)o'+ie”. .
€ e?

Since rank(c,, 46;) = 2, for every z(0) # 0 the set E[o y I8 a finite

set (at most a one-point set), whereas for z(0) = (¢, —1) we have .E[0 1

= {1}, B4 = [1, 2]. Thus we see that the set B, , is an interval even

though for a = ¢?/(¢—1) the matrix B, is non-singular and symmetric.
We shall introduce the following operation: '

Rknsy_)yr.s = (ym+l7 Yentzs o ytm)‘R“-r)“g
keN, 0<r<s<k.

DeFmNITION 2.1. The system of differential equations with a retarded

argument (3), (4) is called equivalent on [a, b] to a system of ordinary dif-
ferential equations

J(t) =y(®)D, yla) =49,

where D is a real m xm matrix (m > n), if 2(f) = (Y_ps1(8), Ymnsa(t),
s Ym(D)! ,on [a, b], i.e. the sequence of the » components of y(t) is ident-
1ca,l with the solution z(#) on [a, b].

Let us introduce matrices D, which will play an important role in
the sequel.

We set
A B 0
=4, 4 B
A .
(5) =( ) . '.. B
A B
0 A

D, is a kn X kn matrix and contains n X blocks. On the main diagonal
there are ¥ matrices 4, above k—1 matrices B, the other elements
are equal to zero.

6 — Annales Polonici Mathematicl XXXII.2
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Consider the following system on [(k—1)k, kk]:
- (6) 7 (t) = y* (1) D,

with the initial condition

~ k
(7) v (k—1)R) =y,
k
where y are defined inductively by
10 ko k-1
(8) y=2, y=(y,% 0. ((k=1)h).
THEOREM 2.1. For every ke N there emists such a matrio D, and vector

k _
y that system (3), (4) i3 equivalent on [(k—1)h, kh] to system (6), (7).
Proof. We shall prove this theorem by induction. Let 2z¥(¢) denote

a solution of system (3), (4) on [(k—1)h, kh]. We assume that Theorem
2.1 is valid for ¥ = p and we shall show that on [ph, (p +1)2] we have

(9) 2PFI(t) = yBtl  (1).

It is sufficient to show that z°*'(¢) and y2%) (¢) are solutions of the

same stationary system of differential equations. Conditions (5), (6), (7)
and (8) imply that y5%% , (¢) fulfils the following system:

(10) gt () = yhh (A +y3t (1) B
with the initial condition
(11) Yol (ph) = y3_, . (ph).

From (5), (6), (7) and (8) we have also
(12) ¥ (8) = 4P,
moreover, for £k = p in (6) and (7), it follows that on [(p —1)k, ph]
Eyp(t) — ;e(f—ph+h)Dp;
and hence on [ph, (p +1)k]
(13) yP(t—h) = g &N,
Utilising (12) and (13), we get

¥85 (1) = y*(t—h);
consequently )

(14) Ypiio(t) = Yp_1p(t—h).
According to the induction hypothesis we have on [ph, (p+1)A]
(15) Yo-1,p(t—h) = 2P(t—h).
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Finally, from (10), (11), (14) and (15) it follows that, on [ph, (p 4-1)A],
y5tl (1) fulfils the system

(16) gk (1) = 2t () A +2°P(t—h)B
with the initial condition
(17) yotl (ph) = 2P (ph).

Solving system (3), (4) by the step-method, we can see that.z?*!(#)
fulfils on [ph, (p+1)k] the system

(18) APt = 2P (1) A +2°(t—h)B
with the initial condition
(19) 2Pt (ph) = 2P (ph).

From (16), (17), (18) and (19) it follows that y5tl, (¢) and 2°*'(1)
are, on [ph, (p+1)k], solutions of the same system of equations with the
same initial conditions.

This ends the proof.

We shall now prove a well-known lemma.

LEMMA 1. A sufficient condition for the set
B_ypun = {8 [(k—1)h, kh]: o(t) = y*(H)u = 0, ue B*}

k .
to be finite for every y # 0 is rank(u, Dyu,..., D¥"'u) = kn.
Proof. Assume that the set Ey_,p x4 i8 infinite. By virtue of the ana-

lyticity of the function ¢(t) the contradiction of our thesis is equivalent to
the assertion E[(k—l)h,kh] = [(k—l)h, kh], i.ﬁ-,.

¥*t)u =0, te[(k—1)h,kh].

By differentiating this equation kn—1 times and by (6) we obtain
the following homogeneous system of equations:

y"(t)“ =0,
yk(‘)-Dk“ =0,
¥y (@) D=ty = 0.
This system is fulfilled by y*((k—1)h) = § # 0, and thus rank(u, D,u,

«ery D* ) < kn. This: completes the proof.
Let us introduce the notation

(20) R ¢k =(0,0,...,0,0)"

(a star means transposition).
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From Theorem 2.1 and th.e definition of ¢f it follows that for te
e[(k—1)h, k] we have
(21) zk(t)oa = y:—l,k(‘)oa = yk(‘)of-

If we use (21) in Lemma 1 and next recall Remark 1, we shall get
the following lemmas:

LeMMA 2. A sufficient condition for system (1) to be g-normal system
on [(k—1)h, kh] is rank(ck, D, ok, ..., DI*'ck) = kn.

LEMMA 3. Ifue R**0™ 9=, .., e R*™ rank(u, Dy, %, ..., DFEHI-1y)
= (k+1)n, then rank(v, Do, ..., D" lv) = kn.

Proof. Suppose that

(22) rank (v, D)0, ..., Di* o) = q< kn.

Since D), , has on the main diagonal k +1 matrices 4 und under the
diagonal-zeros, we obtain the following expressions for the last ¥ +1 rows of
the matrix (4, Dy,yu, ..., DER™1y):

(23) (v, Dy, ..., DiEtIn-1y),

Since D, is & kn x kn matrix, then from (22) and the Oayley—Hamilton
Theorem it follows that

(24) rank (v, D,v, ..., DEt-1g) — ¢,
Using (23) and (24), we obtain
rank (%, Dy, 1%, ..., DEEP1y) = n+q< (k+1)n,

which contradicts our assumption.

THEOREM 2.2. A 3uffioient condition for system (1) to be s-normal on
[0, kn] is rank(c;, Dycj, ..., DP*~'d)) = kn.

Remark 2. Since system (1) is normal iff it is s-normal for 8 =1, 2,
..., 7, we infer that system (1) is normal on [0, k4] if rank(c¥, D,d, ...,
Di*16¥) = kn.

The condition given in Theorem 2.2 is not necessary as the following
example shows:

ExampLe. Oonsider the system of equations
4(t) = 2(t)A +2(t—1)B
with the initial condition
2(t) =0, te[—1,0); 2(0) = (2,(0), z(0)) —2 50,

o

where
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It is easy to verify that

rank(¢{, Dyo}, Djoi, Djc}) = rank

- -Oo O
== O
o
WO
o

i.e., the condition given in Theorem 2.2 is not satisfied.
Solving the system by the step-method we get

0
z(t) = z,e‘, te[1, 2],

() = Z(t+e —1)e%D, e[, 2];
hence o 0 -
o, (f) = 4(8)o, = z,6' + 2, (8 -+ 62 —1) ¢V,

Since zo # 0, the form of the function o, (3) leads us to the conslusion
that the set Hy, , contains at most two elements and By, , at most three
elements. This means that the system under consideration is normal on
[0, 2].

LEMMA 4. Given a real m Xm mairio D, if there ewists a vector ue R™
suoh that rank(u, Du,..., D™ 'u) = m, then rankD > m—1.

Proof. Suppose that rank D = g <'m —1. To the matrix D corresponds
a linear mapping D: R™ - B™ and a ¢-dimensional subspace V < R™ such
that ’

D:R"->V, VeB" dimV=¢g<m-1,

and hence it immediately follows that for ke N
D*: R™ >V,

Gousequently, the vectors Du, D*u, ..., D™ !4 are contained in V.
Thus we have

rank (4, Du, ..., D" 'u) < 1+g< m,
and this fact contradicts our assumption.

Inmma 6. For the matrio D, given in (b) we have:
a) if the Jordan matrio A is similar to A, i.e., A = Q 'AQ, then

4 Q'BQ 0
4 Q7BQ
b= ¢~ BQ
0 A

i8 similar to D,.
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b) if A, are eigenvalues of the matriv A with multiplioities I, i = 1,2,
...y m, then the A, are eigenvalues of the matrio D, with multiplicities ki,.

c)-if rankd =n, then rankD, = kn,

d) if rankD, = 2n—1, then rankD, =kn—-1,%k = 2,3, ...

Proof. In order to prove proposition a) it will suffice to show that
there exists a non-singular kn Xkn matrix @, such that Q;'D,Q, = 4,.
From the assumption we know that there exists a matrix @ satisfying
the equation Q' 4Q = A. It is easy to testify that

Q 0
@ = Q
0 Q
is the matrix in question. Oases b) and c) follow immediately from a).
Oase d) we will prove by induction. It is well known that rank D, = kn—1

iff the dimension of the kernel of the linear mapping D,: R**—>R*" is
unity. Suppose that a vector we R*+" gatisfies the system

.Dk+1'u = 0,
which can also be written in the f_orm

Dy, o gy + CpoyUpoy
D,H_l‘u =. .

Doty 1,541

=

where C,_, i8 a (k—1)n xn matrix and C;_, = (0, 0,...,0, B*).
In view of this equality the induction scheme is evident.
This completes the proof of Lemma 5.

Assume now that rank 4 = n—1 and write

(26) d = By, where 0 % ve¢Kerd.

Oonsider the following system:

Aw,, +Ba
Dyo = ( Tor ¥ "’) =0.
: Aw, ,

The last of the equations of this type has the solution
&, =av, ack,
and hence the system of the first » equations can be written in the form
(26) A®,; = —ad. }

Notice that rank D, = 2n —1 iff system (26) has a solution only for
a = 0. This is the case iff rank(4, d) = n.
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Remark 3. If rank4 = n—1, then rank D, = 2n —1 iff rank(4, d)
= n.

Using Lemma 4, propositions ¢) and d) of Lemma 5 and Remark 3,
we may now state the following theorem, dealing with necessary conditions
of non-singularity of (c¥, D,c%, ..., DE"~ck).

THEOREM 2.3. Given D, ¢’ as above (cf. (5), (20) and (25)), the following
implications hold:

rank (¢¥, D, e, ..., D}""'c¥) = kn = rank D, > kn—1
<rank D, = 2n —1 < rank(4,d) = n.

3. Henceforth we confine our attention to an estimation of the num-
ber of switching times for the s-th component of a control vector u(t)
on [0, kh] when the control system is 8-normal on this interval.

We first recall a well-known lemma:

LEMMA 6. If f,(t) are polynomials with real coefficients of degrees r; and
A; are different real numbers 1 = 1,2, ..., m, then the quasi-polynomsial

(27) D fyer

i=
m .
has at most ) r,+m —1 real zeros.
=] .
Proof. It is seen at once that Lemma 6 holds for m = 1. We shall
prove the passage from m—1 to m. Multiplying fanction (27) by e~ *=,
we obtain the function

(28) N ity (1),

i=1 . .
whose zeros are the same as for function (27). Suppose now that the esti-
mation given in Lemma 6 does not hold, i.e., that function (27) (and con-

m
sequently (28)) has at least ) r;+m zeros. Between two consecutive zeros
i=1 -

of a differentiable function there exists at least one zero of its derivative.

. m
Hence the derivative of the 7,, +1 order of function (28) has at least )'r,+

+ m — (7, +1) real zeros. This derivative has the form =1
m-—-1

(29) D) Fultyeths—int,
i=]

where f;() are polynomials of degrees ryt=1,2,...,,n—1. In other
words, function (29) is the same type as function (27), but it has only m —1

terms. In view of the induction hypothesis function (29) has at most
m-1

J' r;+(m—1) —1 zeros. Thus the supposition that Lemma 6 is true for quasi-
fm]
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polynomials with m —1 terms and false for quasi-polynomials with m terms
leads to contradiction.

TEROREM 3.1. Consider system (1) and sappose that all eigenvalues

of A are real. We can state that:
 a) if system (1) i8 8-normal on [(k—1)h, kh], then the number of switoh-
ing times on this interval for the s-th component of u(t) is at most km —1;

b) if system (1) is 8-normal on [0, kh], then the number of switohing
times on this interval is at most k(k+1)n/2 —k. '

Proof. It will suffice to prove a) since b) follows at once from a) if
we apply the formula for the arithmetical progression sum.

If all the eigenvalues 4; of A are real with multiplicities 1, i =1,
2,...,m, then, by virtue of Lemma 5b), 4, are the eigenvalues of D, with
multiplicities ki,. Hence each component yf(¢),j =1,2,..., kn, of the
solution y*(t) of system (6), (7) is of the form

(30) D fme,
]

where f;(t) are polynomiala with real coefficients whose degrees are r; < kl; —
—1. .

In view of Theorem 2.1, ¥x_,,(!) = 2*(t) and components of z*(t)
are functions of form (30). The switching function ¢, (t) = 2*(f)¢, is a linear
combination of these components, and hence for te [((k—1)%, kh] we have

m
(31) o,(t) = D f(t)eM,
fm]
where f;(t) are polynomials of degrees 7, < ki, —1.
In view of Lemma 6, the switching funection o,(¢) given by (31) has

m
at most ) ¥;+m—1 real zeros.
tw=l

Since
m

Df+m—1 = S‘(f,+1)—; < Z":‘kl,—l = kn—1,

{=]1 f=1 t=1

ha 3 witching function a,(t) possesses at most kn —1 real zeros on [(k—1)A,
kh], and this completes the proof of a).

The estimation given in Theorem 3.1 can be obtained without refer-
ring to Theorem 2.1. Namely, when we solve system (3), (4) by the step-
method, we solve in fact a non-homogeneous stationary system of dif-
ferential equations with & quasi-polynomial as & non-homogeneity term.
Using this fact, we may prove by induction that every component of the

solution z*(¢) is of form (30). We proceed further as in the proof of Theorem
3.1.
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Now we may show that the “smoothing effect” for solutions of a sys-
tem of differential equations with a retarded argument allows us to improve
the estimation given in Theorem 3.1. Let us consider a finite sequence of
real numbers — co<?t <t <...<t < oo and natural numbers p,,
i=1,2,..,k

Let the function

Zf; (t)a“‘ te(— oo, 4],

{=1

(32) F(t) = Zf;,,(t) o, te(tyy, 4,
=1

2.fi.k+l (¥) 0‘“9 e (4, o0),

=]

where f;(#) are polynomials with real coefficients of degrees r;, resp.,
and A; are different real numbers ¢ =1,2,...,m; j =1,2,...,k+1,
fulfil at points #; the following conditions:

d"é]”:f;.,(t)e‘*‘ d’éﬁ,m(t)f"“

a ar y

(33)

: 4
for r =0,1,..., .
-LEMMA 7. If F(t) given by (32) satisfies (33), then

m - .
a) f p;< Y min(ry, ry,,) +m—1, then the F(t) has for k = 2p—1 at
=

most
k+l1 m
Z(Zrﬁ'*'m—l) 2?21-1
m]l fm]

real zeros; however, for k = 2p it has at most
k+1 m
S (Sryrm—1)- 3o,
i=1 {=l ra=l

real zeros;

b) if numbers R, satisfy the inequalitiesr, < Ry, p; < 2 min (R, Ry,,)+
+m —1, then X' (t) has for k = 2p —1 at most

3 (5 2yrm-1)- Z?sr- -

j=l fm]
real zeros; however, for k = 2p it has at most
k+1 m

> (Sry+m-1)- S,

=1 (=]
real zeros.
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Proof. We shall first prove cases a) and b) for k= 1. Case a) as will.
be proved by induction on 7, where I is the least number from 1, 2, ..., m
satisfying the condition

1
g Zmin(r,-.l, 7',-,2) + l—l .
i=1
Proof for I =1 (i.e., p, < min (744, 1:,4)).
The number of zeros of F(t) daes not change if we multiply F(t)
by e *. Thus we obtain the function

Jia(t)+ 2:f£,1(t)3(~_zl)‘1 <ty

t=2

Ji,2(0)+ Zfi,z(t)e("_ll)‘r t>1,.

fe=2

Fity =

Suppose that F(t) possesses at least Y (r;,+7;,)+2m—1—p, real
=1

zeros. Since between two successive zeros of a differentiable function there
is at least one zero of its derivative, then the p, -derivative of F () is a piece-

wise quasi-polynomial and has at least Z(r“+r‘ ,)+2m —1—2p, real

zeros. Therefore, using Lemma 6, we find that it has at most 2 (re1+712) +
+2m —2 —2p, real zeros. This is a contradiction.

We now proceed to the passage from ! to I4+1. From the deflmtlon
of the number ! we have

1+1
me("tu"‘,a)‘Fl -1<p < Zm-ln("tn"ia,-l'l

=1 =1

and hence

[
P= anin(ri,lv ri,l) +1-1+gq,
i=
where 0 < ¢ < min(r,., 1, 7141,9) +1.
Multiplying F(t) by e "+, we obtain the function

Jre11(8) + 2 f{,l(ff)e(l'_"“”a 1<y,

i1

(34) F@t) = "":‘
frna®+ D fra(t)e ¥, 4>,

feml
t#l+1
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Suppose that. function (34) possesses at least 2 (75,1 +759) +2m—1 —p,
zeros. Repeting the same argument as for the ca.se =1, we find that the
derivative of the degree ¢ of function (34) possesses at least 2 (r51+742)+
+2m —1 —p, —q zeros. However, the ¢-th derivative of‘-f:mtition (34)

is of form (32) and satisfies condition (33), where 7, = p, —¢ = Y min(r;,,
r‘.‘) +l—1. i1

Therefore we may use the induction hypothesis and show that the
g-th derivative of function (34) has at most

m I
D (o1 +7i0) +2m—2—2¢— D' min(ryy, 7ye) —1+1
fu] . _i-=l

m
= 2("{,14"".:) +2m—-2—p,—¢
f=1
real zeros. We have obtained a contradiction and this completes the proof
of case a) for k = 1.
Case b) easily follows from a). It is obvious when p, < me (7e1y 7e0) +
+m —1, However, when

m
Zmin("f,n i) +m—1<p, < ijn(R{,u B;s)+m—1,

fmml tm1l

m .
then, using case a) for p, = Y min(r,,, r; ;) +m—1, we find that the fune-
i=] )

tion F(t) possesses at most

m m
D)1 +7re0)+2m—2— D min(r;y, 49) —m+1

=1 : fm=1

m
= Zmax("i,n ri9) +m—1

fem]
real zeros. Since

m
Zmu(ﬂ,n Tea)+m—1+4p,—p,
{1
m

< 2 max (R, Ryg) +m—1+ Zmin‘(R,“l, B ) +m—1—p,
i=1 i=1

m

= Y (Biay Bya) +2m—2—p,,

fm]

the proof of case b) for ¥ = 1 is completed.
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We will show how case a) for & = 2p —1 follows from the case of
k = 1. Let us divide the set of real m;mbers into intervals:

B = (—o0,t,]u(ty, t,]u...U(ty,_a, ).
In every interval given above we may use the case ¥ = 1, just proved.
Hence we find that the function ¥ (f) has at most

k+1 m

2(2("4 -1 Tia) +2M =2 — Py, ) Z (qu—i-m 1) 21"'-1

rm] fus] fml =]

real zeros. The case of ¥ = 2p and case b) are proved in an analogous
manner.

THEOREM 3.2. Consider the control system (1) in whioh every eigenvalue
of the matriow A is real. If system (1) i8 s-normal on [0, kh], then the number
of switohing times on this interval for the s-th component of the control vedtor is:
k(k4+1)n (k1)

a) for an odd k at most

2 4’
b) for an even k at most k(k;—l)n ~ k(k:-Z) .

Proof It is well known (cf. [3]) that the solution of & system of dif-
ferential equations with a retarded argunment smoothes itself with the
increasing of ¢. In our case, for ¢ > kh, all the components of the solution
2(t) of system (3), (4) are of class C¥. We may set

(35) p; =j—1.

If all the eigenvalues A, of A are real with multiplicities I;,7 =1, 2,
.., m, then repeating the same arguments as in the proof of Theorem 3.1
we find that the switching function o,(t) is of the form

(36) o, (t) = D fy(t)e",  te[(j—1)h, jh],

=1

where f;,(t) are polynomials of degrees
(37) r‘j<ﬂ¢—1 =R", j =1, 2,..., k.

Using (35) and (37) in case b) of Lemma 7 we get Theorem 3.2 at
once.

LeMMA 8. The function F (1), given by (32) with m = 1, fulfilling con-
ditions (33) has at most '

k+1
2 r— me (p;, max(r;, 1,,,))
J=1 J=-1

real zeros,
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Proof. Multiplying function (32) by ¢~ and replacing ¢ by t—t,,
we obtain the function
fl(t)r t‘(—mytlls
(38) F(t) = { f;(0), te (1) 4],
Jrsa(t),  te(, o0),
fulfilling the conditions
ThH) | _ Thpalt)
at’ 4 a |,
where f (%) -a,,.t'f—l— .+a;, are polynomials of degrees r;,j =1,2,
. k41, Obkusly, it suffices to prove Lemma 8 for functions (38),
(39)
For k = 1 conditions (39) are equivalent to the equalities

(40) G, =@ag,, r=0,1,...,7,.

(39) y, r=0,1,...,,p,

Suppose that r, <r, and p, < max(r,, ry) = 7,. Thus, if we denote
by p the number of changes in the sequence a,,,r =0,1,..., p,, then
using the Descartes rule and (40), we find that function (38) ha,s at most
(ry—2p)+(ra—p1+p) =7, +7,—p, real zeros.

In the case where r, > 7, we reason analogously. On the other hand,
if p, > max(r,, r,), then from (40) it follows that the polynomials f,(¢)
and f,(?) are identical and Lemma 8 for ¥ = 1 holds.

Remark 4. Estimating the number of real zeros of function (38),
we have added the maximal possible numbers of its zeros on (— oo, t,]
and (%, o0).

In the proof of the passage from k¥ —1 to k we shall use the following
notations:

p — the number of changes in the sequence a,,,r =0,1,..., D,
q — the maximal number of real zeros of the polynomial

fe(®) on  (f_y, o0).
For j = k conditions (39) have the form

(41) Qpp = Opp,rs r = 07_1’ cany Py

and hence, if p, > max(ry, 7,,,), then the polynomials f,(f) and f; ,(¢)
are identical and the passage from % —1 to % is obvious. Assume therefore
that p, < max(r, ry..)

Using the induction hypothesis, we find that function (38), which
contains only k¥ —1 points ¢, has at most

k k-1
2’3— 2 min (p;, max(v;, 7;,.)) '
j=1 j=1

real zeros.
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Using Remark 4 and the definition of ¢, we see that on (—o0,,_,)
function (38) has at most

k k-1
(42) Zr, — Z min (p;, max(r;, r;,1)) — ¢

j=1 j=1
real zeros. We only need to estimate the number of real zeros of function
(38) on (%,_,y, 00).

We have just assumed that p, < max(r,, r;.,). Let us consider two
cases: 0 <P, < Tyyy and 7, < P < 7.

If 0 < Py < 7441, then using (41) and the Descartes rule we can prove
that function (38) has on (f,_,, o0) at most

(43) (@—2) t (k41— Px+P) = @+ 7341 —Px

real zeros. On the other hand, if r,,, < p, < 74, then using the same argu-
ments we can show that function (38) has on (i,,,, o) at most

(44) (@— (Pr—Thr2) — D) +D = @+ 7342 — D

real zeros. From (42) and (43) or (42) and (44) it follows at once that function
(38) has at most

k k-1
2"5_ Z (py, MAX(7yy y4a)) + Fiepr— Py
i=1 j=1

real zeros. This completes the proof of Lemma 8.

THEOREM 3.3. Oonsider the control system (1) in whioh all the eigen-
values of A are equal. Thus, if system (1) i8 s-normal on [0, kh], then the number
of switching times on this interval for the s-th component of the conirol veolor
E(E+1)n K —k+2

2 2

Proof. From the proof of Theorem 3.2 we know that on [(1 —1)4, jA]
the switching funection o,(t) is the form

u(t) i8 at most

a,(t) =fj'(‘)e‘" i=1,2,..,k,
where f;(t) are polynomials of degrees
(45) 7y < j'n —-1.

Using conditions (35) and (45) we get Theorem 3.3.
ExampPLE. It is easy to verify that the solution of the differential
equation

5(8) = 2(t)—12e2(t—1); 2(0) =1
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is of the form

etv te [0, 1],

0 (13 —12t)¢', te[1, 2],
2 =

(301 —300t 4-72t%) ¢, te[2, 3],

(8077 —80761 +266412 —2881%) ¢!, te [3,4].

Since z(1) = e, 2(2) = —11e2, 2(3) = 49¢%, 2(4) = —3be*, the solu-
tion z(¢) of our equation has on [0, 4] at least three real zeros. From
. Theorem 3.3 for k¥ = 4 it follows that z(¢) has on [0,4] at most three real
Zeros.
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