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STRUCTURE AND EXTREMAL PROBLEMS
FOR CLASSES OF FUNCTIONS ANALYTIC IN AN ANNULUS

BY

A. E. LIVINGSTON (NEWARK, DELAWARE)
AND J. A. PFALTZGRAFF (CHAPEL HILL, NORTH CAROLINA)

Introduction. In this paper* we study classes of functions that are
analytic and either typically real or have a positive real part in the annulus
A, = {z: ¢ < |2| < 1}. We develop characterizations of each class in terms
of Herglotz-type Stieltjes integral representations and in terms of Cara-
théodory-Toeplitz-type semi-definite quadratic forms (Theorems 1.1, 3.1,
4.1, 4.2). The latter type of characterization is a powerful tool for the
solving of quite general extremal problems-and enables us to extend to 4,
some recent work of Atzmon [1] for classes in the unit disk 4 = {2: |2| < 1}
that are related to

P = {P(z) =1+ Z'pnz": analytic and Re P(2) > 0 in A}.
n=1
1. The class éq. In this section we give three characterizations of
the special class

5’4 = {fe?,: Ref(z) =1 on 2| = ¢},
where
2, = {f(2): analytic and Re f(z) >0 in A}.

This subclass is important, since it will be used to give a complete
characterization of the structure of the full class 2, (Theorem 3.1). Komatu
[4] obtained the Herglotz-type integral representation (1.2) by means
of the Villat representation formula for functions analytic in A, and the
Helly selection theorems. Our approach is different from that of Komatu
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[4] and Nishimiya [6]. By means of clementary manipulations with Laurent
geries and the Carathéodory quadratic inequalities for 2 (see [3], p. 148)
we cstablish a “quadratic inequalities” characterization of #,. This ap-
proach avoids appeal to Villat’s formula and properties of elliptic functions
and shows clearly the explicit connection between the classes 2, in the
annulus and £ in the unit disk. There is also an advantage that our ap-
proach leads directly to useful characterizations of coefficient reglons of
variability and to the solutions of general extremal problems for ? and

2, (Sections 2 and 3).
The function

(1.1)
142
¢*(z)_1+2 — qzkzk liz+22 = f" (& —27%)
ml 1 . 2
-1 3 e [+ (]
k=-—co

is the basic kernel function for the class 9; and plays a role analogous
to that of (1 +z)/(1 —2) in 2. It is clear from the three representatxons

(1.1) that &*(2) QP We also note that every function in 9‘ is analytic
in the larger ‘mnulus q®> < |z2| <1 by the reflection prmcxple In (1.1)
and henceforth, the symbol 3’ means summation over all non-zero
integers k. k=—oo

THEOREM 1.1. The following statements are equivalent:

(a) f(z) = 1+ 2’ a, 7" eg’

=—m

(b) a'_k = —q ak, ]b = :‘:1, :{'_‘2,.-., and
P(z) =1+ Z(l—q”‘)a,kz"egi’.
k=1
(c) If py. = “k(l_qzk)’ k= +1, £2,...,p, = 2, then

N
P =P and D pkhk>0

jlk=o

for every choice of complex mumbers Agy Ay, ..., Ay and N =0,1,...
(d) There is a unique probability measure du(t) on —n <t< ™ such
that

(1.2) f2) = [ @' Mdp(t), g<lol<1.
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Proof. Statements (b) and (c) are equivalent by the classical theorem
of Carathéodory for functions with positive real part in the unit disk
(see [3], p. 148). (Note that p_,, = 7, if and only if a_, = — ¢**a,.) Clearly,
(d) implies (a), since @*(z) belongs to 9~’¢. To prove (c) = (d), suppose that

P(z) =1+ D (1—g*) a2
k=1

belongs to 2. The Herglotz theorem for 2 implies the existence of a unique
probability measure du(t) on [ —x, =] such that

(1—g*)a, =2 [e™du@t), &= +1, £2,...

Hence

-}

f&) =1+ 3 @ =1+ 2 f“"‘l % dn(t)

k=-00 k=~ -=x
r

o f (1+ Z 1 q,,, (ze“‘)")dy(t) f D* (26~ ") du(t).

To prove that (a) implies (b) we first consider f e 9'4 such that f(z)
is analytic in ¢ < |2] < 1, hence in ¢2 < |2| < 1. The function

9(2) —f(z)—Za T Za-k(zq =1+ Z(ak+q G _y)e

k=1

is analytic and satisfies the condition Reg(z) = Ref(z) =1 in |z| <
since Reg = Ref on |z| = ¢. Since g(0) = 1, we have

9(z)—1 = D' (@, +q"*a_)* =0
k=1

identically in [2| < ¢ and, consequently, o_, = —¢*aG, fork = +1, 42, ...
The function

P(2) =14 Y (L— ")
k=1
is analytic in |2| <1 and
P(z) = f(2)+ 2 0" (@27 — ay.2).
k=1

Hence ReP(z) = Ref(2) >0 on |2| =1 and, therefore, ReP(z) > 0
in |2| < 1.
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Finally, we remove the restriction that f(z) be analytic on |2| =1
by an approximation argument. If

f(z) =1+ 2' w2 € 2,

k=—0o0

then
file) = fr2) =14+ D) a7

k=—o00

belongs to .éq, for all r < 1 sufficiently near 1, ¢’ = ¢/r, and is analytic
on |z| = 1. Hence the corresponding function

P,(2) =1+ D) (L—(g/r)*)a,r*s*
k=1

belongs to #. The Carathéodory inequalities
N
N o L= (g IR RT >0, N =1,2,..,
J.k=0

hold for all  near 1 (r < 1), and hence for » = 1. This completes the proof
of Theorem 1.1.

The inequalities |p,|<2 (n =1,2,...) for the Taylor coefficients
of a function in # and Theorem 1.1 yield immediately the sharp bounds

la'kl<2|1—qzkl-l’ k= +41, +2,...,

for the coefficients of a function belonging to g’q (see [6]). Leutwiler and
Schober [6] have shown that the Taylor coefficients of a function belonging
to 2 satisty

1
<2—'2_Ipn12, ’I’b=1,2, )

1 2
pzn—?pn

With Theorem 1.1 we translate this to the following
CoroLLARY 1.1. If

00

flz) =14 Z' 02" € 2,,

k=—o00

then

1 - 1
|(1—q'*)azk—-2—<1—q"°)’az <2-c(Q-g"lal, k= i1, 22, ...

This defines the precise disk of values for a,, corresponding to each
preassigned a,. Clearly, Theorem 1.1 enables one to translate from £

to 2, a variety of coefficient inequalities.
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2. Coefficient regions and extremal problems for .&’q. For a function

f&) = D) et ex(4,),
k=—o
where 5#(A4,) is the set of functions analytic on 4, with the topology
of local uniform convergence, we let

T2 (f) = (Coppy Copppry ooy €15 Cry ouvy Cp)

viewed as a point in C™*", The set
ﬂn(';q) = {T’:n(f): fEéq}

is a subset of C*" that we call the n-th coefficient region of the class 2,.
In this section we exploit the connection between #, and # (Theorem 1.1)

to give a description of the coefficient region ¢ ’i,,(é’q) in terms of Toeplitz
determinant inequalities. Our description includes the explicit identifi-

cation of the functions in £, that correspond to the boundary points

-~

of A", (2,).

In [6] (Theorem 1) Nishimiya gave a description of coefficient
regions of éq (denoted by £, therein) consisting of points 17, (f). How-
cver, Nishimiya’s result contains more free parameters than necessary.
Examination of his argument ([6], p. 29) reveals that his restriction
0 <p<n-+m on the number of parameters can easily be reduced to
0 < p<max{m,n} by means of Rolle’s theorem. Furthermore, the re-
lations a_, = —¢*a, (k = +1, +2,...), satisfied by the coefficients of
a function in 97’,_, which we have established in Theorem 1.1, show that

the symmetric coefficient regions ’1,,(97‘«) considered here are completely
general.

Given complex numbers ¢,, ¢,, ..., ¢,, we let D, (¢, ¢4, ..., ¢,,) denote
the determinant of the (m +1) X (m +1) Toeplitz matrix (¢;_,) (0 < j, k < m)
with the usual convention ¢_; = ¢;. Corresponding to a function

P(2) = 1—|—Z'pkz" eP

k=1

we write T, (P) = (P1y ...y Dy)y and let X, (P) = {T,(P): P e P} denote
the n-th coefficient body or region of variability for the class 2. For
convenient reference we state the following

THEOREM OF CARATHEODORY AND TOEPLITZ ([3], p. 182). It follows
that

H o (P) = {(P1) P2y ++-1Pp) €EC™: Dp(2,p4, ..., px) =0, k =1,2,..., n}.
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Furthermore, (py, ..., p,) € bdry X, (P) if and only if
Dy(2,p15...,0;) =0 for some je{l,2,...,n},
and for each such boundary point of X, (P) the function P(z) € P such that
T.(P) = (Pyy -y Pn) 8 uniquely determined and of the form

n

= 1+z6k
. = - < Ay = 1.
1) P) gakl_“k, o =1, 0< A, k;'ﬂk 1

We now prove our generalization of the Carathéodory-Toeplitz
theorem for the class éq. Independently of this result it is easy to see
that the coefficient region Jt"?_,,(g’q) is a convex compact subset of C*",
since 5’q is a convex compact subset of »#(4,).

THROREM 2.1. Let a, (k = +1, +2,..., +n) be 2n complex numbers.
Necessary amd sufficient conditions for the existence of a function fe Pq
such that T" ,(f) = (@_py ...y By Cyy ..., &,) are

1) a_, = —¢*a, for k =1,2,...,n,

(2) Dp(2,P1y ey Pi) =0 for £ =1,2,...,n, where

(2.2) 2 =01—¢"a, kE=1,2,...,n.

Furthermore, if (1) and (2) hold and if Dy(2,py,...,p;) =0 for some
je{1,2,...,n}, then the function fe P, such that T2, (f) = (a_,, ..., a,)
18 uniquely determined and of the form

(2.3) f2) = D u@*(zer),  leal =1, 0<h, D'k =1.

k=1 k=1

Proof. The result follows from the equivalence of parts (a) and (b)
in Theorem 1.1, and from the Carathéodory-Toeplitz theorem for the
class #. Indeed, the necessity follows from the implication (a) = (b) and
the observation that condition (1) yields p_, = P, for the numbers p,
defined in (2.2). For if

(B_pyovey @) =T (f) for some f(2) =1+ 2' a.* e 97,1,

then (1) must hold and
P() =1+ ) (1—-¢") et e
k=1

by Theorem 1.1. Ilence condition (2) follows from the Carathéodory-
Toeplitz theorem.
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To prove the sufficiency suppose that a, (¥ = -1, +2,..., 4+n)
satisfy (1) and (2) and let p, (k¥ =1, 2, ..., ) be the corresponding num-
bers defined by (2.2). By the Carathéodory-Toeplitz theorem there exists
a funection

P(z) =1+ ipkz’k

k=1

such that 7, (P) = (p;, ..., p,). This gives an infinite sequence {p,} with
which we extend the given sequence {a,: ¥ = +1, +2,..., +n} by
defining a, = p,(1—¢*)™! and a_, = —¢*a, for k = 1,2, ... The impli-
cation (b) = (a) in Theorem 1.1 shows that the funection

f&) =1+ > a

belongs’ to Q;q.

Finally, suppose that (1) and (2) hold and Dy(2, p,,...,p;) = 0 for
some j € {l,2,...,n}. The corresponding uniquely determined function
P(z) e 2 is of the form (2.1) and has coefficients

n
pk = 2 2-328’;.
j=1

Thus

a, = pl(1—g%) = > 32 (1 — )
i=1

and the uniquely determined corresponding function f e .é’q is of the form

n

f) =1+ D ad = jz,. {1 + S‘ 2(e,z)'~'/(1—q=’~‘)} = D' 40" ().
k=— k

Jo=1 {=—00 j=1

One frequently encounters extremal problems on a compaect family #
of the type: maximize Re F (T}, (f)), f € #, where F = F(w,, ...y Wy_py1)
is a complex analytic function of n — m +1 variables on a region containing
the coefficient region X7, (#). By the maximum principle such a functional
achieves its maximum only on the boundary of 27, (#). In the next
theorem we consider extremal problems defined by a general type of
functional with this property.

THEOREM 2.2. Let G = G(wy, ..., w,,) be a real-valued function of 2n
complex variables that is defined and continuous on X '_‘.n(éq) and has the
property that it achieves its maximum over Jt”i,,(.;q) only on the boundary.
Let J(f) = G(T™.(f)), f € @, Then the functional J is defined and continuous



168 A. E. LIVINGSTON AND J. A. PFALZGRAFF

on éq. Furthermore, the solution to the extremal problem
(2.4) max{J (f): f € Py}

n .5?’,, must be a function of the form (2.3).
Proof. The map

Y(@_py.eey a'!—lf Ayy vy By) = (P1ycoey Py)y
where p, = (1—¢*)a,, k =1,2,...,n, defines a homeomorphism of
AT, (2,) onto A, (#) by Theorems 1.1 and 2.1. If (p,, ..., p,) is a point
in &, (%), then

'I’—l(pla vy D) = (0_py ..oy @) € .9!"’_‘,”(9’«),
where a, = p,./(1—¢**) and a_; = —¢*a, ¥ =1,2,...,n By means
of this homecomorphism we can transplant J to the functional J,(P)
= G(y™(Tn(P))), P(2) €2. Then J, is defined and continuous on ¥,(2)
and achieves its maximum over this set only on the boundary. By a recent

theorem of Atzmon [1] the solution to the extremal problem max{J,(P):
P e 2} must be a function of the form (2.1). Hence the solution to (2.4)

must be a function in é’q of the form (2.3).

3. The class Z,. In this section we generalize to the class &£, the
results of Sections 1 and 2. We recall the definition

P, = {f(z) =1+ i"ckz" el (4,): Ref(2) =0, zeAq}.

kw—c0

THEOREM 3.1. The following four statements are equivalent:

(a) f(z) = 1+k§" e’ € 2,.

= — 00

(b) For each r in ¢<r<1

P,(2) =1+ Z(c,,r’“+ v ¥t e

k=1

or, equivalently,
N

(3.1) D) (G g 1> 0
Jik=0
Jor every choice of complex numbers Agy Ayy ..., Ay and N =0,1, ...
(¢) There exist unique probability measures du and dv on [—m,x]
such that
(3.2)

2 ™ N 2 k = .
‘ fe-dld‘u(t)_T:__qéﬁ_‘ fe ik‘dfy(t), k= ﬂ:ly :':2’ ceey

-TT
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or, equivalently,
(3.3) f&) = [ @@ "yaut)+ [ O*(glee)dr(t)—1.

(d) There exist unique functions F, G éz’q such that
(3.4) f(2) = F(2)+G(q/z)—1, z€eA,.

Proof. The equivalence of (c) and (d) and the implication (d) = (a)

follow immediately from the properties of the subclass #,. To prove that
(a) implies (b) we first consider

f(z) = 1+ 2' o e?,

k=—00

such that f(2) is analytic in ¢ < 2| < 1. We let

(38)  P(e) =f(a)— D e_p? ™+ D) id* =14 D (6 +8o1)25
k=1 k=1 k=1
Then P (z) is analytic and ReP(z) > 0in |2] < 1, since ReP(2) = Ref(2)
on |z2| =1. Letting p, =c¢.,+¢_, (kK =0, +1,...), we have p_, = 7,
Po = 2, and the Carathéodory inequalities

N
(3.6) DG+ )hd; =0, N=0,1,..,

j’ka‘o

hold. We now drop the restriction that f(2) be analytic on [2| =1, and
consider for arbitrary f € #, the function

fo(2) =f(rz) =1+ D qurtsh.

An application of the preceding reasoning for f, in ¢/r < |2/ <1
shows that (3.6) with ¢,, replaced by ¢,,r™ holds for each fixed N, arbitrary
complex 2, (k =0,1,...,N)and ¢ <r < 1. Thus (3.1) holdsforg<r < 1
and, by continuity (for each fixed choice 4y, 4,, ..., Ay), also for ¢<r < 1.
It is also clear now that the P,(2) belong to 2.

To prove that (b) implies (¢) we consider the function

Py(2) =1+ D) (g +3_ )¢ €2

k=1

and apply the Herglotz theorem for 2. Thus there is a probability measure
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du on [ — =, =] such that
(3.7) e =2 [ e ™aut), k= +1,42,...

Similarly, corresponding to P,(z), there is a probability measure
dv such that

T

(3.8) g +e_ g * =2 [e™v(t), k=41, £2,...

Formula (3.2) follows immediately from (3.7) and (3.8). The repre-
sentation formula (3.3) follows from (3.2) in the obvious way by putting
the integral representations (3.2) into the Laurent series

J(z) =1+ 2”" %",

k=-—o00

interchanging the order of summation and integration, and summing
the resulting series in the integrals. We omit further details which are
similar to those in the proof of Theorem 1.1.

Finally, we prove that the measures in (3.2) are uniquely determined.
Suppose that there are probability measures du, dy, dv, dv on [ — 7, =]
such that

. - 1—g* F . Fo
f ey — g fe""dv _ (_ﬁq:_)"{t_ _ fg—zktdn_qk fe—;kth.
-n - “n

-7

An easy computation yields
[e™aw—1)) =0, k= +1, 42,...,
-7

and, therefore, d(v — ) is the zero measure. It then follows that d(u —7)
is also the zero measure, and the proof of the theorem is complete.

Remark. Parts (¢) and (d) of Theorem 3.1 appear in [4] and [6]
where they were established by other methods.

Our next theorem characterizes the n-th coefficient region 4™, (Z2,)
of #, and generalizes Theorem 2.1 to this larger class.

THEOREM 3.2. Let ¢, (kK = +1, +2,..., +n) be 2n complex numbers,
and define the two related sets {A;}, {B,} by

(3.9) Ak - ck'l‘ E—ki' Bk = chk—{-q—kﬁ_k, k == 1, 2, csey n.

Necessary and sufficient conditions for the existence of a function
J(2) e #, such that T, (f) = (c_,, ..., ¢,) are

(3.10) D,(2,A4,,...,4,)>0, D.2,B,,...,B,)>0,
1
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Furthermore, if inequalities (3.10) hold and if, for some pair of inlegers
jrykefl,2,..,n} -

D,-(2, Al? LERY) Aj) =0 = Dk(21 Bl’ seey Bk)7

then the function f € 2, such that T, (f) = (c_,, ..., ¢,) 18 uniquely determined
and of the form

(3.11) f(2) = Y m®* (ze) + D n®*(ql2ti) -1,
k=1 k=1
where
n n
leg] = 1G] =1, 0<pyp, v and Zﬂk=2”k=1-
k=1 k=1

Proof. If (¢c_,,...,¢,) = T?%,(f) for the function

flz) =1+ 2' 2% €2y,

k=—o00

then by Theorem 3.1, (3.2), we have

(1—g*)e, = A, — B,

where
T

(312) A, =2 [e™au(t), B, =2 [e ™), k=1,2,...
-7 -

Thus we have 4, = ¢, +¢_;, B, = ¢¢,+q*c_, forall k =1,2,...
and the functions

(3.13) A(z) =1+ D A4, B(z) =1+ ) B
k=1 k=1

both belong to #. The necessity of inequalities (3.10) follows from the
Carathéodory-Toeplitz theorem. For the sufficiency we assume that (3.10)
holds and that the three sets of numbers {4,}, {B,} (k=1,2,...,%)
and {¢,: k = +1, £2,..., 4-n} are related by (3.9). The Carathéodory-
Toeplitz theorem guarantees the existence of functions A(2) and B(?)
of the form (3.13) with coefficients (3.12) belonging to # and satisfying
T(A(z) = (4Ay...,4,) and T,(B(2)) = (By,...,B,). The coefficient
formulas (3.12) enable us to extend the given finite sequence of 2» numbers
o, to an infinite sequence (k¥ = +1, 42,...) in the obvious way that
yields

f&y =1+ D e, with T, (f)=(c_,, ..., ).

k=—oc0
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The proof that the boundary points of X#™,(#,) correspond to unique
functions of the form (3.11) is quite similar to the proof of the correspond-

ing result about the functions (2.3) for Ji’"l,,(.@;q) and we omit the details.

THEOREM 3.3. Leét G = G@(w,,...,w,) be a real-valued function of
2n complex variables that i8 defined and continuous on A, (P,) and achieves
its mavimum over A™,(%,) only on the boundary. Let J(f) = G(T™,(f)),
feP,. Then J is a continuous functional on #,, and the solution to the exires
mal problem

(3.14) max{J (f): f e P}

in P, must be a function of the form (3.11).
Proof. The map

P(CpyeeeyCy) = (4,, "'7An)+(B17 "'3Bn)7

where A, = ¢,+¢_, and B, = ¢*¢,+q"%c_,, defines a homeomorphism
of the compact convex set A, (#,) onto the algebraic sum

(3:18)  H((P)+Ho(P) = {T,(A)+T,(B) € C™: A(2), B(2) € #}
by Theorems 3.1 and 3.2. The inverse mapping is
Y [(Ayy ey ) F(Byy eoey Br)l = (6_py oo oy Cp)s

where ¢, = (4;,—¢“B)/(1—¢") and A_, = 4;, B_, = By, k = +1, 12,

.., +n. Hence J, = Goy™' is a continuous function that achieves its
maximum over the set (3.15) only on the boundary. By Theorem 3.2
a point is on the boundary of the set (3.15) only if there is a pair of integers
j,kef{l,2,...,n}such that

.D,-(2,A1, “‘7Aj) == 0 = .Dk(2, Bl’ ceey Bk)’

Thus a solution to (3.14) in £, must be of the form (3.11).

The next theorem characterizes the extreme points of gsq and Z,.
We let Ext(S) denote the set of extremeo points of a set 8.

THEOREM 3.4. We have
(3.16) Ext(#,) = {®*(en): n€C, [n] =1},
(3.17) Ext(Z2,) = {¢'(zn)+¢'(9/26) —1: |g| =1 = |{]}.

Proof. Statement (3.16) is an immediate consequence of (1.2), a result
of Brickman et al. [2], and the uniqueness of the measure in the integral
representation (1.2). The integral representatlon (3.3) shows that £, is

the algebraic sum of the two function classes 3’ and {F(gq/z)—1: F e 5’,}
It follows easily from (3.16) that Ext(#,) is contamed in the right-hand
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set of (3.17). To establish the reverse containment, assume that
D* (2n) +D*(g/20) —1 = Afy(2) + (1 — ) fa(2)
for some choice of 5, € C, |9 =1 = |{|, 0 < 1 < 1 and functions

i) = [ O+ [ (ke a1, §=1,2,
belonging to £,. It follows that

D (an) + D" (g/el) = [ B*(zeM)ap+ [ B*(g/ze™)dm,,

where
A, = Adp, + (1 —A)dps,  dvy = Advy+ (1 —A)dy,.

The uniqueness of measures in the representation (Theorem 3.1 (c))
implies that du, must be a point mass concentrated at ¢, (y = exp[—it,])
and dv, has its mass concentrated at ¢, ({ = exp[ —1if,]). Therefore, du,
= du,, dv, = dv, and f,(2) = f,(2). This completes the prootf of the theorem.

4. Typically real functions in A4,. In this section we consider functions

f(z) = 2 cnz”

ne=—oco

that are analytic and satisfy the condition Imf(2)Imz > 0 in the annulus
A,. Clearly, such a function must be real on the segments of the real axis
in A,;, and hence f(z) = f(z) throughout A, by the reflection principle.
It follows that all of the Laurent coefficients ¢, (» =0, +1, +2,...)

are real, and there will be no loss of generality in assuming ¢, = 0. We
define the following two classes of typically real functions:

(4.1)
TR, = {f(z) = 2' ¢,2": analytic and Imf(2)Imz> 0, 2 eAq},

(4.2) .’ﬁiq = {f(2) e TR, and Imf(2) =0 on 2| = ¢}.

The subclass (4.2) plays an important role relative to the full
class (4.1) similar to that of 2, relative to #,. Clearly, the functions in
TR, are analytic at least in the annulus ¢* < |2| < 1. Let

(43) TR = {f(z) = Za,,z": analytic and Imf(2)Imz >0, 2z € A}

n=1

be the class of typically real functions in the unit disk.
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For typically real functions in A, the analogue of the kernel function
&* (2¢") in 2, is
(4.4) _
1
* —
e, = 4isint

* il B (it Y1 sinmt
(@) =0} = D e gy ¢

l=—00

where 0 <t<m and ze4,.

LeMMA 4.1. For each t € (0, ) the kernel funciion (4.4) belongs to the
class T~Rq.

Proof. Fix t € (0, =) and note that Im¥*(z,?) = 0 on |2] = g, since
Re®*(w) =1 on |w]| = ¢. We observe that Re®*(¢'®~?) =0 if 0 # a,
since

had n

D* (5 = ictn( 6‘2‘“) +4iz 13:12” sinn (6 — a)

n=1

by (1.1). Furthermore, Re ®*(2¢*) = 0 for every 2z on the semicircle Ot
= {|2] = 1, Imz2 > 0} and Re ®*(z¢~*) = 0 for every 2z € 0" except z = €.
Thus Im ¥*(2, ) = 0 on the boundary of the semiannulus 4] = {z e 4%
Imz > 0} (P* has real coefficients) except at the point z = ¢*. However,
Im¥?*(2,1) tends to oo over positive values as z —¢* (ze A4}), since

1— o
4sint |1 —ze™ %P

Im¥P*(z,t) = — Re &* (ze~ ") +

4s8int

1 ad qzn it i
+ 2sint Re; l_qm {(33 )t —(2¢7") }

By the minimum principle for harmonic functions, we have Im ¥*(z, t)
>0 in A}. Finally, Im¥P*(z,?) = —Im¥*(z, 1) since ¥* has real coef-
ficients, and it follows that ¥*(z, ¢) e TR,.

THEOREM 4.1. The following statements are equivalent:

(@) f(z) = D' ¢,2"eTR,.

N=—0o0

(b) There exist unique probability measures du, dv on [0, =] such that

(4.5) ck =

cl—-e_lfﬂ sin %t du(t) (e,g—c_ g V)¢ [ sinkt (),

1—¢%* J  sint 1—g%* J  sint

k= +1, +2,...,
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or, equivalenily,
(4.6)  f(2) = (es—o_)) [ ¥*(2, VA (t) — (g — o, q7) [ P (gf2, v (1).

(¢) There exist unique functions g, h € qu such that

(4.7) J(z) = g(2)—h(qlz), =zeAd,.
Prooif. To prove that (a) implies (b) we first consider

f(z) = Zcz eTR,

fn=—00

such that f(z) is analytic in ¢ < |2] < 1. The function

G (2) = f(2)— Zc-,,<z-“+z") = 2(0 0_p)2"

n=1
is apalytic in |2 <1 and ImG(2)Imz > 0 on [2] =1, since f has reak
coefficients and, therefore, ImG(z2) = Imf(z) on [2| = 1. It follows that

1—
Re{

on |2| =1, and then, by the minimum principle, Re{(1 —22)G@(2)/z} > O
for all z € 4. Hence G(z) belongs to TR (see [8], p. 14), and necessarily
G'(0) =¢;,—c_, > 0. There exists a unique probability measure du on
[0, =] such that

G(2) sin kt
€ —C_; fl 2zcost-1—z2 dp(t) = Zf dll(t)z’k

(see [8], p. 14) and, therefore,

z G(z)} = 2Im@G(z)Imz > 0

%,
sin kt

(4.8) Cp—Cp = (01'—0-1)6[ sint

au(t), k=1,2,...

In a similar fashion we find that there is a unique probabiiity measure
dv on [0, ] such that

(49) ag—o_u™* = (aig— c-,q-‘>f (), k=1,2,..

since

sint

—flgle) = — D (6_aq 2" +,0"27")

Rl

is typically real and analytic in the closed annulus ¢ < |?| < 1. It is easily
verified that (4.8) and (4.9) are equivalent to (4.5). Finally, the restriction:
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that f be analytic in ¢ < |2| <1 is removed by considering f,(2) = f(r2)
(g<r<1, feTR,) which is analytic and typically real in g/r < 2| < 1.
One obtains two sequences of probability measures du,, dv, on [0, =],
and by means of the Helly selection principle the general result is estab-
lished. The equivalence of (4.5) and (4.6) is easily verified by manipula-
tions of Laurent series and formula (4.4).

One obtains (¢) from (b) by noting that du, dv in (4.6) are proba-
bility measures and ¥*(w, t) € Tfeq. The special properties of the functions

g, he TTB, in (4.7) yield (a) as a consequence of (b), and the proof is com-
plete.

Remarks. There is an additional characterization of TR, in terms
of quadratic inequalities. We have omitted this result, since the compli-
cated form of the inequalities diminishes the utility of such a condition.
The equivalence of (a) and (b) in Theorem 4.1 has previously been proved
by Nishimiya [7] via the Villat generalization of the Poisson formula
for the annulus. Our proof involves only elementary computations with
Laurent series and illuminates the connection between the classes of
typically real functions in the annulus and in the unit disk. Part (¢) of
Theorem 4.1 seems to be new and indicates the significance of the im-
portant subclass qu.

THEOREM 4.2. The following statemenis are equivalent:

(a) f(2) = D) ¢,2" eTARq.

N=—00
(b) o = g*¢cyy k = +1, +2,..., and

oo

¢p(1—g**)
(4.10) F(z) = —— = __#eTR.
kZl ¢, (1—¢°)
(¢) There exists a unique probability measure du on [0, =] such that
(1—g%e, [ sinkt
(411) ¢ = 1_q2k‘f ——dult), k= £1, £2,...,

or, equivalently,

(4.12) 1) = e(1—g*) [ ¥*(z, 1) dp(1).

(d) If p. = {(1—sz+2)"k+1—(1—qzk—2)ck-1}/(01(1—qz)); then p_i = Pr,
Imp, =0, &k = 41, +2,..., and

N
(4.13) D Dokl =0
5, k=0

for every choice of complex numbers Ay, Ay ..., Ay and N =0,1, ...
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Proof. The equivalence of (b), (¢) and (d) is established by straight-
forward computations, and appeal to the connection between the classes
TR and 2. We omit the details. The properties of ¥* in (4.12) yield that
(¢) implies (a).

To prove that (a) implies (b) we first assume that f eT~Rq and f is
analytic in ¢ < |2] < 1, hence in ¢? < 2| < 1. The function

) = £ = Yol + le)) = 3 (o—q e
k=1 k=1
is analytic and identically zero in |z] < ¢, since ImH (z) = Imf(z) = 0
on |z| = q (the coefficients of f are real). Thus ¢_; = ¢*¢, and a computa-
tion on the circle |z| = ¢ shows that

Im2(0q~ ¥ fco_ e %) =0, 0<0<2n.

The function

G(2) = f(2)— D) (_p# "+ ) = D) (1— )"
k=1 k=1l

is analytic in |2| <1 and Im@G(2) = Imf(2) on |2| = 1. Since Imf(z)Imz
> 0 on 2| =1, it follows that Re{(1—22)G(2)/z} >0 in |2| <1 by the
minimum principle. Therefore, F(z) in (4.10) belongs to TR when f TR
is a.nalytlc in ¢ < |2| <1. The restriction of analyticity on |¢] =1 is re-
moved by the familiar approximation argument with functions f,(2) = f(rz),
g<r<lqir<liz|<1.

Remark. In view of the preceding result there is no loss of generality
in assuming that o,(1 —¢3) = 1. Thus, in order to simplify notation in
subsequent results, we introduce the normalized class

TR, ={f(z) = 2 € 2¥ eT : (1—g%)e, = 1}
k=—0o0
We now turn to the question of coefficient regions and general extre-
mal problems for typically real functions in A,. Here the coefficient points
T™ .(f) and coefficient regions lic in real Euclidean spaces R™ (appropriate
m), since all Laurent coefficients are real. We let 25 denote the subclass
of functions

Pz) =14 ) pete?
k=1
with all p, real (k =1,2,...). The Carathéodory-Toeplitz thcorem
(see Section 2) and the observation that whenever P(z) € # the function

12 — Colloquium Mathematicum XLIII.1
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(P(z)+17(?)) /2 belongs to Py yield
(4.14) |
Ho(Pg) = {(D1) -y Pu) €EB": Di(2, 01y .., P1) =0,k =1,2, ..., 0}

(P1y -++y Py) € bAry X, (Pg) if and only if D;(2,p,,...,9;) =0 for some
je{l,2,...,n}, and for each such boundary point the function P(z) € #p
such that T,(P) = (P, ..., P,) i8 uniquely determined and of the form

(4.15)

n

2 1-2°
= . < E =1,

THEOREM 4.3. Let ¢, for k = +1, +2,..., &% (¢; = 1/(L—¢%)) be 2n
real numbers. Necessary and sufficient conditions for the existence of a function

feTfB; such that T ,(f) = (C_py c-+yC_1yC1y ...y Cy) aFE

(4.16) ey = q¢%¢,, k=1,2,...,m,
(4.17)  Dp(2,p1y -0y D) =0, D = (1—qzk+2)ck+l—(l—qak-z)ck-lr
k=1,2,..,08—1,

where ¢, = 0. Furthermore, if (4.16) and (4.17) hold, and if Dy(2, p,, ..., Py)
= 0 for some je{1,2,...,n}, then the function f € TR; such that T™, (f)
= (C_py -+ oy Cp) 18 Uniquely determined and of the form

n—1 n—1
(418)  f(2) = D A¥*(2,0), O e[0,7], 0< Ay, )4 =1t
k=1 . ksl

Proof. The necessity of the conditions and (4.18) follow directly
from Theorem 4.2 and the Carathéodory-Toeplitz results (4.14) and (4.15).
Conversely, if ¢, for k¥ = 41, +2,..., +% (¢; = 1/(1 —¢%)) satisfy the
hypothesis of the theorem, and p, (¥ =1, 2, ..., n—1) are the correspond-
ing numbers in (4.17), then (4.14) implies the existence of a function

P(z) = 1+2p,,z" in 25

k=1

such that T',_,(P) = (P1y---y Pp)- Then

F(z) = 1jz2 P(2) = 2+ Zakz"

belongs to TR and p, = @y, Py = 6.—1, Py =@ 1—@;_,, k =3,4,...
We extend the given sequence {¢;} (k = +1, +2,..., £=n) by defining



STRUOTURE AND EXTREMAL PROBLEMS 179

¢ = a/(1—¢**) and ¢_, = ¢**¢, for k =1,2,... Hence

F(z) =2+ D 6 (1—g*)7*

kel

belongs to TR and, by Theorem 4.2, the function

0o

f(2) = 2’ ¢ 2"

kwm—o00
is in TR, with T™,(f) = (C_py s 0n)-

THEOREM 4.4. Let @ = G(2,, ..., T;,) be a real-valued fumction of
2n real variables that is defined and continuous on X™ (TR,) and has the
property that it achieves its maximum over X™ (TR;) only on the boundary.
Let J(f) = G(T%,(f)), f € TR,. Then J i8 a continuous funciional on TR,
and the solution to the exiremal problem

max {J (f): f e TR}}
must be a function of the form (4.18).
Proof. The map ¢(c_,, ..., 6) = (D1 -y Pn—,) With p, as determined

in (4.17) defines a homeomorphism of XZ,(TAI;’.,’,) onto X,_,(?r) by
Theorems 4.2 and 4.3. If (py, ...y Pp—1) € ¥ —1(PRr), then

@ (Pry eevs Pact) = (Copy +oey 0n) € X, (TRL),

where
e, =1/(1—¢"),
D1+ Pt oo + D
: ’1_ pe ~  for k even,
R S
see k—
21_,_,2:: = for k odd,
and

e = ¢y, k=1,2,...,n.

By means of this homeomorphism we can transplant J to the func-
tional
Ji(P) = @(¢7} (Ta(P)), PePr.

The rest of the proof is essentially the same as that of Theorem 2.2
and we omit the details.

If
f(z) = 2’ ¢.2* e TR,,

kws—o0
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then (4.6) shows that ¢, and c_, are parameters that must be fixed in
order to specify a compact family for the study of extremal problems.
We let TR,(c_,, ¢,) denote the set of functions in TR, with fixed c_,, ¢,.
It is easy to wverify that (4.7) yields the following representation for
FeTRy(cy, ¢):

(419)  f(2) = (6, —e_)h(2)— (g0, — g e_,)g(g/?), h,geTR,.

It is also convenient to introduce the coefficient region

A" (TRY* = (T™,(f(g)2): f e TRy)
= {(q Cpyoeey qc,, -I/Q7 e —-n/qn): (c-n7 e cn) e AT n(T )}

By an obvious correspondence, X" ,,(T ) and X “,,(TR,,) are homeo.-

morphic and each boundary point of )" ’in(T ) corresponds to a unique
function f(g/z), where f is of the form (4.18). As a consequence of these
remarks and the representation (4.19) we get

THEOREM 4.5. We have

n(T (0—1)01))—(01"0—1) n(T )—(019 C-1/9) X2 n(TRq)

Furthermore, a boundary point of A™ (TR,(c_,,c,)) 48 associated
with a unique function of the form

(4.20) f(2) = (e:—c_y) D B ¥ (2, ) — (g —c1/a) ) v P* (4] #0),
k=1 k=1

n—1 n—1
Oy 1 €10, 7]y Ay 7 >0 and D' 2y =1 = D 3.
k=1 k=1

By this result we obtain immediately the following

THEOREM 4.6. Let G = Q(x,, ..., x,,) be a real-valued function that is
continuous on J("_’.,,(TRq(c_l, c,)) and achieves it8 maximum over this set only
on the boundary. If J(f) =G (T2, (f)), feTR,(c_,,c,), then the solution
to the extremal problem

max{J(f): f € TRy(c_y, 1)}

must be a function of the form (4.20).

Finally, we mention the following

THEOREM 4.7. We have

Ext(TR,) = {¥*(z, 6): 0 ¢[0, =]}
and
Ext(TR,(c_,, ¢,))
= {(cl—c_l)'}’*(z, 0) —(erq—c1 /) W*(z,9): 0,9 € [0. =]}.
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