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Abstraet. In the present note we give a multidimensional analogue of Aupetit—
Wermer’s theorem on analytic structure on locally compact spaces (Theorem 3.3).

The method of our proof is in fact a standard modification of the ideas of Wermer
[10] and Basener [4].

I. Introduction. Let X denote a locally compact Hausdorff space
and C(X) the algebra of all continuous complex-valued functions defined
on X. The following problem arises naturally in many situations, especially
in the theory of function algebras: to find a non-trivial class <, of subal-
gebras of C(X) such that for every A e &, there exists a uniquely deter-
mined structure of n-dimensional complex analytic space on X with
A < 0(X) (0(X) denotes the space of all holomorphic functions on the
analytic space X).

There exists a class of pairs (X, «,), easy to describe such that each
subalgebra A € .o/, determines a one-dimensional analytic structure on X.
This class of algebras was examined by Wermer in [9], [10]. Let us recall
the fundamental definition from [9].

DEFINITION 1.1. A subalgebra A4 < 0(X) is called a mazimum
modulus algebra (m.m.a.) on X iff

(1) 4 separates points on X and contains the constants,
(ii) for every g € A and every compact set K < X we have

I9llz < liglox

(0K denotes the topological boundary of K relative to X).

The following theorem, generalizing the classical Bishop’s analytic
structure theorem, was proved by Aupetit and Wermer in [3] (see also
[10], Theorem 1).

THEOREM 1.2. Let A be a m.m.a. on X and let f € A be a proper map-
ping of X onto a domain 2 in C. Assume that there exists a subset E of Q
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of positive logarithmic capacity and k € N such that #f(A) <k for A e E.
Then

(1) #Hf A <k for every A e 2;

(2) there exists a discrele subset I' of Q such that f~'(QN\TI) can be
equipped with a uniquely determined structure of Riemann surface and
Ac 0(f"1(9\f')).

In the present note we propose a certain generalization of the notion
of a maximal modulus algebra and we modify Wermer’s potential theory
method in order to obtain a result valid in the higher-dimensional case.
Such a way seems to be natural in view of the original Basener’s theorem
[4] on multi-dimensional analytic structure and its generalizations due
to Aupetit ([2], Theorem 2.13).

II. Preliminaries. Let A be a subalgebra of C(X) containing the
constants. Suppose that there exists a proper mapping F = (f;, ..., f,)
€A” = Ax ... xA of X onto some domain in C". Let L be an affine
complexlinein C*with 2L # 0. Denote X;, = F(2nL), Ay = Alxg,
={glx,: ged}. If i: C>5t—>a+bteC”, where a ={ay...,a,),b
= (byy .y b,) # 0 and L = A(C), then the inverse of 4 is of the form

A1 Lo (2, 0.y 2,) —>(§' (z.,-—ai)a;)/lb]2 eC.
1

Therefore,
Fp = A—IOFIXL = Ao (fy lxps s Jalxy) = |b1—225i(ﬁle"'a’i) ed,
1

and the mapping Fp: X; - 2, = A" (2nL) is proper.

DEFINITION 2.1. We call {4, X £ 02} a structural system of order
n if

(i) A is a?supalgebra of C(X) separating the points of X and con-
taining the constants;

(ii) £ is a2 domain in C" and F € A" is a proper mapping of X onto 2;

(iii) for every affine complex line L in C* with Q"L # @, A, is
a m.m.a. on X;.

As standard models of a structural system of order » we propose

ExXAMPLE 2.2. Let 2 be a domain in C" and let A < 0(£2) be a subal-
gebra which contains the constants and the coordinate functions 2,, ..., 2,.
Then {4, 2 2 2} is a structural system of order n.

ExampPLE 2.3. Let. A be a uniform algebra defined on a compact
space T with maximal ideal space M. If K is a compact subset of M,
let Az be the closure of {f [¢: fe A} in C(K) (f denotes the Gelfand trans-

form of f). For every nonnegative integer o put A™ = {F = (,, ..., f,):
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fied,i=1,...,n} I F ei" let V(F) — F1(0). Note that the maximal
ideal space ofA p(f) 18 V(F) Setd, 4 = U Oy A ysy, where 0 Ay(ﬁ) is the

Fedn

usual Shilov boundary of 4. We call 8, A the Shilov boundary of A of order
n (see Basener [4], some examples are given by Sibony [8]). Assume that
8, AcT for some n € N. Let ¥ e A™ and let 2 be a connected compo-
nent of C"\F(T) such that F(M) nQ #£0.Put X = F- 1Q), 4, = A[X,
=Ty

We claim that {4, X 5 .Q} isa structuml system of order #. Obvious-

ly, the algebra 4, contains constants and separates points. Since F(M ) n
N2 = Q ([4], Lemma 2), we have F(X) = 2. Obviously, the mapping
F is proper. Thus conditions (i) and (ii) of Definition 2.1 are satisfied. Let

n—1 T

.L =n {(zl,...,zn)ecntz ai]-zi =bj}’ ai]-, bjEC
i=1
be a glven affme complex line in C" with 2 NnL # @. Then we have X,
= F 12 nL)c G‘ (0) = V(G), where

n
a

G = (4, "'7§n—1)7 gj :Z ai.’if;'_b.’i’ J

i=1

1,...,n—1,

i.e. G € A"1, Let K be a compact subsef‘of X, and g € A. Since X, is an
open subset of G- 1(0), and, by the hypothesls, X, 00, Aps = 9, the
local maximum modulus prmclple ([5], Theorem 8.2) applied to Apg,
gives the inequality |jglix < llgll,z, Where 0, K denotes the topological
boundary of K relative to X . Therefore, condition (iii) is satisfied, so that

{44, X £ 2} is a structural system of order n, as claimed.

PropPOSITION 2.4. Let {4, X L 02} be a structural system of order
n and let HF 1 (y) < oo for y € Q. Then the mapping F ig open.

Proof. Fix 2,e€ X and write y, = F(x,). Then F~'(y,) = {z,}v
uv{®, ..., 2;}. Fix a compact neighbourhood U of z; and a neighbourhood
vV of {z,..., m,}' such that UnV = @. Since F is proper, there exists
&> 0 such that B, «  and F'(B,)c UUV (we put B, = {y e C":
[y —Yol < o}, 8, = {y € C*: |y —yo| = o} for a>0).

Let U =UnF'(B e+ Then U is a compact neighbourhood of x,.
We claim that F (U) B . Assume the contrary. Then there exists
0<eg eo and an affine complex line L through g, such that I,
=F(F*(8,nL)n U) is a proper subset of I, = 8,nL. Hence there

exists a polynormal P in one variable with  |P{y,)| > max|P|. Let K
Ty
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= FY(B,nL)nT. Then ¢, K ¢ K, = F~'(8,nL)n U and, by Definition
2.1, we have

[P(%)l = I(POFL)(‘BO)I<maleOFL|<n?x|POFLI = max|P| < [P(g)|.
0

i K F,

This is impossible, and so F(U) = B
F(U) is a neighbourhood of ¥,.
LeMMA 2.5. Let X, Y be locally compact spaces and let F' be a proper

mapping of X onto Y. Then for every continuous function h: X — C the
Junction

as claimed. Thus B, = F(U), i.e.

%

hp(y) = max{|h(z)]: ve F'(y)}, ye¥,
48 upper-semicontinuous on Y.

Proof. Fix seR. Then {y e Y: hp(y)< 8} = ¥Y\{ye X: hp(y) > 8}
= Y\F (|hl"([s, +oo))). Since F' is proper and & is continuous, the set
{hp(y) < 8} is open. Thus hj is upper semicontinuous on Y.

ProposITION 2.6. Let {4, X £ 2} be a structural system of order n.
Then for every g € A the function loggy is plurisubharmonic in Q.

Proof. Fix ge A. By the previous lemma the function g5, and
hence loggy, is upper semicontinuous on 2. Let L = A(C) be an affine
complex line in C* with 2L # @. Since Ay is a m.m.a. on X,, the
funetion log(g.)r,, Where g, = glx,, is subharmonic on 2y ([9], Lem-
ma 1). Obviously, the equality grod = (g9.)p, holds true on £y,. Hence
log gy is plurisubharmonie in Q.

If 8 = C is compact, we define the »th (v > 1) diameter of S by the

formula
DS = max{” 3, —8]: {8), ..., 8} < S}.
i<j

Thus D™ (8) is the diameter of S. Note that #8 < k implies D*)(8) = 0.

PRrOPOSITION 2.7. Let {4, X £ 0} be a structural system of order n.
Fix ge A and define

DP(y) = DO (g(F(v)), e, v>2.

Then the function log DY) is plurisubharmonic in Q.

Proof. Let us fix g e 4 and » > 2. We first show the upper semi-
continuity of logD{. Let n=FXx...xF, X*=Xx..xX, &

N— —— —— —
r times » times
= 02X ... Xx 2. Then n: X* — " is a proper mapping. Define

» times

G(@yy .oy @) = [[l9@)—9(z)), (@, ..., 3) e X"

<j
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Obviously, G is continuous on X*. It is easy to see that DY = Go 4,
where A4: 25y —(y,...,y) € 2. According to Lemma 2.5, D§), and
hence logD“” is upper semicontinuous on Q. Let L = 1(C) be an affine
complex line in €C* with 2nL # @ and let g, = glx,. By Wermer’s
result ([10], Theorem 2) the function logD(’I)l is subharmomc on £2..
Since we have the equality D) = D{’o4, we conclude that logDf is
plurisubharmonic in Q.

To conclude the preliminaries we present a multidimensional analogue
of a well known result by Hartogs (see, for example, [1], Theorem II.17,
Pp. 174 and [7], Lemma 3, p. 59). The proof given in [1] can be easily
adopted to our situation.

PROPOSITION 2.8 Let B = C™ be an open ball and let f: B —C be
a bounded function such that log|f—a| is plurisubharmonic in B for every
a € C. Then either f or f ts holomorphic in B.

HI. The main result. Before the formulation of the theorem on analytic
structure we remind two definitions:

DErINITION 3.1. We say that a subset E of a domain Q < C” is
pluripolar if there exists a function u, plurisubharmonic in 2, 4 % —oo,
such that ¥ = —oo on E.

DEFINITION 3.2 ([6], Definition 3). We say that a triple (X, F, X)
is an analytic cover with the critical set § if

(i) X is a locally compact Hausdorff space, Y is a complex manifold
and F is a continuous proper mapping of X onto Y with finite fibres;

(ii) 8 is a proper analytic subset of ¥ such that the set F~!(8) is
negligible in X (i.e. F~1(8) is nowhere dense and for every a e F~'(8) and
every connected neighbourhood U of a there exists a neighbourhood U’ = U
of a such that U'\F~1(§) is connected) and the mapping F: X\F~1(8)
— Y\ 8 is locally homeomorphic.

Our main result is the following

THEOREM 3.3. Let {4, X x 2} be a structural system of order m.
Suppose that there exists a non-pluripolar subset E of 2 such that :I:I:F“(y)
< oo for every ye E. Let 2, = {y e 2: HF '(y) =} forv=1,2,3,
Then

(1) there exists k € N such that 2 = Q,U ... VQ, and Q) # (3;

(2) the set 8 = QU ... VR, _, is a closed analytic subset of Q with
dmS<n—1;

(3) the triple (X, F, Q) is an analytic_cover with the crilical set S;

(4) there exists an analytic space structure of pure dimension n on X
such that A c 0(X).

20 — Annales Polonicl Mathematicl XLII
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|
Proof. (1) Since a countable union of pluripolar sets is pluripolar,

it is enough to use Proposition 2.7 and the fact that A separates points
of X.

(2) Let y, € 2, and F~(y,) = {@,, ..., @,}. Let U,, ..., U, be disjoint
neighbourhoods of =z, ..., , in X. Since the mapping F is open (by (1)
and Proposition 2.4), theset V = F(U,;)n ... n¥(U,) is a neighbourhood
of y,. Obviously, V c 2,.Hence the set Q, is open. Therefore § = QU ...
e V0, = 2\ 0, is closed. Moreover, the mapping F: F~!(2,) —» 2,
is a local homeomorphism. Thus we get a uniquely determined structure
of n-dimensional complex manifold on F~!(2,) making ¥ a holomorphie.
mapping.

Now we show that every function g € A is holomorphic on the mani-
fold F-1(2,). Fix g € A, a point y, € 2, and z, e F~'(y,). Let us also fix
an open ball B = 2, centered at y,. Choose an open neighbourhood U of =z,
in the space X such that the mapping F, = F|,: U — B is homeomorphic
It may easily be shown that {4|,, U ] B} is a structural system of.
order n. By Proposition 2.6 the function log(g—a)y = log|goFy' —al
is plurisubharmonic in B for every a e C. Applying Proposition 2.8 we see
that either goF,! or goF;! is holomorphic in B.

Choose ve{l,2,...,n} for which the function f, is non-constant
in U. Then
(%) (o) (F' ) = v.9(Fs'(®), 9= ;- 9,) €B.

Applying the same argument to the function f,g € A, we conclude that
either (f,g)oF;! or (f,g)oF;* is holomorphic in B.

Using the standard argument (see [4] for details) we show that the
closed set § = 2,u ... U, _, is analytic in 2 with dimS <#n —1.

(8) It is easy to see that the set F~’(8) is negligible in X. Indeed,
by the openness of F, we have

X = F(Q) = F'(O\8) = F(2\8) = INF(S),

i.e. the set X\ F~1(8) is dense in X. Since F~(8) is closed, it is nowhere
dense in X. Obviously, for every z € F~!(8) and for every connected
neighbourhood U of x the set UNF~!(8) is connected. We have already
shown that the mapping F: X\F1(8) — 2\ 8 is locally homeomorphic.
Thus we conclude that the triple (X, ¥, 2) is an analytic cover with the
critical set S.

(4) By the above and by [6], Theorem 32, there exists an analytic
space structure of pure dimension # on X in which ¥ is holomorphic.
Let g € A. Then ¢ is continuous on X and holomorphic in the set F~!(Q,)
= X\F~!(8), where the set F-1(S) is analytic, nowhere dense in X.
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By Riemann’s extension theorem ([6], Theorem 13) g is holomorphic on X.
Therefore A < 0(X).
Using the notation of Example 2.3 we have

COROLLARY 3.4 ([2], Theorem 2.13). Let ne N and let 0, A < T.
Let F € A™ and let Q be a connected component of C"\F(T) such that F (M) n
N Q # B@. Suppose that there exists a non-pluripolar set E < 2 such that
:H:ﬁ"l(z)< oo for every z e E. Put X = ﬁ‘“(.Q), F = ﬁ’lx and A, = AAlx.
Then statements (1)—(4) of Theorem 3.3 are true.

Let us note that in original Basener’s version of the above theorem
([4], Theorem 2) it is assumed that the set E is of positive (2n)-dimensional
Lebesgue measure.

Finally, let us compare the notion of a maximum modulus algebra
and a structural system. Theorem 3.3 implies the following relation:

CoroLLARY 3.5. If {A, X L 2} is a structural system of order n,
then A is a m.m.a.

In general, a m.m.a. on X does not generate a structural system of
order n > 1.

EXAMPLE 3.6. Let A = {fe C(C*):VbeC,f(-,b) € 0O(C)}. Then A is a
m.m.a. on C?, whereas {A, C* 3 C?} is mot a structural system of order 2.

The author is very indebted to Piotr Jakébezak for his helpful re-
marks.
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