ANNALES POLONICI MATHEMATICI XLII (1983)

Analytic structure on locally compact spaces determined by algebras of continuous functions

by K. Rusek (Kraków)

Dedicated to the memory of Jacek Szarski

Abstract. In the present note we give a multidimensional analogue of Aupetit-Wermer's theorem on analytic structure on locally compact spaces (Theorem 3.3). The method of our proof is in fact a standard modification of the ideas of Wermer [10] and Basener [4].

I. Introduction. Let X denote a locally compact Hausdorff space and C(X) the algebra of all continuous complex-valued functions defined on X. The following problem arises naturally in many situations, especially in the theory of function algebras: to find a non-trivial class \mathscr{A}_n of subalgebras of C(X) such that for every $A \in \mathscr{A}_n$ there exists a uniquely determined structure of n-dimensional complex analytic space on X with $A \subset \mathcal{O}(X)$ ($\mathcal{O}(X)$) denotes the space of all holomorphic functions on the analytic space X).

There exists a class of pairs (X, \mathcal{A}_1) , easy to describe such that each subalgebra $A \in \mathcal{A}_1$ determines a one-dimensional analytic structure on X. This class of algebras was examined by Wermer in [9], [10]. Let us recall the fundamental definition from [9].

DEFINITION 1.1. A subalgebra $A \subset C(X)$ is called a maximum modulus algebra (m.m.a.) on X iff

- (i) A separates points on X and contains the constants,
- (ii) for every $g \in A$ and every compact set $K \subset X$ we have

$$||g||_{\mathcal{K}} \leqslant ||g||_{\partial \mathcal{K}}$$

 $(\partial K \text{ denotes the topological boundary of } K \text{ relative to } X).$

The following theorem, generalizing the classical Bishop's analytic structure theorem, was proved by Aupetit and Wermer in [3] (see also [10], Theorem 1).

THEOREM 1.2. Let A be a m.m.a. on X and let $f \in A$ be a proper mapping of X onto a domain Ω in C. Assume that there exists a subset E of Ω

302 K. Rusek

of positive logarithmic capacity and $k \in \mathbb{N}$ such that $\#f^{-1}(\lambda) \leqslant k$ for $\lambda \in E$. Then

- (1) $\#f^{-1}(\lambda) \leqslant k$ for every $\lambda \in \Omega$;
- (2) there exists a discrete subset Γ of Ω such that $f^{-1}(\Omega \setminus \Gamma)$ can be equipped with a uniquely determined structure of Riemann surface and $A \subset \mathcal{O}(f^{-1}(\Omega \setminus \Gamma))$.

In the present note we propose a certain generalization of the notion of a maximal modulus algebra and we modify Wermer's potential theory method in order to obtain a result valid in the higher-dimensional case. Such a way seems to be natural in view of the original Basener's theorem [4] on multi-dimensional analytic structure and its generalizations due to Aupetit ([2], Theorem 2.13).

II. Preliminaries. Let A be a subalgebra of C(X) containing the constants. Suppose that there exists a proper mapping $F = (f_1, \ldots, f_n)$ $\in A^n = A \times \ldots \times A$ of X onto some domain in C^n . Let L be an affine complex line in C^n with $\Omega \cap L \neq \emptyset$. Denote $X_L = F^{-1}(\Omega \cap L)$, $A_L = A \mid_{X_L} = \{g \mid_{X_L} : g \in A\}$. If $\lambda \colon C \ni t \to a + bt \in C^n$, where $a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \neq 0$ and $L = \lambda(C)$, then the inverse of λ is of the form

$$\lambda^{-1}\colon\thinspace L\ni (z_1,\,\ldots,\,z_n)\to \Bigl(\sum_1^n\,(z_i-a_i)\,\overline{b}_i\Bigr)/|b|^2\in C\,.$$

Therefore,

$$F_L = \lambda^{-1} \circ F|_{X_L} = \lambda^{-1} \circ (f_1|_{X_L}, \dots, f_n|_{X_L}) = |b|^{-2} \sum_{1}^{n} \bar{b}_i (f_i|_{X_L} - a_i) \in A_L$$

and the mapping $F_L \colon X_L \to \Omega_L = \lambda^{-1}(\Omega \cap L)$ is proper.

DEFINITION 2.1. We call $\{A, X \stackrel{F}{\to} \Omega\}$ a structural system of order n if

- (i) A is a subalgebra of C(X) separating the points of X and containing the constants;
 - (ii) Ω is a domain in C^n and $F \in A^n$ is a proper mapping of X onto Ω ;
- (iii) for every affine complex line L in C^n with $\Omega \cap L \neq \emptyset$, A_L is a m.m.a. on X_L .

As standard models of a structural system of order n we propose

EXAMPLE 2.2. Let Ω be a domain in C^n and let $A \subset \mathcal{O}(\Omega)$ be a subalgebra which contains the constants and the coordinate functions z_1, \ldots, z_n . Then $\{A, \Omega \xrightarrow{\mathrm{id}} \Omega\}$ is a structural system of order n.

EXAMPLE 2.3. Let A be a uniform algebra defined on a compact space T with maximal ideal space M. If K is a compact subset of M, let A_K be the closure of $\{\hat{f} \mid_K : f \in A\}$ in C(K) (\hat{f} denotes the Gelfand transform of f). For every nonnegative integer n put $\hat{A}^n = \{\hat{F} = (\hat{f}_1, \ldots, \hat{f}_n):$

 $f_i \in A, i = 1, ..., n$ }. If $\hat{F} \in \hat{A}^n$, let $V(\hat{F}) = \hat{F}^{-1}(0)$. Note that the maximal ideal space of $A_{V(\hat{F})}$ is $V(\hat{F})$. Set $\partial_n A = \bigcup_{\hat{F} \in \hat{A}^n} \partial_0 A_{V(\hat{F})}$, where $\partial_0 A_{V(\hat{F})}$ is the usual Shilov boundary of A. We call $\partial_n A$ the Shilov boundary of A of order n (see Basener [4]; some examples are given by Sibony [8]). Assume that $\partial_{n-1} A \subset T$ for some $n \in \mathbb{N}$. Let $\hat{F} \in \hat{A}^n$ and let Ω be a connected component of $C^n \setminus \hat{F}(T)$ such that $\hat{F}(M) \cap \Omega \neq \emptyset$. Put $X = \hat{F}^{-1}(\Omega), A_0 = \hat{A}|_X$, $F = \hat{F}|_X$.

We claim that $\{A_0, X \xrightarrow{F} \Omega\}$ is a structural system of order n. Obviously, the algebra A_0 contains constants and separates points. Since $\hat{F}(M) \cap \Omega = \Omega$ ([4], Lemma 2), we have $F(X) = \Omega$. Obviously, the mapping F is proper. Thus conditions (i) and (ii) of Definition 2.1 are satisfied. Let

$$L = igcap_{j=1}^{n-1} \left\{ (z_1, \, \ldots, \, z_n) \in C^n \colon \sum_{i=1}^n \, lpha_{ij} z_i \, = \, b_j
ight\}, \quad \ \, a_{ij}, \, b_j \in C$$

be a given affine complex line in C^n with $\Omega \cap L \neq \emptyset$. Then we have $X_L = F^{-1}(\Omega \cap L) \subset \hat{G}^{-1}(0) = V(\hat{G})$, where

$$\hat{G} = (\hat{g}_1, ..., \hat{g}_{n-1}), \quad \hat{g}_j = \sum_{i=1}^n a_{ij} \hat{f}_i - b_j, \quad j = 1, ..., n-1,$$

i.e. $\hat{G} \in \hat{A}^{n-1}$. Let K be a compact subset of X_L and $g \in A$. Since X_L is an open subset of $\hat{G}^{-1}(0)$, and, by the hypothesis, $X_L \cap \partial_0 A_{V(\hat{G})} = \emptyset$, the local maximum modulus principle ([5], Theorem 8.2) applied to $A_{V(G)}$ gives the inequality $\|g\|_K \leq \|g\|_{\partial_L K}$, where $\partial_L K$ denotes the topological boundary of K relative to X_L . Therefore, condition (iii) is satisfied, so that $\{A_0, X \xrightarrow{F} \Omega\}$ is a structural system of order n, as claimed.

PROPOSITION 2.4. Let $\{A, X \xrightarrow{F} \Omega\}$ be a structural system of order n and let $\#F^{-1}(y) < \infty$ for $y \in \Omega$. Then the mapping F is open.

Proof. Fix $x_0 \in X$ and write $y_0 = F(x_0)$. Then $F^{-1}(y_0) = \{x_0\} \cup \{x_1, \ldots, x_l\}$. Fix a compact neighbourhood U of x_0 and a neighbourhood V of $\{x_1, \ldots, x_l\}$ such that $U \cap V = \emptyset$. Since F is proper, there exists $\epsilon_0 > 0$ such that $B_{\epsilon_0} \subset \Omega$ and $F^{-1}(B_{\epsilon_0}) \subset U \cup V$ (we put $B_a = \{y \in C^n : |y - y_0| \le a\}$, $S_a = \{y \in C^n : |y - y_0| = a\}$ for a > 0).

Let $\tilde{U}=U\cap F^{-1}(B_{\epsilon_0})$. Then \tilde{U} is a compact neighbourhood of x_0 . We claim that $F(\tilde{U})=B_{\epsilon_0}$. Assume the contrary. Then there exists $0<\varepsilon\leqslant \varepsilon_0$ and an affine complex line L through y_0 such that $\tilde{\Gamma}_s=F\left(F^{-1}(S_\varepsilon\cap L)\cap U\right)$ is a proper subset of $\Gamma_e=S_\varepsilon\cap L$. Hence there exists a polynomial P in one variable with $|P(y_0)|>\max|P|$. Let K

304 K. Rusek

 $= F^{-1}(B_{\bullet} \cap L) \cap U$. Then $\partial_L K \subset K_0 = F^{-1}(S_{\bullet} \cap L) \cap U$ and, by Definition **2.1**, we have

$$|P(y_0)| = |(P \circ F_L)(x_0)| \leqslant \max_{\theta_L K} |P \circ F_L| \leqslant \max_{K_0} |P \circ F_L| = \max_{\tilde{F}_g} |P| < |P(y_0)|.$$

This is impossible, and so $\tilde{F}(U) = B_{s_0}$ as claimed. Thus $B_{s_0} \subset F(U)$, i.e. F(U) is a neighbourhood of y_0 .

LEMMA 2.5. Let X, Y be locally compact spaces and let F be a proper mapping of X onto Y. Then for every continuous function $h: X \to C$ the function

$$h_F(y) = \max\{|h(x)|: x \in F^{-1}(y)\}, y \in Y,$$

is upper-semicontinuous on Y.

Proof. Fix $s \in \mathbb{R}$. Then $\{y \in Y : h_F(y) < s\} = Y \setminus \{y \in Y : h_F(y) \geqslant s\}$ $= Y \setminus F(|h|^{-1}([s, +\infty)))$. Since F is proper and h is continuous, the set $\{h_F(y) < s\}$ is open. Thus h_F is upper semicontinuous on Y.

PROPOSITION 2.6. Let $\{A, X \xrightarrow{F} \Omega\}$ be a structural system of order n. Then for every $g \in A$ the function $\log g_F$ is plurisubharmonic in Ω .

Proof. Fix $g \in A$. By the previous lemma the function g_F , and hence $\log g_F$, is upper semicontinuous on Ω . Let $L = \lambda(C)$ be an affine complex line in C^n with $\Omega \cap L \neq \emptyset$. Since A_L is a m.m.a. on X_L , the function $\log(g_L)_{F_L}$, where $g_L = g|_{X_L}$, is subharmonic on Ω_L ([9], Lemma 1). Obviously, the equality $g_F \circ \lambda = (g_L)_{F_L}$ holds true on Ω_L . Hence $\log g_F$ is plurisubharmonic in Ω .

If $S \subset C$ is compact, we define the vth $(v \ge 1)$ diameter of S by the formula

$$D^{(r)}(S) = \max \{ \prod_{i < j} |s_i - s_j| : \{s_1, \ldots, s_r\} \subset S \}.$$

Thus $D^{(1)}(S)$ is the diameter of S. Note that #S < k implies $D^{(k)}(S) = 0$.

PROPOSITION 2.7. Let $\{A, X \xrightarrow{F} \Omega\}$ be a structural system of order n. Fix $g \in A$ and define

$$D_g^{(\mathbf{r})}(y)\,=\,D^{(\mathbf{r})}\big(g\big(F^{-1}(y)\big)\big),\qquad y\in\varOmega\,,\,\,\nu\geqslant 2\,.$$

Then the function $\log D_a^{(r)}$ is plurisubharmonic in Ω .

Proof. Let us fix $g \in A$ and $v \ge 2$. We first show the upper semicontinuity of $\log D_g^{(r)}$. Let $\pi = \underbrace{F \times \ldots \times F}_{r \text{ times}}, X^r = \underbrace{X \times \ldots \times X}_{r \text{ times}}, \Omega^r$ $= \underbrace{\Omega \times \ldots \times \Omega}_{r \text{ times}}. \text{ Then } \pi \colon X^r \to \Omega^r \text{ is a proper mapping. Define}$

$$G(x_1, \ldots, x_r) = \prod_{i < j} (g(x_i) - g(x_j)), \quad (x_1, \ldots, x_r) \in X^r.$$

Obviously, G is continuous on X^{r} . It is easy to see that $D_{g}^{(r)}=G\circ \Delta$, where $\Delta\colon \varOmega\ni y\to (y,\ldots,y)\in \varOmega^{r}$. According to Lemma 2.5, $D_{g}^{(r)}$, and hence $\log D_{g}^{(r)}$, is upper semicontinuous on \varOmega . Let $L=\lambda(C)$ be an affine complex line in C^{n} with $\varOmega\cap L\neq \emptyset$ and let $g_{L}=g|_{X_{L}}$. By Wermer's result ([10], Theorem 2) the function $\log D_{gL}^{(r)}$ is subharmonic on \varOmega_{L} . Since we have the equality $D_{gL}^{(r)}=D_{g}^{(r)}\circ\lambda$, we conclude that $\log D_{g}^{(r)}$ is plurisubharmonic in \varOmega .

To conclude the preliminaries we present a multidimensional analogue of a well known result by Hartogs (see, for example, [1], Theorem II.17, p. 174 and [7], Lemma 3, p. 59). The proof given in [1] can be easily adopted to our situation.

PROPOSITION 2.8 Let $B \subset C^n$ be an open ball and let $f: B \to C$ be a bounded function such that $\log |f-a|$ is plurisubharmonic in B for every $a \in C$. Then either f or \bar{f} is holomorphic in B.

III. The main result. Before the formulation of the theorem on analytic structure we remind two definitions:

DEFINITION 3.1. We say that a subset E of a domain $\Omega \subset \mathbb{C}^n$ is pluripolar if there exists a function u, plurisubharmonic in Ω , $u \not\equiv -\infty$, such that $u = -\infty$ on E.

DEFINITION 3.2 ([6], Definition 3). We say that a triple (X, F, Y) is an analytic cover with the critical set S if

- (i) X is a locally compact Hausdorff space, Y is a complex manifold and F is a continuous proper mapping of X onto Y with finite fibres;
- (ii) S is a proper analytic subset of Y such that the set $F^{-1}(S)$ is negligible in X (i.e. $F^{-1}(S)$ is nowhere dense and for every $a \in F^{-1}(S)$ and every connected neighbourhood U of a there exists a neighbourhood $U' \subset U$ of a such that $U' \setminus F^{-1}(S)$ is connected) and the mapping $F: X \setminus F^{-1}(S) \to Y \setminus S$ is locally homeomorphic.

Our main result is the following

THEOREM 3.3. Let $\{A, X \xrightarrow{F} \Omega\}$ be a structural system of order n. Suppose that there exists a non-pluripolar subset E of Ω such that $\#F^{-1}(y)$ $< \infty$ for every $y \in E$. Let $\Omega_{\nu} = \{y \in \Omega \colon \#F^{-1}(y) = \nu\}$ for $\nu = 1, 2, 3, \ldots$ Then

- (1) there exists $k \in \mathbb{N}$ such that $\Omega = \Omega_1 \cup \ldots \cup \Omega_k$ and $\Omega_k \neq \emptyset$;
- (2) the set $S = \Omega_1 \cup \ldots \cup \Omega_{k-1}$ is a closed analytic subset of Ω with $\dim S \leq n-1$;
 - (3) the triple (X, F, Ω) is an analytic cover with the critical set S;
- (4) there exists an analytic space structure of pure dimension n on X such that $A \subset \mathcal{O}(X)$.

306 K. Rusek

Proof. (1) Since a countable union of pluripolar sets is pluripolar, it is enough to use Proposition 2.7 and the fact that A separates points of X.

(2) Let $y_0 \in \Omega_k$ and $F^{-1}(y_0) = \{x_1, \ldots, x_k\}$. Let U_1, \ldots, U_k be disjoint neighbourhoods of x_1, \ldots, x_k in X. Since the mapping F is open (by (1) and Proposition 2.4), the set $V = F(U_1) \cap \ldots \cap F(U_k)$ is a neighbourhood of y_0 . Obviously, $V \subset \Omega_k$. Hence the set Ω_k is open. Therefore $S = \Omega_1 \cup \ldots \cup \Omega_{k-1} = \Omega \setminus \Omega_k$ is closed. Moreover, the mapping $F \colon F^{-1}(\Omega_k) \to \Omega_k$ is a local homeomorphism. Thus we get a uniquely determined structure of n-dimensional complex manifold on $F^{-1}(\Omega_k)$ making F a holomorphic mapping.

Now we show that every function $g \in A$ is holomorphic on the manifold $F^{-1}(\Omega_k)$. Fix $g \in A$, a point $y_0 \in \Omega_k$ and $x_0 \in F^{-1}(y_0)$. Let us also fix an open ball $B \subset \Omega_k$ centered at y_0 . Choose an open neighbourhood U of x_0 in the space X such that the mapping $F_0 = F|_U \colon U \to B$ is homeomorphic It may easily be shown that $\{A|_U, U \overset{F_0}{\to} B\}$ is a structural system of order n. By Proposition 2.6 the function $\log(g-a)_{F_0} = \log|g \circ F_0^{-1} - a|$ is plurisubharmonic in B for every $a \in C$. Applying Proposition 2.8 we see that either $g \circ F_0^{-1}$ or $g \circ F_0^{-1}$ is holomorphic in B.

Choose $v \in \{1, 2, ..., n\}$ for which the function f_v is non-constant in U. Then

(*)
$$(f_{\nu}g)(F_0^{-1}(y)) = y_{\nu}g(F_0^{-1}(y)), \quad y = (y_1, \ldots, y_n) \in B.$$

Applying the same argument to the function $f,g \in A$, we conclude that either $(f,g) \circ F_0^{-1}$ or $(f,g) \circ F_0^{-1}$ is holomorphic in B.

Using the standard argument (see [4] for details) we show that the closed set $S = \Omega_1 \cup \ldots \cup \Omega_{k-1}$ is analytic in Ω with dim $S \leq n-1$.

(3) It is easy to see that the set $F^{-1}(S)$ is negligible in X. Indeed, by the openness of F, we have

$$X = F^{-1}(\Omega) = F^{-1}(\overline{\Omega \setminus S}) = \overline{F^{-1}(\Omega \setminus S)} = \overline{X \setminus F^{-1}(S)},$$

i.e. the set $X \setminus F^{-1}(S)$ is dense in X. Since $F^{-1}(S)$ is closed, it is nowhere dense in X. Obviously, for every $x \in F^{-1}(S)$ and for every connected neighbourhood U of x the set $U \setminus F^{-1}(S)$ is connected. We have already shown that the mapping $F: X \setminus F^{-1}(S) \to \Omega \setminus S$ is locally homeomorphic. Thus we conclude that the triple (X, F, Ω) is an analytic cover with the critical set S.

(4) By the above and by [6], Theorem 32, there exists an analytic space structure of pure dimension n on X in which F is holomorphic. Let $g \in A$. Then g is continuous on X and holomorphic in the set $F^{-1}(\Omega_k) = X \setminus F^{-1}(S)$, where the set $F^{-1}(S)$ is analytic, nowhere dense in X.

By Riemann's extension theorem ([6], Theorem 13) g is holomorphic on X. Therefore $A \subset \mathcal{O}(X)$.

Using the notation of Example 2.3 we have

COROLLARY 3.4 ([2], Theorem 2.13). Let $n \in \mathbb{N}$ and let $\partial_{n-1}A \subset T$. Let $\hat{F} \in \hat{A}^n$ and let Ω be a connected component of $\mathbb{C}^n \setminus \hat{F}(T)$ such that $\hat{F}(M) \cap \Omega \neq \emptyset$. Suppose that there exists a non-pluripolar set $E \subset \Omega$ such that $\#\hat{F}^{-1}(z) < \infty$ for every $z \in E$. Put $X = \hat{F}^{-1}(\Omega)$, $F = \hat{F}|_X$ and $A_0 = \hat{A}|_X$. Then statements (1)-(4) of Theorem 3.3 are true.

Let us note that in original Basener's version of the above theorem ([4], Theorem 2) it is assumed that the set E is of positive (2n)-dimensional Lebesgue measure.

Finally, let us compare the notion of a maximum modulus algebra and a structural system. Theorem 3.3 implies the following relation:

COROLLARY 3.5. If $\{A, X \xrightarrow{F} \Omega\}$ is a structural system of order n, then A is a m.m.a.

In general, a m.m.a. on X does not generate a structural system of order $n \ge 1$.

EXAMPLE 3.6. Let $A = \{f \in C(\mathbb{C}^2) : \forall b \in \mathbb{C}, f(\cdot, b) \in \mathcal{O}(\mathbb{C})\}$. Then A is a m.m.a. on \mathbb{C}^2 , whereas $\{A, \mathbb{C}^2 \xrightarrow{\mathrm{id}} \mathbb{C}^2\}$ is not a structural system of order 2.

The author is very indebted to Piotr Jakóbczak for his helpful remarks.

References

- [1] B. Aupetit, Propriétés spectrales des algèbres de Banach, Lecture Notes in Mathematics, 735, Springer-Verlag (1979).
- [2] -, Analytic multivalued functions in Banach algebras and uniform algebras, preprint.
- [3] B. Aupetit and J. Wermer, Capacity and uniform algebras, J. Funct. Analysis 28 (1978), p. 386-400.
- [4] R. Basener, A general Shilov boundary and analytic structure, Proc. Amer. Math. Soc. 47 (1975), p. 98-105.
- [5] T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, 1969.
- [6] H. Grauert and R. Remmert, Komplexe Rāume, Math. Ann. 136 (1958), p. 245-318.
- [7] R. Narasimhan, Several complex variables, The University of Chicago Press, 1971.
- [8] N. Sibony, Multi-dimensional analytic structure in the spectrum of uniform algebras, Lecture Notes in Mathematics, 512, Springer-Verlag, 1976, p. 139-165.
- [9] J. Wermer, Maximum modulus algebra and singularity sets, Proc. of the Royal Soc. of Edinburgh 86 (1980), p. 326-331.
- [10] -, Potential theory and function algebras, Texas Tech. Math. Series, to appear.

Reçu par la Rédaction le 12.02.1981