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Characterization of quasi-analytic functions of several
variables by means of rational approximation

by W. PLESNIAK (Krakow)

1. Introduction. Let ¥ be a compact set in the space C” of n complex
variables. Let ¥(F) denote the Banach algebra of all complex continuous
functions on F' with the norm

Iflle = sup If(z)l  for fe €(F).

Let &, denote the set of all polynomials in 2 = (24, ..., 2,) < C" of degree < »
and let 2, denote the set of all rational functions » such that » = P/Q,
where P, Qe ?, and the polynomials P, are assumed to be mutually
‘prime.

Given a function fe € (¥'), we write

E,(f, F) =;n; If —Pllr

R.(f, F) = ingf If —7llg-

and

Let #(F) and #(ZF') denote the sets of all functions fe €(F') such that

liminfVE,(f, F) < 1

¥—00

and

P>

liminf VR,(f, F) < 1,

respectively. It is obvious that #(F) <« Z(F).

Now let » =1 and F = [—1, 1]. In this case the following identity
principle for functions of the class #Z(F) has been proved by Bernstein
(see [1], p. 286):

(I) If fe B(F) and f(x) = O for xe[a, f] < F, then f(x) = 0 for xe F.

This classical result admits generalizations and can also be proved
for functions fe #Z(F) in the case where F' is a sufficiently ‘‘good” compact
set in C" (see [6]). Owing to property (I) the functions of the class #(F)
are called quasi-analytic in the sense of Bernstein.
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Recently Gonéar [3] has announced (without proof) an identity
principle for functions fe Z(F), F' = [ —1, 1], analogous to (I)(%).

The main purpose of this paper is to give a characterization of func-
tions fe #Z(F) by means of rational approximation. To formulate our
result we use the extremal function @(z, F) of a compact set F in C”
introduced by Siciak [8]

P(z, F) = sup{sup{|P(2)]"": PeP,, |Plp<1}}, =z2eC™
r>1

Given any compact set F in C", we shall denote throughout by F
the polynomially convex envelope of F. Then our result reads as follows.

- THEOREM 1. Let F' be a compact set in C™ such that the extremal function
@ (2, F) is locally bounded in C" and let f be a function of the algebra € (F).
Then f is the restriction to F of a function fe Z(F) if and only if for a sequence
v — oo of posilive integers there exvist rational functions r, e 2, and an
open neighbourhood £2 of the set F such that

¢ T
(1) limsupV|f— Yl <1
k- r00 ' §

and

(ii)  the functions r,, are holomorphic in Q for k = 1.
Remark. Recently Szabados [10] has proved the following weaker

version of Goncar’s identit rinciple:
y p

Let f be a function continuous in ¥ = [—1,1]. Assume that there
exist rational functions r,.€2,, k=1, and a neighbourhood £ (in 0)
of F' satisfying (i) and (ii) of Theorem 1. Then f(x) = 0 for xe [a,f] = F
= f(x) = 0 for ze I

Since here I' = F and &z, F) = 2+ V zrll , it follows from Theorem
1 that the result of Szabados is in fact a consequence of Bernstein’s
theorem (I).

Let F be a compact set in C™ and let #,(F) denote the subclass of
the class #(F) consisting of all functions f such that

liminfy/R,(f, F) = 0.

00
In Section 3 we give an identity principle for functions fe #,(¥#) which
generalizes an identity principle for these functions given by Gonéar [2]
in the case where F' < [0,1] and mes(F) > 0(%).

2. Proof of Theorem 1. We shall need two lemmas.

LeMMA 1. Let F — F, x...xXF,, where F; is a compact set in the
complex z;-plane, j — 1,...,n. Let F be a family of polynomials P in
Z = (g, ...y%,) Such that

(*) See: Note added in proof, p. 156.
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(i)  there exists an open neighbourhood £ of the set F such that P(2) # 0
for ze Q, Pe #.

Then there exists a constant 6 > 0 such that

P(2)] = (—

ndegl’
iFI—_{Tg) ”P”F fOT ve€ 1’7, P€ f,

where || = diam F (%).

Proof. Choose a constant 6 > 0 such that {ze C": dist(z, F) < 6} = Q.
Take a polynomial Pe &% and fix a point @ = (a,, ..., a,)e I' in such a way
that ||P)ly = |P(a)!. Write

P(2) = P(21, @5y ..., a,).
The polynomial p may be rewritten in the form
p2) = E(zy—a)) ... (3, —qy),

where 0 <1< degP, £ and ¢;(j = 1, ..., 1) are complex numbers depending
on the point a¢ and the polynomial P. It follows from assumption (i)
that p(a,) = P(a) # 0. Hence

21—y |

@) LONRELN g

|
(al) | | @p—ay | I a; — aq

If z,¢ F,, then |z, — a,ll [, < |F|. On the other hand, by assumption (i),
|2y —a;l = 6 for z,¢ F'y, j = 1,...,1. Hence

(2)

——— —_ 5

ay—a; '|z"—a1y+|z1— NG TEY
for z,¢e ¥y, j =1,...,1. By (1) and (2) we obtain

k. ?
' for z,¢ F
l p(a) (1F|+6) oA

I

and hence

degt
(3) [P(2y gy ..., @) == (___, —) Pl for z,eF,.

Because of (3), to complete the proof of the lemma it suffices to apply
induction with respect to n. '

Further on we shall often use the following properties of the extremal
function @ defined in Section 1 (see [8]):

(a) |P(2) < |Plp[®(2, F)]%8F, ze C", for every polynomial P.

6 n 6‘71«
() The constant (-————+—6~~)' may be replaced by - e o= - where

(1] + 8) ... (Fpl + 6)
1F;l = diam Fj, j =1, ..
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(b) If a compact set F contains the Cartesian product G, x...x G,
where G, 1s a compact set in the z;-plane with positive transfinite diameter
d(@), j =1,...,n, then the function @(z, F) is locally bounded in C".

LEMMA 2. Let 2 be an open set in C" and let F be a family of polynomials
P such that

(i) P(z) #0 for ze 2, Pe #F.

Then for every compact set F'y F < 0, there exist a constant 6, 0 < 6 < 1,
and a compact set G such that ' c intG <« G ¢ 2 and

|P(2)| > 098 |P|l; for 2¢@, Pe F.

Proof. Fix a compact set ¥, F c 2. Let 4 be a component of the
set 2 such that F, = F n 4 = @. In virtue of the Borel-Lebesgue theorem,
there exists a finite system of closed polydisks T, ..., T,, such that

1) TicA forj=1,...,m
and

m
(2) Fycint J T;.

i=1

Since the set 4 is open and connected, the polydisks T'; may be chosen
in such a way that

(3) T,nTy,#0 forj=1,...,m,

where T, ,, = T,. Take a polynomial Pe #. Because of assumption (i)
and (1), we may apply Lemma 1 for every T;. So there exist constants
7, 0<1y<1,j=1,...,m independent of P and such that

(4) P (2)] = 7} F|Plly, for zeTy, j =1,...,m.
Set G, = G T;. Because of (3), we may assume that |[Plg, = Pl
Then, by z;; and (4), we obtain
IPllz, = 1% F||Pllg,,-

Hence and again by (4) we get

|P(2)] = (7,°7:) "7 |Plg, for zeT;UT,.
Repeating, if necessary, our procedure we come to the inequality
(5) IP(&) = (11 - Tw)* T IPllg, for zeGy.

Now let 4, be the k-th component of the set 2, k =1, 2, ... Write
F* — F 4, and note that there exists an index r such that F* % @ for
k<r and F*¥ =@ for k> r. In virtue of (5), for every k = 1,...,7 we
can find a compact set G* being the sum of polydisks and a constant
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7€ (0, 1) such that F* c intG* < G¥ < 2 and
(6) |P(2)| = n2€P||Plluk  for ze G¥, Pe 7.

Set @ = |J G*. It follows from property (b) of the extremal function @
k=1
that the functions @(z, G*), k = 1, ..., r, are locally bounded in C". Hence

(7) H, =sup®(z,G) < +0, k=1,...,r
zely

Write H = max{H,, ..., H,}. By (7) and by property (a) of &, we obtain
(8) ‘ 1Pilgt = (L/H)“¥F|Plig, Pe&F
From (6) and (8) we get

|P(z)| = 6%°8F|P||; for 2¢G, Pe &,

where 0 = min {#,}/H. This completes the proof of the lemma.
1<k<gr

Now we are able to prove Theorem 1. The proof of the necessity
of conditions (i) and (ii) follows immediately from the definition of the
class #(F). It remains to prove the sufficiency.

Suppose that r, =P, [Q, , where P, , @, %, and P,, Q,, are
mutually prime, £ = 1,2,..., is a sequence of rational functions satis-
fying assumptions (i) and (ii) of Theorem 1. We may assume that

(1) 19, )lp =1 for k>1.

By virtue of (ii), Q,k(z) # 0 for ze Q, Fc 2. Hence applying Lemma 2

we can find a compact set G, FcintGc@c 2, and a constant fe (0, 1)
independent of ¥ and such that

(2) Q.. (2)| > 6% for zeG, k=1

On the other hand, it follows from (i) and (1) that there exists a constant M
such that
1P, llp< M for k>1.

Hence, since the extremal function @(z, F') is assumed to be locally bounded
in C", applying property (a) of @ we obtain

(3) IP, g < MH®,  >1,
where H is a constant independent of k. By (2) and (3) we get
”Tvk”G A”k k > 1’

A being a constant independent of k. Hence, since the functions r,, are

holomorphic in the common neighbourhood int G of the set F by Lemma, 1
in [7] for every k> 1 we can find polynomials W¥*e¢2,, v > 1, and con-

3 — Annales Pelonici Mathematici XXVIIL.2.
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stants M,, 7, 0 < v < 1, independent of ¥ and » and such that
(4) I, —Wile < M A%k, v>=1, k>1
Take a positive integer Z so large that A7' < 7. Then, by (4), we get
(5) _ llr,, — Wi vk”.ﬁ M,7%,  kZ=1.
By (i), (b) and the triangle inequality we obtain
If = Wi e < Moy, k21,

M, and % being constants independent of k, 0 < 5 < 1. This 1mphes that
fe B(F Hence, in virtue of Lemma 3 in [7], there exists a function f € .%‘(F )

such that f] » = f. The proof is completed.

Let .# denote the set of all increasing sequences of positive integers.
Given a sequence {»,}e¢ %, we denote by [{»}] the set of all sequences
{ur} € & such that

1I/M<vju< M, k=1,

for a constant M independent of k. For a fixed sequence {r»,} ¢ & we denote
by #(F, [{v}]) and Z(F, [{».}]) the sets of functions fe ¢ (F) satisfying
the requirements

lim sup I/E,.k(f y F) <1 for an {u}e [{n}],

k—»00

and

e .__
limsup VR, (f, F) <1 for an {g}e[{n}],
k-»o0

respectively. One can check that #(F, [{».}]) is a ring with respect to
the ordinary point-wise addition and multiplication of functions and
#B(F, [{»}]) is a subring of the ring Z(F, [{»]}])

It is seen from the proof that Theorem 1 gives the following charac-
terization of the subring Z(F, [{».}]) in the ring Z(F, [{»}]):

THEOREM 2. Let F satisfy the assumptions of Theorem 1 and let
fe R (F, [{}]). Then fe B(F, [{v,}]) if and only if there exist rational
Junctions r, e 2, , where {u,} e [{»}], and an open set Q,F < 2, satisfying
(i) and (ii) of Theorem 1.

3. The identity principle for functions of the class #,(F). Let F be
a fixed compact set in C". Given any set G in C", we write

¢r(G) = sup{l/sup®P(z, K): K is a compact subset of G},
ze K . .

where @(z, K) is the extremal function of K. We propose to call the set-
function ¢p a @-capacity of the set G with respect to F.
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Now assume that K is a compact set in the space C of one complex
variable. Then it is known [9] that

Bz, K) = +o00  for ze ONK <> D(z, K) = + 00
at a point ;’e OCNK < d(K) =0,

where d(K) denotes the transfinite diameter of K. Hence we obtain the
following characterization of polar sets ¢ with respect to the @-capacity
in terms of the logarithmic ecapacity ¢,(G) (comp. [5]):

For every Borel set G in C, ¢,(G) = 0 if and only if ¢(G) = 0 for
any compact set F < C such that F n(C\G) # Q.

THEOREM 3. Lelt F be a compact set in C" and let f be a function of the
class #,(F). If f vanishes on a closed subset I of F such that ¢p(I) > 0,
then @r({ze F: f(2) # 0}) = 0.

Proof. Since fe #y(F), there exist polynomials P, , @, € Pv,r Where
{v,}e ¥, and a sequence {¢,} of positive numbers, lime, = 0 such that

k—o0

(1) ” il N TN
l'k F

Since f(2) = 0 for ze I, we have
P, '

(2) l—— Lek, k=1
Q. Iz

We may assume that

(3) 1@,y =1, k=1

Suppose that f(z) = 0 for ze@ c F, ¢,(@) > 0. Then, by the definition
of ¢;(@), there exists a compact set K c G such that ¢;(K)> 0. Now
for every k —= 1,2, ... there must exist a point 2(¥ ¢ K such that

(4) 0., (2¥)] > [g7 (E)T%, k> 1.

Indeed, if |@,, (2)| < [¢;(K)]* for z¢ K, then, by property (a) of the extremal
function @, we would have Q.. (2)] <1 for zel, which is impossible
because of (3).

On the other hand, by (2) and (3), applying ploperty (a) of @ we
obtain

(5) P, (2)] < [e/@r()T*  for 2¢ K, k >1
where @i (I) > ¢p(I) > 0. Choosing, if necessary, a subsequence of the

sequence {z*}, we may assume that limz® = ae K. Then, by (1), (4)
and (5), we get fe=>co
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® (k) ka(z(k)) l | P, ( (k)) |
(@] = lim ) < lim | £9) = 6y | lim | 5 |
< lim gjf+lim [e /g (1) -7 (K)T* = 0.

E—»00 k—o0
We have got a contradiction, which completes the proof.

COROLLARY. If fe Z,(F) and f vanishes on a subset I of F such that
er(I) > 0, then f(z) = 0 at each point ze F such that

¢;(FnB(z,¢) >0 for every ¢> 0,

where B(z, &) denotes the ball with centre z and radius e.
In particular, f(z) = 0 at each point 2 = (2,, ..., 2,)e F such that

d(K;"B(z;,¢)>0 for every e>0,j =1,...,n.

Remark. Theorem 3 generalizes a certain result of Gonéar (Theorem 1
in [2]) equivalent to the following:

Let F be a closed subset of the line-segment [0, 1] and let fe %, (F

If f(x) =0 for ve I c F, mes(I) > 0, then f vanishes almost every-
where in F. _

In the case where F is a compact subset of C, another proof of Theorem
3 can be obtained by using an important result of Gondéar dealing with
a connection of rational functions with the modulus of a plane condenser
(see [4], Theorem 1).

Note added in proof. Recently Gonéar [11] has proved that every
function fe Z(F), where F = [0,1], vanishing on a subset I of F with
d(I) > 0 vanishes identically on ¥. This result mcludes Theorem 3 in
the case » =1 and F = [0,1].
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