A CHAINABLE CONTINUUM
NOT HOMEOMORPHIC TO AN INVERSE LIMIT ON [0, 1]
WITH ONLY ONE BONDING MAP*

BY

DOROTHY S. MARSH (HOUSTON, TEXAS)

1. Introduction. Mahavier has exhibited (¹) a chainable continuum not homeomorphic to an inverse limit on [0, 1] with only one bonding map. Here we present such a continuum which is not homeomorphic to Mahavier's example and is of a simpler nature than his example.

2. Definitions, notation and a theorem. If each term of the sequence \(f_1, f_2, f_3, \ldots \) maps \([0, 1]\) onto \([0, 1]\), then the inverse limit of the sequence \(f_1, f_2, f_3, \ldots \), denoted by invlim([0, 1], \(f_i \)), is the subspace of the Cartesian product \(\prod_{i=1}^{\infty} [0, 1]_i \) to which the number sequence \(x_1, x_2, x_3, \ldots \) belongs only in case \(f_n(x_{n+1}) = x_n \) for each positive integer \(n \). If \(f_1, f_2, f_3, \ldots \) is a constant sequence, say \(g \) is \(f_i \) for each positive integer \(i \), then invlim([0, 1], \(g \)) denotes invlim([0, 1], \(f_i \)). If \(x_1, x_2, x_3, \ldots \) is a constant number sequence, then \((x_i) \) denotes the point \((x_1, x_2, x_3, \ldots) \) in \(\prod_{i=1}^{\infty} [0, 1]_i \).

For each positive integer \(j \), \(\pi_j \) denotes the projection mapping from \(\prod_{i=1}^{\infty} [0, 1]_i \) onto the \(j \)-th factor space. By continuum we mean a non-degenerate, compact, connected metric space. The metric \(d \) on \(\prod_{i=1}^{\infty} [0, 1]_i \) is defined as

\[
\begin{align*}
 d(x, y) = \sum_{i=1}^{\infty} \frac{|\pi_i(x) - \pi_i(y)|}{2^i}
\end{align*}
\]

for each \(x \) and \(y \) belonging to \(\prod_{i=1}^{\infty} [0, 1]_i \). If \(T \) denotes an arc with non-separating points \(a \) and \(b \), we write \(T \) as \([a, b] \).

* This work represents a portion of the author's master's thesis, written at the University of Houston under the direction of Professor William T. Ingram, to whom the author expresses her gratitude.

THEOREM. Suppose that \(k \) maps \([0, 1]\) onto \([0, 1]\) in such a way that \(A = \text{invlim}([0, 1], k) \) is the sum of two mutually exclusive connected sets \(M \) and \(N \), where \(M \) is a topological ray, \(N \) is an arc, and \(M \) is dense in \(A \). Then there exists a proper subcontinuum \([a, b]\) of \([0, 1]\) such that \(N \) is homeomorphic to \(\text{invlim}([a, b], k^2([a, b])) \) and each of the non-separating points of \(N \) corresponds to a constant number sequence in \(\text{invlim}([a, b], k^2([a, b])) \).

Proof. Since \(k \) is not the identity, the function \(h \) defined as

\[
h(x_1, x_2, x_3, \ldots) = (k(x_1), k(x_2), k(x_3), \ldots) = (k(x_1), x_1, x_2, \ldots)
\]

for each point \((x_1, x_2, x_3, \ldots)\) in \(A \) is a non-trivial homeomorphism from \(A \) onto \(A \) (op. cit.). For each positive integer \(j \) we have \(\pi_j N = \pi_j hN \), since \(h \) maps \(N \) onto \(N \). Also, by the definition of \(h \) we have \(\pi_j N = \pi_{j+1} hN \). Thus \(\pi_j N = \pi_{j+1} N \) and if \([a, b]\) denotes \(\pi_j N \), then \([a, b]\) is a proper subcontinuum of \([0, 1]\) such that \(N \) is homeomorphic to \(\text{invlim}([a, b], k^2([a, b])) \).

The two non-separating points of \(N \) must either be fixed points of \(h \) or be switched by \(h \). So we infer that any projection of a non-separating point of \(N \) is a fixed point of \(k^2 \), thus the non-separating points of \(\text{invlim}([a, b], k^2([a, b])) \) are constant number sequences.

3. Example. In this section we give an example of a chainable continuum not homeomorphic to an inverse limit on \([0, 1]\) with only one bonding map.

Let \(f \) be the mapping from \([0, 1]\) onto \([0, 1]\) defined by

\[
f(x) = \begin{cases}
4x & \text{if } x \text{ is in } [0, 1/4], \\
-2x + 3/2 & \text{if } x \text{ is in } [1/4, 1/2], \\
x & \text{if } x \text{ is in } [1/2, 1].
\end{cases}
\]

Let \(g \) be the mapping from \([0, 1]\) onto \([0, 1]\) defined by

\[
g(x) = \begin{cases}
4x & \text{if } x \text{ is in } [0, 1/4], \\
-3x + 7/4 & \text{if } x \text{ is in } [1/4, 1/3], \\
3x - 1/4 & \text{if } x \text{ is in } [1/3, 5/12], \\
-6x + 7/2 & \text{if } x \text{ is in } [5/12, 1/2], \\
x & \text{if } x \text{ is in } [1/2, 1].
\end{cases}
\]

Let \(N_1, N_2, N_3, \ldots \) denote the positive integer sequence such that \(N_1 = 2 \), and if \(n \) is a positive integer greater than 1, then \(N_n = N_{n-1} + n + 1 \). Let \(t_1, t_2, t_3, \ldots \) denote the function sequence defined as

\[
t_n = \begin{cases}
g & \text{if } n = N_j \text{ for some positive integer } j, \\
f & \text{otherwise}.
\end{cases}
\]

Let \(A \) denote \(\text{invlim}([0, 1], t_i) \).

The continuum \(A \) is the union of a topological ray and an arc, say \(M \) and \(N \), respectively, such that \(M \) and \(N \) are mutually exclusive and \(M \) is dense in \(A \). The arc \(N \) is \(\text{invlim}([1/2, 1], t_i | [1/2, 1]) \) with non-sepa-
rating points \((1/2)\) and \((1)\), and \(t_n|[1/2, 1]\) is the identity for each positive integer \(n\). Note here that a point \(x\) in \(A\) is a constant number sequence if and only if \(x\) belongs to \(N\) or \(\pi_1(x) = 0\). The reader will likely recognize that the continuum \(A\) is a sinusoid homeomorphic to

\[\text{\includegraphics[width=0.5\textwidth]{sinusoid.png}}\]

\[\text{\includegraphics[width=0.2\textwidth]{point.png}}\]

4. Proof. We prove here that the continuum \(A\) is not homeomorphic to an inverse limit on \([0, 1]\) using only one bonding map.

Assume that there exists a mapping \(k'\) from \([0, 1]\) onto \([0, 1]\) such that \(\text{invlim}([0, 1], k')\) is homeomorphic to \(A\). Let \(k\) denote \((k')^2\), \(A_k\) the continuum \(\text{invlim}([0, 1], k)\), and \(F\) a homeomorphism from \(A\) onto \(A_k\). By the Theorem, there exists a proper subcontinuum of \([0, 1]\), say \([a, b]\), such that \(F[N]\) is homeomorphic \(\text{invlim}([a, b], k|[a, b])\). Let \(h\) denote the non-trivial homeomorphism from \(A_k\) onto \(A_k\) defined by

\[h(x_1, x_2, x_3, \ldots) = (k(x_1), k(x_2), k(x_3), \ldots) = (k(x_1), x_1, x_2, \ldots)\]

for each point \((x_1, x_2, x_3, \ldots)\) in \(A_k\). From the Theorem we also infer that the non-separating points \(F((1/2))\) and \(F((1))\) in \(F[N]\) are constant sequences, say \((c)\) and \((d)\), respectively. The non-separating point \(F((0))\) in \(F[M]\) is a fixed point of \(h\), thus a constant sequence, say \((p)\), and \(p\) belongs to \([0, 1]\)\([a, b]\).

Let \(x_0\) be a point in \([0, 1]\) such that \(k(x_0) = c\) and such that \(x_0\) belongs to the component of \([0, 1]\)\([a, b]\) containing \(p\). That there is such a point follows from the irreducibility of \(A_k\) from \((p)\) to any point of \(F[N]\) together with the intermediate value theorem. Let \(y\) be a point in the ray \(F[M]\) such that \(\pi_i(y) = x_0\) and let \(y_1, y_2, y_3, \ldots\) denote the sequence of points in \(F[M]\) such that \(y_m = h^m(y)\) for each positive integer \(m\). We observe that, for each positive integer \(m\), if \(j\) is a positive integer not greater than \(m\), then \(\pi_j(y_m) = c\). Thus \(y_1, y_2, y_3, \ldots\) converges to \((c)\).

For each point \(x\) in the ray \(M\) there is a positive integer \(m\) such that \(\pi_m(x) < 1/2\). Let \(J\) be the function from \(M\) onto the positive integers such that if \(x\) is in \(M\), then \(J(x)\) is the least positive integer \(i\) such that \(\pi_i(x) < 1/2\).

The continuum \(A\) is ordered with respect to the following meaning of the word "precedes":

1. if each of \(u\) and \(v\) is a point on the ray \(M\), then \(u\) precedes \(v\) provided \(J(u) < J(v)\) or \(J(u) = J(v)\) and \(\pi_{J(u)}(u) \leq \pi_{J(v)}(v)\);

2. if each of \(u\) and \(v\) belongs to \(N\), then \(u\) precedes \(v\) provided \(\pi_1(u) \leq \pi_1(v)\);
(3) if one of \(u \) and \(v \) belongs to \(M \) and the other to \(N \), then \(u \) precedes \(v \) provided \(u \) belongs to \(M \).

We observe that, for points in the ray \(M \), the above-defined meaning of "precedes" is equivalent to the usual order on a ray. Since \(F \) is order-preserving, \(x \) precedes \(y \) in the ray \(F[M] \) provided \(x \) is \((p)\) or \(x \) is a separating point of the arc \((p, y)\).

It follows from the order on \(A_k \), the definition of the homeomorphism \(h \) and the convergence of the sequence \(y_1, y_2, y_3, \ldots \) to a point of \(F[N] \) that if \(i \) denotes a positive integer, then \(y_i \) precedes \(y_{i+1} \). Thus, for each positive integer \(i \), if \(C_i \) denotes the arc \([y_i, y_{i+1}]\) and \(D_i \) the arc \(F^{-1}[C_i] \), then \(h[C_i] = C_{i+1} \) and \(F^{-1}hF[D_i] = D_{i+1} \). Let \(G \) denote \(F^{-1}hF \).

We now show the following:

1. There exist positive integers \(L \) and \(Q \) such that if \(s \) is an integer greater than \(L \), then the subset \(V_s \) of \(D_s \) to which \(v \) belongs only in case \(\pi_1(v) = 1 \) contains only \(Q \) elements.

To see this we first show:

2. There exists a positive integer \(L' \) such that if \(m \) is an integer greater than \(L' \), then \(D_m \) contains a point \(u \) such that \(\pi_1(u) = 1 \).

Since \(y_1, y_2, y_3, \ldots \) converges to \((c)\), \(F^{-1}(y_1), F^{-1}(y_2), F^{-1}(y_3), \ldots \) converges to \((1/2)\). Let \(\varepsilon > 0 \) be such that \(\varepsilon < 1/8 \). Let \(W \) denote a positive integer such that if \(v \) is an integer greater than \(W \), then

\[
d(F^{-1}(y), (1/2)) < \varepsilon.
\]

Thus \(\pi_1(F^{-1}(y)) < 3/4 \), for if \(x \) belongs to \(M \) and \(\pi_1(x) \geq 3/4 \), then

\[
d(x, (1/2)) = \sum_{i=1}^{\infty} \frac{|\pi_1(x) - 1/2|}{2^i} \geq \frac{1}{8} + \sum_{i=2}^{\infty} \frac{|\pi_1(x) - 1/2|}{2^i} > \varepsilon.
\]

Assuming that statement (2) is not true, we let \(T \) denote the set to which the integer \(s \) belongs if and only if \(s > W \) and 1 is not in \(\pi_1[D_s] \). Let \(T_1, T_2, T_3, \ldots \) denote the increasing integer sequence with final set \(T \). For each of \(m \) and \(n \) denotes a positive integer, then \(\pi_n[D_{T_m}] \) is a subset of the half-open interval \([0, 3/4]\). This is a consequence of the order of the elements in \(F^{-1}(y_1), F^{-1}(y_2), F^{-1}(y_3), \ldots \) together with the fact that, given a positive integer \(j \), \(d(F^{-1}(y_{T_j}), (1/2)) < \varepsilon \) but no point \(z \) in \(D_{T_j} \) is such that \(\pi_1(z) = 1 \). Let \(Q_1, Q_2, Q_3, \ldots \) denote an infinite, increasing, positive integer sequence such that if \(j \) denotes a positive integer, then \(D_{Q_j} \) contains a point \(y \) such that \(\pi_1(y) = 1 \) and \(D_{Q_j - 1} = D_{T_n} \) for some positive integer \(n \). Let \(z_1, z_2, z_3, \ldots \) denote a sequence such that if \(m \) is a positive integer, then \(z_m \) belongs to \(D_{Q_m} \) and \(\pi_1(z_m) = 1 \). The sequence \(z_1, z_2, z_3, \ldots \) converges to \((1)\), and so does the sequence \(G^{-1}(z_1), G^{-1}(z_2), G^{-1}(z_3), \ldots \). However, if \(j \) is a positive integer, then \(G^{-1}(z_j) \) is a point of \(D_{T_m} \) for some integer \(m \), so \(\pi_n G^{-1}(z_j) \) is not greater than 3/4 for any
positive integer \(n \), and thus \(G^{-1}(z_1), G^{-1}(z_2), G^{-1}(z_3), \ldots \) cannot converge to (1). This is a contradiction from which it follows that statement (2) is true.

Let \(L' \) denote a positive integer as in statement (2) and such that \(L' > W \). For each positive integer \(i \) greater than \(L' \), let \(V_i \) denote the set to which \(v \) belongs if and only if \(v \) is a point of \(D_i \) and \(\pi_1(v) = 1 \); let \(p(i) \) denote the number of elements belonging to \(V_i \). We write \(V_i \) as \(\{v_{i1}, v_{i2}, \ldots, v_{ip(i)}\} \) and note that if \(v_{js} \) precedes \(v_{kl} \), where \(v_{js} \) and \(v_{kl} \) are points of \(\bigcup_{i > L'} V_i \), then either \(j < k \) or \(j = k \) and \(s < t \). Let \(a_1, a_2, a_3, \ldots \) denote the sequence of points in \(M \) with final set \(\bigcup_{i > L'} V_i \) and such that if \(a_j \) precedes \(a_k \), then \(j < k \). The sequence \(a_1, a_2, a_3, \ldots \) converges to (1) as do the sequences \(G(a_1), G(a_2), G(a_3), \ldots \) and \(G^{-1}(a_1), G^{-1}(a_2), G^{-1}(a_3), \ldots \). Let \(b > 0 \) be such that \(b < 1/16 \). Let \(R \) denote an integer such that if \(s \) is an integer greater than \(R \), then

\[
d(a_s, (1)) < b, \quad d(G(a_s), (1)) < b \quad \text{and} \quad d(G^{-1}(a_s), (1)) < b.
\]

Thus we have

\[
\pi_1(a_s) > 7/8, \quad \pi_1(G(a_s)) > 7/8 \quad \text{and} \quad \pi_1(G^{-1}(a_s)) > 7/8,
\]

for if \(z \) belongs to \(M \) and \(d(z, (1)) < b \), then

\[
\frac{|\pi_1(z) - 1|}{2} < b < \frac{1}{16},
\]

so \(\pi_1 z > 7/8 \).

Assume now that statement (1) is not true. Let \(m_1, m_2, m_3, \ldots \) denote an increasing, positive integer sequence such that \(m_1 > L' \) and either \(p(m_j) < p(m_j + 1) \) for each positive integer \(j \) or \(p(m_j) > p(m_j + 1) \) for each positive integer \(j \).

Suppose first that \(p(m_j) < p(m_j + 1) \) for each positive integer \(j \). Let \(K \) denote a positive integer such that whenever \(u \) denotes a positive integer greater than \(K \) and \(i \) denotes a positive integer not greater than \(p(m_u) \), then \(v_{mu} \) is \(a_s \) for some positive integer \(s \) greater than \(R \). Now let \(u \) denote a positive integer greater than \(K \); there exist points \(x(u) \) and \(y(u) \) in \(V_{m_u + 1} \) such that \(x(u) \) precedes \(y(u) \) and such that each point \(x \) in the arc \(G^{-1}([x(u), y(u)]) \) has the property that

\[
\pi_1(x) \geq \min \{\pi_1(G^{-1}(x(u))), \pi_1(G^{-1}(y(u)))\}.
\]

Thus \(\pi_1 z > 7/8 \). Let \(a_{m_u + 1} \) denote the arc \([x(u), y(u)]\) and let \(a_{m_1} \) denote \(G^{-1}([x(u), y(u)]) \); i.e., \(a_{m_u} \) is the arc \([G^{-1}(x(u)), G^{-1}(y(u))] \). Let \(w_1, w_2, w_3, \ldots \) denote a sequence of points such that \(w_1 \) belongs to \(a_{m_j} \) for each positive integer \(j \). The sequence \(w_1, w_2, w_3, \ldots \) has the sequential limit point (1) and \(G(w_j) \) belongs to \(a_{m_j + 1} \) for each positive integer \(j \).
For each positive integer j, α_{n_j+1} contains a point, say d_j, such that $\pi_1(d_j) = \frac{3}{4}$, and so the sequence d_1, d_2, d_3, \ldots converges to $\frac{3}{4}$. The sequence $G^{-1}(d_1), G^{-1}(d_2), G^{-1}(d_3), \ldots$ converges to (1) but $G^{-1}(\frac{3}{4}) \neq (1)$, a contradiction from which it follows that $p(m_j) > p(m_j + 1)$ for each positive integer j. A similar argument contradicts $p(m_j) > p(m_j + 1)$ for each positive integer j from which it follows that statement (1) is true.

Let L and Q denote positive integers which satisfy statement (1). There exists a positive integer greater than L, say L_0, such that if s denotes a positive integer greater than L_0 and i denotes the least positive integer i such that $N_i \leq J(z)$ for each point z in D_s, then $N_{i+1} - N_i \geq 3Q$.

There exists an increasing, positive integer sequence, say s_1, s_2, s_3, \ldots, such that $s_i > L_0$ and if i is a positive integer, then D_{s_i} contains an arc, say γ_{s_i}, with non-separating points in V_{s_i}, and such that if z is a point of γ_{s_i}, then $J(z) = N_i$ for some positive integer i. So $\pi_1(z) \geq \frac{3}{4}$, and if z_1, z_2, z_3, \ldots denotes a sequence of points such that z_n is a point of γ_{s_n} for each positive integer n, then any limit point of $\{z_1, z_2, z_3, \ldots\}$ is a point of the arc N and has the first projection not less than $\frac{3}{4}$. Let (q) denote $G((\frac{3}{4})); q$ is a number such that $1/2 < q < 1$.

If i is a positive integer, then $G(\gamma_{s_i})$ is a subset of $D_{s_{i+1}}$, call it $\gamma_{s_{i+1}}$. Since $s_i > L_0$, $D_{s_{i+1}}$ does not contain a point u such that $J(u) = N_i$ for any positive integer i. For each positive integer i, let $x(s_i)$ and $y(s_i)$ denote the non-separating points of γ_{s_i} with $x(s_i)$ preceding $y(s_i)$. It follows from an argument similar to that in proving statement (1) that there do not exist more than finitely many integers m such that if z is a point of the arc $G[[x(s_m), y(s_m)]]$, then

$$\pi_1(z) \geq \min \{ \pi_1 G[x(s_m)], \pi_1 G[y(s_m)] \}.$$

So there is a positive integer T such that if n is a positive integer greater than T, then $JG(x(s_n)) \neq JG(y(s_n))$. Let B denote a positive integer such that if n is a positive integer greater than B, then γ_{s_n+1} contains a point z with $\pi_1(z) = 1/2$. Let h_1, h_2, h_3, \ldots denote a sequence of points in M such that if i is a positive integer, then h_i belongs to $\gamma_{s_{(B+1)+1}}$ and $\pi_1(h_i) = 1/2$. The sequence h_1, h_2, h_3, \ldots converges to $(1/2)$ and so does $G^{-1}(h_1), G^{-1}(h_2), G^{-1}(h_3), \ldots$ But the sequence $G^{-1}(h_1), G^{-1}(h_2), G^{-1}(h_3), \ldots$ converges to a point with the first projection not less than $3/4$. Thus G is not a homeomorphism, a contradiction from which it follows that the continuum A is not an inverse limit on $[0, 1]$ with only one bonding map.

UNIVERSITY OF HOUSTON
HOUSTON, TEXAS

Reçu par la Rédaction le 9. 3. 1977