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QUADRATIC FORMS OVER SPRINGER FIELDS
BY

L. SZCZEPANIK (KATOWICE)

A well-known theorem of Springer [5] asserts that the Witt ring
W (k) of a field k¥ complete with respect to a discrete valuation is isomorphic
to the group ring W (k) [h] of a 2-element group % over the Witt ring W (k)
of the residue class field % (characteristic of k is assumed to be different
from 2). A plain converse of this theorem is obviously false; for example,
for the prime field F'; we have W (F;) = W,[{1, 2}], where {1, 2} is the
multiplicative subgroup of F;, and W, is the subring {0,1} of W (F;),
but F is not complete with respect to a discrete valuation.

However, we shall show that if, for a field %, the Witt ring W (k)
is the group ring of a 2-element group, then there exists a field K which
is complete with respect to a discrete valuation and such that ¥ and K
are equivalent with respect to quadratic forms in the meaning of [1],
that is, their Witt rings are isomorphic.

For example, for ¥ = F';, we can take K = G((t)), the formal power
series field over the complex numbers.

We also discuss the more general case where W (k) = W,[h] is the
group ring of a finite elementary 2-group % over a subring W, of W (k).
In that case we establish a similar result and, moreover, we find the connec-
tion between the number of non-isomorphic quaternion algebras over
the field ¥ and the numbers of binary forms and 2-fold Pfister forms be-
longing to the subring W,.

Notation. For a field ¥ we denote by k* the multiplicative group
of the field, and by g(k) = k*/k*? the group of square classes. The cardi-
nality |g(k)| of the group will be denoted by ¢ = ¢q(k). The symbol
{@y, ..., a,> denotes the class of isometric quadratic forms with the diago-
nalization (a@,,...,a,). If a quadratic form ¢ represents a € k over the
field %, then we write ¢ ~,, @, or ¢ ~ a, and we put

Dy Byy ceey Bg) = {0k* € g(k): (a1, ..., @) =~y a}.
The class of isomorphic quaternion algebras containing the algebra

(a, b
k

will be denoted by (a, d).
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Suppose that z is an element of the field ¥ and = ¢ +-%k*>. We denote
by h, any subgroup of g(k) such that

g(k) = {£*, ak**} @k,

and by W, the subring of the Witt ring W (k) generated by the forms {a),
where ak*® € h,.

Definition. For a field k¥ of characteristic different from 2 we say
that % is a Springer field if there exists an element = € k*, = ¢ +k*?, such
that the Witt ring W (k) satisfies

W (k) = W,[{k*, ak**}],

that is, W (k) is the group ring over W, of the 2-element group {k*?, nk**}.
We shall also say that & is #-Springer.

By the main result of [6], any local field ¥ with the prime element 7
and the residue class field of characteristic different from 2 is n-Springer.

LEMMA 1. Let m e k* and = ¢ +Kk*°, where k is a field of characteristic
different from 2. The following statements are equivalent:

(i) & 48 m-Springer.

(i) If a,k*%, a,k* €h,, then

D{a,, aywy = {a,k*? aynk*}.
(iii) If a,k*% ayk*? € h,, then
D{ty, 83> < h, or <(ayay) =<1, —1).
(iv) If a,k*, ..., a,k" € h, and {a,, ..., a,> i3 anisotropic, then
D{ayy ..., 6,) < by

Proof. (i) = (ii). Let b be any field element represented by (a,, a;n).
Then either bk*’ eh, or bnk* eh,. We have {(a,, asn) = <b, a,6,%)
and, in the first case, from the uniqueness of representation of group ring
elements we obtain <(a,> = <(b), i.e., bk** = a,k*>. In the second case,
6,0,b7nk* € h,, 80 we must have bk*> = a,nk*?. Thus any field element
represented by {a,, a;7) equals a, or a;zw modulo squares.

(ii) = (iii). If <a,, ay,> ~ bx, where bk*? € h,, then {(a,, —bn) ~ —a,
and, by (ii), a, and — a, belong to the same square class, that is, <{a,, a;)
is the hyperbolic plane, as required.

(iii) = (iv). This follows by induction on » from the formula

D{ay, ..., a,y = | J{D<a,, b): bk € D<a,, ..., a,>}.

(iv) = (i). Clearly, any element ¢ of the Witt ring W (k) is of the form
® = @, + nwpy, where ¢,, p, € W,. It remains to show that this represen-
tation is unique or, equivalently, that W,naW, = 0. Suppose that ¢
is an anisotropic form in W,NnzW,. Then
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@ = (Bryeey B> = Byty veny By

for suitable ak*, bk** € h,. Thus <a,, ..., 4,> ~ bz, contrary to (iv).
So we have proved that W(k) = W,®=nW, and this means that k is
n-Springer.

PRrOPOSITION. If a field k is n-Springer, then its quadratic extension
F =k(Vn)is G—Springer. Moreover, k and F are equivalent with respect
to quadratic forms.

Proof. We have D, {1, —z) = {k**, —nk*’} by Lemma 1, and also
Ngu(Vn) = —a, whence g(F) = {F*, VaF**}@h, where h is the sub-
group of g(F) with the same coset representatives as the elements of &,
have in g(k) (cf. [2]). First we show that F' satisfies (iii) of Lemma 1.
Suppose that ae F and aF*?eh, a ¢ — F*?, and assume that <1, a) ~p dV7,
where d € F, dF*? € h. Then there exist elements a, and 4, in k* such that
&, k** eh,, &,k e h,, a,F** = aF*, 4, F** = dF**, and a, ¢ —k**. We also
have (1, a,) ~p dll/;, so there exist », ¥, 2, w € k such that

(@+yVa)l+a,c+wVn) =d,Vr.
Then

2+ ay+a,22+a, w2 = 0.

Putting b, = #*+a,22 and b, = y*+a,w? we have b, #0 and
by # 0, and the form <b,, b;x)> turns out to be isotropic over k. But &
is m-Springer, whence, by Lemma 1 (iii), b,k*,b.k**eh,, and so, by
Lemma 1 (ii), <b,, b,#n) is anisotropic, a contradiction. Thus we have proved
that Dz<{1,a)> < h. Now, if a,b e F and aF*, bF* ¢ b, then

Dp{a,b> = aF*?-Dp(l,abd> c h  for ab ¢ —F*,

that is, statement (iii) of Lemma 1 is satisfied. Hence F' is l/;-Springer.

Now we show that ¥ and F are equivalent with respect to quadratic
forms. Clearly, there is a group isomorphism ¢: g(k) — g(¥) such that
¢(nk*?) = Vx F** and p(ak*?) = aF™ for any coset ak*® in h,. It is easy
to observe that any such isomorphism sends — k** into —F*2. To prove

that ¥ and F are equivalent with respect to quadratic forms it remains
to show that

(D1, 6)) = Dpcl,6)  and  9(Dyl, any) = Dpdl, aVa)
for aek®, ak* e h, (cf. [1], Proposition 2.2). The second equality is
immediate:

9(Dycl, amy) = g({k™, ank™)) = {F**, aVa F*} = Dpcl,aVan).

Also ¢ (D, {1, a)) « Dr{1, a) follows at once from the definition of ¢
and from Lemma 1 (iii). The converse inclusion is trivial if a ¢ —%*?,
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so assume that & ¢ —%*® and <1, 6) ~,d. Then from the first part of
the proof it follows that dF** € h, and hence there exists d, € k* such that
a, " = dF", k" ch,, and d, ¢ —k*™. If

(m+yl/;)2+a(z+w l/:;)‘I =d,, where z,y,2,wek,
then we have
<b1, b3n> g dl fOl‘ bl = .'B’-I-az’, b’ = y’+a¢w2.

Hence d,k** = b,k* by Lemmsa 1 (ii). But (1, a¢) ~, b,, whence also
{1, a) ~;d,, as required. '

Now we can prove the main result of the paper.

THEOREM 1. If k i3 a Springer field, then there exvisis a field K which
i8 complete with respect to a discrete valuaiion and such that k and K are
equivalent with respeot to quadratic forms.

Proof. Suppose that = € k*, » ¢ +%*, and % is n-Springer. In the
algebraic closure of ¥ we define the sequence

ﬂ:o - ”’ 7!1 == '/;o’ ceey n‘_',l = }/ﬂ", cee
and the corresponding tower of fields
ky =k, by = ky(my), ..., ki+1 = ki(”i+1)y

It follows from the Proposition that each field k; is =;-Springer and
any two of them are equivalent with respect to quadratic forms. Put
L = (Uk; and K = L((t)), the formal power series field over L. From [2]
it follows that g (L) consists of square classes which have the same coset
representatives as the square classes in the subgroup A, of g(k). By [7],
Lemma 4.2, we obtain g(K) = h@{K", tK**}, where b and g(L) and,
therefore, h-and h,, have the same coset representatives. We want to prove
that k¥ and K are equivalent with respect to quadratic forms. Let us con-
gider the group isomorphism y: g(k)— g(K) such that y(nk*?) = tK*?
and y(ak*?) = aK*? for any ak*® eh,. Since = ¢ +%*, we must have
—k* eh,, and so p(—k*?) = —K*. According to [1], Proposition 2.2,
it suffices to show that, for any a € k*,

p(D <1, a)) = Dgll, a).

This is obvious for @ € —%*? and to get the result for the remaining
values of & we distinguish two cases. First, suppose that ak* e h,,a ¢ —k*2.
Then D, {1, a) < h, by Lemma 1 (iii), and so

p(De<L, a)) = Dgll, a) < h.

The other inclusion is proved as follows. If (1,a) ~gd, then
dK" = d,K", where d, € k* = L*. Hence, by [7], Lemma 4.2, we have



SPRINGER FIELDS 35

{1, &)~y d,,ie., 22+ ay? = d, with z, y € L. Then for a suitable index ¢ we
have @,y € k;, that is, <1, a) ~;,d,. By the Proposition we have then
{1, a) =y, @ and, by induction, <1, a) ~; d,. This proves the equal-
ity (D, {1, a)) = Dg<{l, a) in the first case. The second possible case
is ak** = bnk*?, where bk*2 € h,. Here we have

P(Dy<1, b)) = p({k™, bak™}) = {K*, bK*} = Dg<1, bty,

a8 required. Thus k¥ and K are equivalent with respect to quadratic forms,
and since formal power series fields are well known to be complete with
respect to the standard valuation, the theorem is proved.

COROLLARY 1. If k i8 n-Springer field and K = L((t)), where L 48 the
Jield constructed in the proof above, then the Witt ring W (L) t8 isomorphie
to the subring W, of W (k). In particular, if k is a local field, then L ts equi-
valent with respect to quadratic forms to the residue class field k, provided
the latter has characteristic different from 2.

Example of a Springer field. If k is a field such that D,(1,1)
= {4+%"} and —1 ¢k", then K = k(Y —1) is a Springer field. More
precisely, if # € K and Ngj,(n) = —1, then K is n-Springer. This can
be proved by showing that K satisfies (ii) of Lemma 1. (This result comple-
ments Proposition 5.14 of [1].)

Now we will sketch a generalization of Theorem 1.

THEOREM 2. Let k be a field of characteristic different from 2, let g (k)
= h@hy, where |h| = 2", n>1, and assume that —k* ¢ b whenever — k*
# k*2. Purther, let W, be the subring of the Witt ring W (k) generated by the
forms (a>, where ak*’ e hy. If W (k) i the group ring W,[h], then there
ewisls a field k, such that k and ko((t,)) ... ((t,)) are equivalent with respect
to quadratic forms.

Proof (by induction on n). The case » = 1 has been settled in The-
orem 1. Suppose that » > 2 and put

h == {k‘?’ ﬂk‘2}®hl a!nd Wl = Wo [hl]‘

Then W, is the subring of W (k) generated by the forms <{a), where
ak* € hy ®h, and W (k) is the group ring W, +aW,. Hence k is #-Springer,
and so there exists a field L such that k and L((t)) are equivalent with
respect to quadratic forms. Also g(L) = h,+ hy, where the cosets in k], k,
and h,, b, have the same representatives, respectively, and |h,| = 2™,
Corollary 1 implies that W (L) and W, are isomorphic, and hence W (L)
is the group ring W,[h,], where the subring W, of W (L) is generated by
the forms (a) with aL'’ € h,. By induction, there is a field %, such
that L and ky((#,)) ... ((t4—1)) are equivalent, and hence so are k and
ko((t1)) ... ((t,), which completes the proof.
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We end this paper with some results concerning the number @ (k)
of non-isomorphic quaternion algebras over a field ¥ which is #-Springer.
Apart from the standard theory (cf. [3]) we use here Theorems 1 and 2
and the results of [6]. From [3], 67:8, we conclude that Q(k) = p,(k),
the number of isometry classes of 2-fold Pfister forms over k. Since any
isomorphism of Witt rings W(k,) - W(k;) sends bijectively the set of
2-fold Pfister forms over k, onto the set of 2-fold Pfister forms over %,,
we obtain the following

LeMMA 2. If k, and k, are two fields equivalent with respect to quadratic
Jorms, then Q(k,) = @ (ks).

THEOREM 3. Suppose that k is a n-Springer field and let Q. (k) and N (k)
be the numbers of 2-fold Pfister forms and binary quadratic forms belonging
to the subring W, of W (k), respectively. If the number q of square classes
of the field k is finite, then so are Q(k), Q,(k), N,(k) and, moreover,

Q(k) = Qa(k)+ N, (k)—1.

Proof. From the proof of Theorem 1 we know that there exists
a field L such that k and L((t)) are equivalent with respect to quadratic
forms, and rings W (L) and W, are isomorphic. Hence N,(k) equals the
number N,(L) of binary forms in W(L), and @Q.(k) = p,(L) = Q(L).
Now Lemma 2 and [6], 1.6, give the result.

COROLLARY 2. Let k be a field complete with respect to a discrete valua-
tion and k its residue class field. Denote by Ny(k) the number of non-iso-
metric binary forms over k. Then, if q(k) is finite, then so are Q (k), Q (k), N,(k),
and

Q(k) = Q(k)+Ny(k)—1.

Using Theorem 2 and [6], 1.8, we obtain the following result:

COROLLARY 3. Let k be a field of characteristic different from 2 and let
g(k) = h®h,, where |h| = 2™, n>1, and —k** ¢ h whenever —k** # k*2.
Let W, be the subring of W (k) generated by the forms {a), ak* € hy, and
denote by Q,(k) and Ny(k) the numbers of 2-fold Pfister forms and binary
quadratic forms in the subring W,, respectively. If W (k) = W,[h] is the
group ring over W, of the group h and q(k) < oo, then Q(k), @o(k), No(k)
are finite and
> Q(k) = Qo(k)+ (2" —1) N, (k) + [$(2*" ' +1) —2""']¢* —2" + 1.

s :
Remark. The referee has kindly pointed out that, in the case where &

is the field R of real numbers, the number of non-isomorphic quaternion
algebras over the fields B((t,)) ... ((¢,)) coincides with the number of 4-di-
mensional composition algebras over the field R((tl, ceey t,,)), which in
both cases equals }(2**+!+1) (cf. [4]).
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