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A characterization of a minimal submanifold in R"*?

by THemis Kourociorcos (loannina)

Abstract. Let M be an n-dimensional submanifold of an (n+ p)—diinensional Euclidean
space R"*? with n > 2, p > 1. By a Euclidean vector field X on M we mean a differentiable
mapping which assigns to each point of M a tangent vector to R**?. We formulate the
definition of divergence of such vector field with respect to a moving [rame on M and we
obtain some conditions, stated in terms of divergence of such fields, for M to be a minimal
submanifold. These generalize some results of [1], [5].

We choose a local field of orthonormal frames e, ..., €,,, in R"*? such
that, restricted to M, the vectors e,,...,e, are tangent to M (and conse-
quently, the remaining vectors e, i, ..., €,,, are normal to M). With respect
to this frame field, let W,,..., W,,, be the field of dual frames. If W,y
(A,B=1,...,n+p) are the connection forms, then

n+p
(1 de, = z W.nesy,

=1

where de, is the covariant differential of e, and the multiplication in the
product W, e, is in the sense of tensor product. If we restrict the forms
to M, then

W,=0, a=n+1,....,n+p.
By Cartan’s lemma we may write
(2) W,,i=j‘ih§'jw;~ i=1,...,n,a=n+l1,...,n+p).
M is called a minimal submanifold if the mean curvature vector
® H = The,
vanishes identically, i.e. if Zh;‘,- = b for all a.

DerINITION 1. The divergence of a Euclidean vector field X on M is
defined by

4) divX = (dX,0)(ey,..., &),
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where

©) 6 = T (U Hn e AW AWy A A W),

and the muitiplication of the 1-form coefficients in the inner product {dX, )
is in the sense of exterior multiplication.

Remark. The above definition is just the well-known definition of
divergence for a vector field on M [3].

We will prove

THEOREM 1. Let M be an n-dimensional submanifold of an (n+p)-
ﬂ+"

dimensional Euclidean space R™*? with n>2, p>1. Let X = ) X'e,
A=1

be a Euclidean vector fields on M. If X = Y X'e,, then
: i=1

nt+p
divX =divX+n ) X°H°
a=n+1
where
l n
(6) H"=7f2h;‘,-, a=n+l1,..,n+p.
i=1

THEOREM 2. Let M be an n-dimensional manifold immersed in an
(n+ p)-dimensional Euclidean space R**?. If X, (i = 1,...,n) are n linearly
independent vector fields on M, then

(div L)e, ., = nH"**L,

where

L=X,x.. XX X€y 1 X ... Xy 1X€ips1X oo XCpyp
for k=1,...,p.

We denote by U, x ... x U, the vector product of k vectors Uy, ..., U,
of R**1 [4].
To prove Theorems 1, 2 we will need the following three lemmas.

The first lemma follows immediately from the linearity of 4 and
Definition 1.

LemMma 1. If X, Y are two Euclidean vector fields on M, then
div(X+Y) =divX+divY.

The following lemma generalizes relation (b) of Theorem 2.1 of [1].
LEMMA 2. Let X be a Euclidean vector field on M. If f is a differ-
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entiable function on M, then
div(fX) = fdivX+(grad f, X},

where grad f is the gradient of f.
Proof. We have

div (fX) = {d(fX), O) ey, ... &)
= df<{X,0) (e, ..., e,)+f<dX, O)(e,, ..., &)

= df<i=i| X'e, 0> (e, ... e,,)+df<a:2:lX"ea, @)>(ey,...,e)+fdivX

= df(i X'e;, 0> (e, ...,e,)+fdivX

= de(Xi(*l)i-lW,A e AW AW A o A W) X
i=1

X (e, ..., €,)+fdiv X

= zu: X WA e AW AdfAWo Ao AW)(ey,...,e)+fdivX
i=1

= i X'df(e;)+fdiv X = df( i X'e)+fdivX
i=1 i=1

=df (X)+fdivX = {grad f, X) +fdiv X = {grad f, X)> + fdiv X .

LEMMA 3. Y WA AW AWLAW A AW, =nH W, A ... AW,
i=1

Proof. If T is the first member, then from (2) we have

T= Y WA AW A(Y BGW) AWy n.. AW,
=1 =1

i

Win ..o AW ARGW AW Ao AW,

-

™

B)WiA .. AWA ... AW, = nH* W A ... AW,

n°

1

Proof of Theorem 1. Since

n+p
X=X+ Y X,
a=n+1
we have
ntp n+p

dX = dX+ Y @X%e,+ Y X°de,.

a=n+1 a=n+1
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Moreover, from Lemmas 1-3 we get

nt+p

divX = (dX,0)(e,,...,e,) = dX,0)(ey,...,e)+ Y. X°(de,, O)(ey,...,e,)
a=n+1
n+p
= div X + Z X?(de,, @) (ey,-...,€,)
a=n+1

n
= div X+ ZX"< Z VV,,,-e,-, @> (e]_s-"’en)
a i=1

n
=divX+Y XY (m1) ' Wun(Wpn oo AW_ A Wiy A oo A W)
a i=1

'(el7""eh)
=divX+Y XY WyA o AWl AW AWy Ao A W) ey, ...he,)
a i=1
=divX+n) X°H* (from Lemma 3).

The next corollary follows immediately from Theorem 1.

CoroLLARY 1. dive, = nH® a =n+1,...,n+p.

This generalizes relation (2.9) of [1].

Proof of Theorem 2. If X; = ) Xe,, then (see [4])
i

XX oo XX X1 X oo X€ppgo g XCpagsy X ooo XEpyp

= (=1t (=1 (det X) ep i
where det X = det (XJ).
Moreover, from Lemma 2 and Corollary 1 we obtain
div(X ;X oo XX, X€y X oo X€pipo1 X€ipsg X oo X Cpyp)lniy
= (=1p*P 1 (=1y* 1 {(det X) dive, s} epi
- an+k(_1)n+k+l(_1)-(n+k+l)X1 X ... XX, X
X €yy X oo X€pigog X€pygs1 X o X€pyp

+k
=nH"" XX oo XXy X€pey X o XCpppoy X €ppprg X oo Xy

An immediate result, which follows from Theorem 2 and which gen-
eralizes Corollary 3.1 in [1], is the following

COROLLARY 2. M is minimal if for any n linearly independent vector
fields on M it holds

div (X x ... XX, X, X oo X€pupX ... X€,4,) =0 for all k,

where e, ., indicates that the vector e,., is ommited.
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Let M be a compact hypersurface in R"*! and r be the position vector
of M. From Theorem 1, Green’s theorem [2], p. 11, and the formulas
of Minkowski—Hsiung [2], p- 196, we get the following

COROLLARY 3. jdiv raif = —nvol (M), where dM is :he volume element
\Y]

of M and vol (M) volume of M.
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