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Abstract. Let S be a Riemann surface of finite type uniformized by a finitely generated
Kleinian group I'. Using the group I', one should be able to reconstruct the function theory of
S. For example, one should be able to construct from I' two meromorphic functions on the
compactification § of S that generate the field of meromorphic functions on §. Exphcnt
algorithms for such constructions are, however, not known.

This paper is a contribution towards the solution of this general problem. We treat the
simplest cases: tori, punctured tori, and (hyperelliptic) surfaces of genus two. Our work on
punctured tori complements the extensive investigations of Keen [5].

The key tool in our approach is Poincaré series. Such series provide the intermediate step
between the group theory of the Kleinian group I' and the function theory on the surfaces
represented by I'. The role of Poincaré series in this situation is analogous to the role of the
Riemann theta function in studying function theory on a surface by means of its period matrix.

1. Teichmiiller spaces and Bers fiber spaces. Let G be a finitely generated
Kleinian group. A quasi-conformal self-map w of C=Cu{mw} is a
deformation of G if wGw™! is again a Kleinian group. A deformation w is
trivial if there exists a Mgbius transformation A such that wogow™!
= AogoA~! for all geG. The deformation space T(G) is the space of
deformations of G modulo trivial deformations. The deformation space is
known to be a complex manifold [2], [11], [6]). If G is a non-elementary,
then we can pick three distinct points a,, a,;, a; in the limit set A of G. Every
deformation w ot G 15 equivalent to a normalized w (that is, a w that fixes «,,
a,, a;) and

restrictions to A of normei‘i?zed
deformations w of G ’

(1.1) T(G) = {

Let A be an invariant union of components of the region of
discontinuity 2 of G. The space T(G, 4) consists of the image in T(G) of
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those deformations w that are conformal off 4. It is a submanifold (see, for
example, [6]) of T(G). Sullivan [13] has shown that T(G) = T(G, Q).

If A is connected and simply connected and 4/G is of type (p, n), then
T(G, 4) is a model for the Teichmiiller space T(p, n). See [6] and the
literature quoted there. We proceed to describe various specific models for
Teichmiiller spaces. Assume that 2p—2+n> 0.

Bers MODEL. T(p, n) = T(G, 4), where G is a finitely generated quasi-
Fuchsian group of type (p, n) and 4 is an invariant component of G. In
particular, G can be taken to be Fuchsian and 4, a disk in C. See [1], [9].

MaskiT MopEL. T(p, n) = T(G), where G is a finitely generated non-
elementary function group with a simply connected invariant component 4
such that A4/G is of type (p, n) and (2—4)/G is a finite union of thrice
punctured spheres. See [12], [9].

EARrLE MODEL. T(p, n) = T(G), where G is a Z,-extension of a quasi-
Fuchsian group I' of type (p, n) by an element y that permutes the invariant
components of I'. See [4], [9].

If G is a finitely generated quasi-Fuchsian group of type (p, n), then
T(G) is the space of quasi-Fuchsian groups of type (p, n), and

T(G) = T(p, n) x T(p, n),

and the real points in T(G) are a real analytic model for T(p, n). See [8].

Assume now that G is non-elementary and A4 1s an invariant union of
components of G. Let us normalize all deformations w at three points in A.
The fiber n~'([w]) of the Bers fiber space

n: F(G, A) > T(G, 4)

over the equivalence class [w]e T(G, 4) is the open subset w(4) of C. The
set w(4) is invariant under the Kleinian group wGw™!.

One of the interesting problems in the theory of moduli is to obtain
explicit maps between the various models of T(p, n). For the case (p, n)
= (1, 1), we will show how to construct the classical modulus for the torus
from the various models.

2. The classical uniformization of tori. Let G be a discrete rank two
parabolic group with generators A, B, where
o .
A(z)=z+1, B(z)=z+i, zeC.

(We will write G = (A4, B).) For every deformation w of G and every Mé&bius
transformation C, Cow is equivalent to w. Hence we may assume that w is
normalized; that is, w fixes 0, 1, co. A normalized deformation w conjugates
G = G; onto G, = (4, B, ), where

B,(z) = z+a.
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A normalized deformation w is equivalent to a M&bius transformation if and
only if w(i) = i. It 1s easy to see that for every normalized deformation w, we
have Imw(i) > 0. For ¢eC, 0<|¢g| <1,

Z+EeZ ~
(2.1) w(z) = T30 ze(C,
is a normalized deformation of G with
. 1—¢
w(i) =i T5e

Hence,
T(G) = {zeC; Imt > 0} = T(l, 0).

The curves in the fundamental group n,(C/G) corresponding to A and B
form a canonical homology basis on the torus C/G. We conclude that

w(i)=t=(dz on C/wGw™',
B

where dz is, of course, the normalized abelian differential of the first kind
dual to the canonical homology basis. We also remark that the maps of the
form (2.1) are the extremal or Teichmiiller maps for G, and that a normalized
Teichmiiller map w takes the lattice points of G; onto the lattice points of
G.; that is, w preserves the origins of the tori. Similarly, w maps points of
order two (half-lattice point) to points of order two. We call t the classical
modulus of the marked torus C/G,; (the marking is provided by the
homology classes of the curves represented by A and B,).

T r+1

2

0 1

Fig. 1. Euclidean model for punctured torus

3. Quasi-Fuchsian groups representing punctured tori (the Bers model).
For teU = {ze C; Imz > 0}, G, denotes the group generated by

z—z+1, zez41.
We view G, as acting on

C.,={zeC; z# n+m for all n,meZ}.
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We let
n=mn: U-C,

be a holomorphic universal covering map, and we let I’ = I', be the Fuchsian
model for the action of G, on C,; that is,

I, = {yePSL(2, R); noy = gor for some geG,}.
Choose A, BeT', such that

(3.1) rn(Az) =n(z)+1, =n(Bz)=mn(z)+t for all zeU,
A, B generate I',, and
(3.2 P =B 'oA™'oBoA

is parabolic. Furthermore, the elements A and B of n,(S) correspond to a
canonical homology basis in H,(§), S=U/,=C,/G, S=one point
compactification of S. We normalize I'; so that P(z) = z+1 (replace n by noy
and I' by yI'y”! with ye PSL(2, R)) and so that

(3.3) lim n(z) =0
z i
(replace n by gon with ge G,). The normalization of P and (3.3) imply that

U(1)/<P) is mapped bijectively by = onto a punctured neighbourhood of the
origin. Here, for ¢ > 0,

U(c) = {zeC; Imz > c}.

We lift the fundamental domain for G, given in Fig. 1 to a fundamental
domain for I', as shown in Fig. 2. The lattice points 0, 1, 1417, 7 for G,
correspond to the boundary points oo, a, 0, b, with a <0, and b > 0.
(Without loss of generality, we may take O to be one of these boundary points.)

a 0 b

Fig. 2. Non-euclidean model for punctured torus

LemMA 3.1. Let @(2)=n'(2)% zeU. Then ¢ is a cusp form for I' of
weight (—4) defined on U.

Proof. From (3.1) we see that ¢(yz)y'(2)> = @(2), all ze U, all yeTI. As
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a consequence of (3.3) and the equation ¢(z+1) = ¢(z), all ze U, we see that
lim ¢(z) =0.
z—io
Hence ¢ is a cusp form.
LEMMA 3.2. Let I' be a torsion free function group with a simply

connected invariant component A such that A/T is of type (1,1). Let @ # 0 be a
cusp form for I' of weight (—4) defined on A. Let f be a solution of

(3.4) )1’ =9.

Then f is a covering map of the complement D of a rank 2 lattice G in C such
that A/l' = D/G.

Proof. Assume first that I'=T, 1eU, as constructed above and
A = U. There exist in this case, a non-zero constant ¢ and a constant b such
that f =cn+b.

For the general case, let ¢: U — 4 be a Riemann map and I'y = o~ ! I'g.
Then Iy is a torsion free Fuchsian group of type (1,1), and by replacing ¢ by
eog with ge PSL(2, R) if necessary, we may assume that I'g = I',, as above.
The cusp form ¢ is the square of n, the lift to 4 of a non-trivial abelian
differential of the first kind on A/I'. Further, without loss of generality

f'=n

Now @ = (¢op)e’% #f =(nog)g’, f =fop are the corresponding forms and
functions for I'y (defined on U). The chain rule and the special case treated
at the beginning of this proof yield the conclusion of the lemma.

Let I" be a torsion free quasi-Fuchsian group representing two surfaces
of type (1,1). Let Q be its region of discontinuity. Assume that I' = (4, B)
with 4, B loxodromic with P defined by (3.2) parabolic. A stratification for I
(see [8]) consists of the fixed points x,,..., x5 of

P, AoPoA~!' PoAoPoA™ ! P~ !, BoAoPoA~'B~!, BoPoB™!,

respectively. Note that

Xy = Axy, Xx3=Px,, x4=Bx,, x5=Bx,.
Conjugating I' by an element of PSL(2, C) we may assume
(3.5) X, =00, Xx,=0 - x3=1
Write x4 = x, x5 = y. .

The fact that {0, 1, oo, x, y} form a stratification for the (conjugated)
group I' means that if we view T(I') as given by (1.1), then
T(Naw—(w(x), w(y))e C?

is a biholomorphic mapping of T(I') onto a domain in C2.
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We now form the two Poincaré series (cusp forms of weight (—4))

y'(2)? 7 (2)?

06 @) yzr yz(yz— 1) (yz—x)’ e Er yz(yz=1(yz—y)’ ze
The cusp forms ¢, Y are a basis for the space of quadratic differentials (cusp
forms of weight (—4)) for I'. See [9].

The two functions ¢ and ¥ can be regarded as holomorphic functions
on F(I', Q) by replacing x and y by w(x), w(y) with we T(I'). These two
functions should yield all the function theory on the two punctured tori
represented by I'. However, we do not know the answers to even some of the
simplest questions.

ProBLEM. Let A be a component of Q. Does ¢ vanish identically on A?
For certain groups we can answer the above question in the following

THEOREM 1. Let I be a torsion free Fuchsian group of type (1,1) acting on
the upper half-plane U (thus I' < PSL(2, R)). Normalize I' as above (including
(3.5)). The classical modulus on the torus U/I" (the marking is provided by the
homology classes of the curves corresponding to the generators A and B) is
given by

= 1B2)—n(2)
n(4z)—n(z)’

where ze U is arbitrary and n is a holomorphic function on U defined by
) = o.

Proof. We must only verify that ¢ does not vanish identically on
U (hence it never vanishes on U). This is a consequence of the linear
independence of ¢ and ¥ (over C) and the symmetry

o) =0(@), V(@ =y¢@, al:zeU.

4. Earle coordinates for punctured tori. We start with the symmetric torus
C/G; and the corresponding punctured torus U/I';. The torus C/G; has an
anti-conformal involution j(z) = iz. This involution lifts to a mapping J of U
that fixes the geodesic between b =0 and w (Fig. 2). It follows that

J(2) = -2,
and that .
JoAoJ =B, JoBoJ = A.
It follows also that
JoPoJ = P71,
Let I' be the group obtained by adjoining to I'; the conformal map
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E: z+— —z Then [I': I';7] =2 and I' is a Kleinian group representing the
single Riemann surface U/I";. (Note that the stabilizer of U in I' is precisely
I;.) A stratification for I' consists of:

x, = fixed point of P,
x, = the fixed point of E # x,
x3 =Px;, x,=Ax,.

We can normalize I" by (3.5). The function ¢ defined by (3.6) can again
be viewed as a holomorphic function on F(I', ). It yields, again, the
classical modulus of the torus.

Remark. The construction of stratifications in [9], § 6.6, is incomplete
in Case VI with n =1 (the case treated above). When S is the punctured
. torus, the loops obtained by deforming w to lie on either side of the puncture
are homotopic. A special argument is required in this case.

5. Maskit coordinates for punctured tori. We start with a torsion free
triangle group; that is, a free group I', generated by two parabolic elements
A and B with AoB also parabolic (it is easy to write down a formula for 4
and B).

Fig. 3. An HNN extension of a triangle group

Let A4 be one of the invariant components of I',. Let x,, x,, x; be the
fixed points of A4, B and AoB, respectively. (These three points stratify I';.)
Choose horocycles 4, and 4, for A and B in 4. Without loss of generality
these horocycles are precisely invariant under their stabilizers in I';. Choose
a Mdbius transformation C mapping the interior of 4, onto the exterior of
4, with

CoAoC~! = B.
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For 4, and 4, of sufficiently small diameter, the group I generated by A, B
and C is Kleinian, in fact an HNN extension of I';. It represents a punctured
torus on its invariant component, and two thrice punctured spheres. It is
stratified by x,, x,, x3 and x, = C(x,).

Again, we may normalize so that x;, = o0, x; =0, x3 = 1. The Poincaré
series ¢ defined by (3.6) once again gives a formula for the classical modulus
of the punctured torus represented by I' (as well as the deformations of I).

6. Schottky groups of genus 2. Let D be a region in C U {0} bounded by
four disjoint circles C,, Ci, C,, C;.

c, i

G I

Fig. 4. A fundamental domain for a Schottky group of genus 2

We orient the circles so that the complement of D consists of the union
of the interiors of the four circles. We choose M&bius transformations 4 and
B that map the interior of C, (respectively, C,) onto the exterior of C;
(respectively, C3). Let I' be the group generated by 4 and B. It is a free
group on 2 loxodromic generators with €/I' a surface of genus 2. By the
retrosection theorem (see, for example, Bers {3]) every surface of genus 2 can
be represented by a Schottky group — except that we may not insist that C,,
C,, C}, C; be circles, but only closed Jordan curves. Further, by a result of
Maskit [10], every free, purely loxodromic Kleinian group on two generators
is a Schottky group of genus 2.

Every Riemann surface of genus 2 is hyperelliptic and hence can be
represented as a two sheeted cover of the sphere. We proceed to describe the
construction of this cover from the group I' = {4, B).

We use relative Poincaré series rather than Poincaré series — which
could also have been used.

Let CeI’ be loxodromic with fixed points a, . Let

(=B
T (z—a)*(z—p)*

g(2)

zeCu {0},
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and define

ocz)= Y g2y (2% zeQ,
yelg'T

where I'y = (C). It is shown in [7], that ¢ is a holomorphic automorphic
2-form for I'. Furthermore, the three functions ¢,, ¢z, and ¢,.p are linearly
independent and form a basis for the space of cusp forms for I' of weight
(—4). The surface ©/I" has six Weierstrass points. Let z,, z,,...,z¢ be lifts of
the six Weierstrass points to Q. For 1 <j < k < 6, the automorphic form

0a(2) ¢p(2) Puop(2)
Qp(z) = det| @04(z) ©8(z) Paon(2)
04z @5(z) Paon(2i)
vanishes at z; and z,. Since each of these is a Weierstrass point, ¢, vanishes

to order 2 at z; and z,, and hence has no other zeros (except, of course, at
points equivalent to z; and z, under I). It follows that

912(2)
®13(2)

defines a function of degree two on Q/I' with a double zero at z, and a
double pole at z,.

It remains to locate the Weierstrass points on /I' in terms of the group
I. 1t is a trivial exercise to show that there exists a M&bius transformation E
of order 2, with

f(2) = €0,

EcAoE =A™, EoBoE =B~

It follows that the fixed points of E, Eo4, EoB are in £ and these six fixed
points are lifts of the Weierstrass points of Q/I.

THeOREM 2. Let I' be a Schottky group on the two free generators A, B.
Then QT is conformally equivalent to the algebraic curve

wl=z(z—e,)(z—es)(z—es)(z—eg), where e; =f(z))."

It should be noted that the e, j=1,4,5,6, can be computed (by
transcendental formulae) from the group I. The algorithm for the
computation was developed above.
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