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Let X be a linear space over complex or real scalars and let A be
a linear operator transforming X into itself. Let

Zy={w: Az=0}, Ra= {y:y= Azx}.

The pair of numbers (a4, f4) where o4 = dimZ,, f4= dimX/R,
(by X/R4 we denote the quotient space) is called a d-characteristio. If both
numbers are finite, we say that the operator 4 has a finite d-charac-
teristic. The number x4 = f4— a4 (well determined if at least one of the
numbers a4 and B4 is finite) is called an indexr of the operator 4 ([2],
[3], [4]). There is also another concept of dimensional characteristic of
linear operator. We consider simultaneously with the space X some
space = of linear functionals ¢ defined on X. We ghall assume that & is
total, i.e. if &z = 0 for all £ ¢ 5, then 4= 0. By Z%. we denote the set

Zie= {fe 8: EAw =0 for all z ¢ X}.

The pair of numbers (a4, f5), where p5 = dim Z5. is called a dz-charac-
teristic. The number »3 = 85— a4 is called a 5-index of 4. Obviously
85 < fa and x5 < w4

In this note connections between d-characteristic and dg-charac-
teristic are considered.

If 5= X, ie. X is equal to the space of all linear functionals, then
the dg-characteristic of A is equal to its d-characteristic. It is also true
in the case where X is a linear topological locally convex space, & = X+,
i.e. 5 is equal to the gpace of all linear continuouns functionals, and A is
normally solvable, i.e. it is a closed operator (*) such that R4 is closed.

(*) Operator A is closed if its graph is closed.
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Basing themselves on this fact I. C. Gochberg and M. G. Krein [3]
have determined d-characteristic for normally solvable operators as
dg+-characteristic. Obviously, d-characteristic and dz-characteristic are
not needed equal.

Examrie 1. Let X be a space C[0,1] of all continuous funetions
# = x(t) determined on segment [0, 1]. Let Z be a space of functionals ¢
-of type

1

to= [ w(t)EQ) A

0

where £(f) is a continuous function. It is easy to check that & is a total
space of functionals.

Let y(t) = A[z({)]= x(t)—2(0). This operator transforms X into
itself. The set R, is a set of functions belonging to C[0, 1] and such that
x(t) e R4 if and only if #(0) = 0. This implies that the d-characteristic
of 4 is equal to (1,1). On the other hand, A% = 0, because if &y = 0 for
all ¥y e R4, then £ = 0. Hence the dz-characteristic is not equal to the
d - characteristic,

In this example, however, the space = is not preserved by the con-
jugate operator A* i.e. by the operator A*(£) determined by the equality
A¥E)z = E(Ax). In the following example the space £ is also preserved
by the conjugate operator.

ExamMPLE 2. Let X = C™[0, 1] be a space of all infinitely differen-
tiable functions determined on the segment [0, 1]. Let £ he a space of
functionals & if the type

1
tw= [ w(t)E(t)dt
0
where &(1) i3 an infinitely differentiable function such that the funection
itself and all its derivates are equal to zero at the point zero. It is easy
to prove that = is a total space. Let A be the following operator:

1
y(t)= Ale@)] = [ @()dr.
4
It is easy to see that R, is a space of all functions y(¢) infinitely
differentiable and such that %(1) = 0. This implies that the d-charac-
teristic of A is equal to (0,1). Since, if £ ¢ £ and &(Ax) = 0 for all 2,
then ¢ = 0, we have ﬂfi = 0 and the dz-characteristic is equal to (0, 0).
TFurther,

1 1 1 t
§(dn) = ety ( [o@a)a= [ ( [ewan)o)ar;
0 [ 0 0
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therefore (£4)7 = f £(t)dt and the conjugate operator 4* is invertible and
0

transforms £ onto itself.

Let X be a linear space. Let & be a total space of functionals. Let 4
transforming X into itself be such that the conjugate operator A* trans-
forms & into &. From the definition of the dz-characteristic it follows
that as = g%+ and f% = a4, i.e. that if a pair of numbers (a, b) is the
dz- characteristic of operator 4, then the pai1 (b, a) is the dx - characteristic
of operator A* considered in 5.

As it is shown by example 2, this is not true for d-characteristic,
becanse in this case the d-characteristic of A is equal to (0, 1) and the
d - characteristic of A* is equal to (0, 0).

We do not know an example of this kind when X and & are complete
normed spaces and A is continuous.

As we see, for different total spaces & and &, the ds-characteristic
is not needed equal to the dg, -charactaristic. But the following theorem
ig true:

THEOREM 1. Let X be a linear space and let = be a total space of
functionals determined on X. Let T be such an operator transforming X
into X that the conjugate operator T™* transforms E into 5. The dg-charac-
teristic of operator A = I+T determined on the space X is equal to the
dz, - characteristic of the operator A considered only on X,, where X,, 5, are
arbitrary spaces such that TXC X,C X and ET*C 5,C 5.

The proof is trivial. It follows from the fact that each solution of
equation Az = (I+7T)xz = 0 belonging to X belongs to X,, and re-
spectively every solution of equation £é4 = &§(I +T) = 0 belonging to &
belongs also to Z,.

Now we will apply this theorem to the integral equation

(1) w(s)+ [ T(s, tya(t)dt = x,(s)

where 7'(s,t) and () are continuous functions, and the given equation
is considered in the space C[0, 1] of all continuous functions on segment

1
[0, 1]. The operator Ta = [ T (s, t)x(t)dt is compact (2) ([1], p. 98), whence
0

the operator A = I+ T is normally solvable and the numbers a4 and ﬂf
are both finite and equal ([1], p. 1561-161). In this case the space X+ of
all continuous linear functionals is the space of functionals & of type

1

o= [ w(1)de)

0

(!) An equivalent term is ,,complete continunous’’.
g
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where £(?) is a function with bounded variation ([1], p. 069). But

11 1 1
tTo = [ [ T(s, ya)@ass) = [ @) [ T(s, 1)dk(s)dt .
00 0 0

Hence the conjugate operator I™ transforms the space of all continuouns
functionals X+ into the space ¢ of all functionals # of the type

1 .

ne = [ o(t)y ()
0

where #(t) is a continuous function.

Therefore, applying Theorem 1, we find that the dg-characteristic
of A=1I+T is equal to the dx«-characteristic and that the C-index
is equal to 0. If we remark that 4 is normally solvable, we obtain a clas-
gical formulation of Fredholm’s Alternative ([6], ch. IT).

In a similar way we find that if T'(s, t) satisfies the Folder inequality
or is Lk-times differentiable, infinitely differentiable or analytic, then
equation (1) satisfies Fredholm’s Alternative, if as space X we assume
the corresponding space of functions of one variable and as 5 we assume
the family of functionals

1
tw= [ et (t)dt

where £(t) belongs to a corresponding class.

There are also operators 7 transforming X into X such that the
dg-characterigtic of operator A = I+ T is equal to the d-characteristic
for each Z. Indeed, this occurs if 7' is a finite dimensional operator, i.c.

n
T = Zmifi(m), where ;e X and & ¢ £
i=1

The proof is the same as the proof for an integral equation with
a degenerate kernel ([6], p. 61-64). This implies

TEROREM 2. Let X be a Banach space. Let T be a compact operator
mapping X into X, approximable by finite dimensional operators. Let E be
an arbitrary lotal space of continuous functionals determined on X and
preserved by a conjugate operator T*. Then the dg-characteristic is equal
to the d-characteristic for every Z.

The proof is the same as the classical proof of Fredholm’s Alternative
based on the approximation of continuous kernels by degenerate kernels
([B], p. 33-38). These considerations are the same for all £,

Unfortunately we do not know whether it is possible to approximate
compact operators by finite dimensional operators in every Banach
space X. It is possible if in the space X there is a basis. But we do
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not know whether there is a basis in every separable Banach space ([1],
p- 111).
As an application of Theorem 2 we will consider the integral equation

(2) z(t)+ [ K(t, s)a(s)ds = y(2)
0

where x(f) and y(?) aﬁ‘e continuous functions on segment [0,1] and
K(1,8) = k(t, 8) Ko(t—s) where k(t, s) is continuous and K,(u) is a non-
negative, summable and even function. It is easy to check that the trans-

formation
1

Ko = fK(t, 8)x(s)ds
0
is compact in the space C[0,1] of continuous functions defined on
segment [0, 1].
Basing ourselves on the Theorem 2 we can formulate Fredholm's
Alternative for equation (2), where the conjugate equation

1

e(t)+ [ K(s,t)u(s)ds = y(t)

0

is congidered algo in the space of continuous functions.

In the particular case Ky u)= 1/lul* (0 < a < 1) we obtain Fred-
holm’s Alternative for a weakly singular equmation without using the
method of iteration.
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