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Structure of the sets of weak solutions
of an ordinary differential equation in a Banach space

by IrReNeusz Kusiaczyk (Poznan)

Abstract. Using the measure of weak non-compactness introduced by de Blasi [5], we
prove that if f: I xB —E (where E is a Banach space, I = [0, a], B= {x€E: ||x—x|| < b}) is
bounded by some constant M and weakly-weakly continuous, and if S(f(J x V)) < kB(V) for
every subset V of B, then the set of all weak solutions of the Cauchy problem x' = f{(r, x), x(0)
= X,, defined on [0, h] (h = min(a, b/M)) is non-empty compact and connected in C,,(J, E), the
space of weakly continuous functions u: J — E endowed with the topology of weak uniform
convergence. This generalizes former results of Szep [9], Szufla [12] and Cramer,
Lakshmikantham and Mitchell [3].

Many theorems on the existence of weak solutions of ordinary differ-
ential equations in reflexive Banach spaces [9], as well as in non-reflexive
ones [3], are known. If the function on the right-hand side of the equation is
merely continuous or even uniformly continuous on bounded sets, the equa-
tions need not possess any solution [7].

Throughout this paper (E, || |[) will denote a real Banach space, E* its
dual, and E,, the space E endowed with the weak topology.

Assume that I = [0, a], B= {x€E: |[x—=x,|| < b}, and that f: IxB—>E
is a weakly-weakly continuous function such that ||f(t, x)| < M on [ xB;
moreover, we assume that E, is sequentially weakly complete (for the
definitions see [3]). Let J = [0, h], where h = min(a, b/M).

We shall denote by f the measure of weak non-compactness of sets in
E; the properties of f are analogous to those of the measure of non-
compactness o; for the properties of both see [1], [3]-[5], [8], [10].

We shall deal with the Cauchy problem

(1) x’ =f(t’ X), X(O) = Xo,

where x' denotes the weak derivative. It is known [9] that (1) is equivalent to
the integral equation

x(r)=x0+'ff(s, x(s))ds for tel,
0

the integral being taking in Pettis sense.
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If f: JxB—E is weakly-weakly continous and
(2) B(f(U xV)) < kB(V)

for every subset V of B, and 0 < hk < 1, then (as in [11]) we introduce the
set

H=xo+ |J Aconvf(JxH).
0<1<h

By (2) and by the properties of B, f(H) = 0. Since the set H is closed and
convex, by the theorem of Mazur it is weakly closed and consequently
weakly compact.

Given any n >0, let us denote by S, the set of all functions u: J - E
such that

(@) u(0) = xo, lu(t)—u(s)| < Mlt—s| for t,seJ;
(b) s:,pllu(t)—xo—({f(s. u(s))ds|| < n;
(c) u(hexo+ U Aconv f(I x H).

[\ EPEY;
THEOREM. Let f: J x B = E be weakly-weakly continuous, and let

BUf(I V)< kB(V)

for every subset V of B; suppose that 0 < hk < 1. Then the set of all weak

solutions of the Cauchy problem (1) defined on J is non-empty, compact and
connected in C,(J, E).

Proof. For 0 <¢ < h let x, denote the Euler polygonal line, ie., the
mapping defined by:

x, (1) = Xo for 0<t<e,
X (8) = %, (t) +(t =) f(t;, x.(t)) for te[t;, t;4 ],
where ; = ig, i =1, 2,..., n, = [h/e], t, +, = h. Write
V={x('): 0<e<h}.
By definition, x,(t)eB for every teJ and
lIx, (1) = x. ()| < Mt —s].

First we prove that the set S, is non-empty; namely, for every # >0
there exists an ¢(n) > 0 such that x €S, for any ¢ <e&(n).

Each x,(-) obviously satisfies (a) and for te[t;, t;+;] and x*eE*,
[[x*|| €1, we have

|x* [x. ()= xo— ;[f(s, x, (s))ds]|

= |x* [xo +(t3— 1) f(t1, X (1)) + ... +
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t
+(t - ti)f(ti’ Xe (ta')) —Xo— j‘f(s> Xe (S)) dS][
Y

< ({Ilf(s, xollds+ [ [x* [f (e, x.(e)) =1 (s, x,(5))]| ds +
# o+ [ LA %)=, )]

< Mg+ 6, h.

Since ||x,(s)—x, ()l < M|s—t,| and since f is uniformly weakly-weakly con-
tinuous (since H is weakly compact), we infer that for any , > 0 there exists
é > 0 such that |t—s] <6, ||x,(t)—x,(s)| < implies

[x* (f(£, x,(0)=f (s, x. ()| <8, for all x*, [Ix¥|| = 1.

Therefore for any n >0 we can choose 6, >0 and ¢>0 so that
Me+38,h <n. From the above it follows that

||x,(t)—xo—rjf(s, x,(s))ds|| < Me+8,h < 1.
0

Obviously

x, () exq+ Aconvf(JxH)cH.
0

<A<t

Now we prove that, for any ¢€(0, min(h, £(n))], x5(z) - x.(¢) as & — ¢, weakly
uniformly on J. Let te[¢,, ¢t;, ], where t; = ic. Since  — ¢ implies i6 — t; and
x;(id0) = x,(t;) weakly, by the weak uniform continuity of f we have

|x* (35 (1) — X (D) < |x*(x5(8) = x, (t))| +
+ |x* [(£—i8) £ (8, x5 (i8))—(t — £} f (t:5 x. (¢))]|
< |x* (x5 (i8) — x, (£))] + |x* [(t — i) £ (i6, x5(i6))—
—(t—1) f(i8, x5(i6))+(t —1;) f(id, x4(i8))—
—(—t)f (5, x (ti))]l
< |x* (x5 (i8) — x, (L))} + M id — 1)+
e =+ |x* (£(i6, x5(i8)—f (s X ()))] =0
as 6 »¢ for each teJ and x*eE*, ||x*|| =1.
Consequently et x,(-) is continuous from (0, f) to C,(J, E), whence
the set V= {x,(*): 0 <& < B} is connected in C,(J, E).

Next we prove that the set S, is connected in C,(J, E).
Let 0<p<h, zeSy, g, <e(n). We define a set T, by the formula:

T, ={z,("): peJj,
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where
z(t) for 0 <t < p,
z,(t) = { z(p) for p<t<([plec]+1) =1,
z,(t)+ (=) f(ti, 2, (1)) for t; <t <ty

where i = [p/80]+1!“"[h/80] = n(SO)a l; = iaOs tn(£0)+1 = h.
Observe that z,(:)eSn. Obviously, z, satisfies (a). To prove (b) let us
choose 8, > 0 and ¢ > 0 such that

4) sup||z(t)—x0—_[f(s, x(s))ds|| + Me+hd, <.

The function z, satisfies condition (b) for ¢ < p, since in this case z, =z
and zeSn. For t > p let te[t, t;.,], x*€E*, [|x¥| =1; then

¥ (25 ()= xo = [ s, 2,(5))ds)]
0

p U
< lx*(z (p)—xo—gf(s, z(s))ds)l +|x* [ f(s, z(p))ds| +
P

ti+1

e f [/ (e 2, () =f (s, 2, ()] ds)] + ... +

+x ('I L7t 2, 0) =1 5. 2,(9)] ds)|.

Since ||z,(s)—z,(t)ll < M|t—s| and f is weakly-weakly uniformly continuous,
we see that for , satisfing (4) we can find a & > 0 such that ¢y < ', &€ <¢,
implies

(5 |x* (£ (tis 2,(8)) =1 (5, 2,(9)))| < 8,
for every i, se[t, t;+,], and x*eE*, j|x*| = 1.

From (4), (5) it follows that

|x* (2, (t) — x0— jfs z, s))ds)| susz(t o— [f{s, x(s))ds|| +eM +hd, < 1.
0

We now prove that z, satisfies condition (c). Since zeSn, we have
z(hexo+ U Aconvf(JxH) for0<t<t

0<Ast
If r, < tivy i=11+1,...,n(g), then

z,(t) = z(p)+ (e 1 =) f(t1, 2,(t) )+ (=) f(t 2,(8)
exo+ U Aconvf(J xH)+(tey =) f(ts, 2, (t)}+

0<A<p
+(t - tl)f(tis Zp (ti))'
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Thus

Zp(f) = XQ+l[a1Xl + ... +a,,x,,]+(t,+1 —t,)f(tl, Zp(tl))"'

+ =) f (6, 2,(8)
(x|
=xo+al|{—tx,+...+—"x, ) |+
a a

+h+;—nfﬂuZpﬁm*'“'+L%£fU“ZAh»

Exg+(A+t—t)convf(J xH) = xq+ 4, convf(J x H),
where a,+ ... +a,=1, a=A+(t;,;—t)+ ... +(t—1) and 4, <t. So z,€8n.

We now prove that z,(t) = z,(t) as g = p weakly uniformly on J.
Let 0< p<q<h; then for t <p, |lz,(t)—2z, ()| =0. If t > p, we can
choose ¢ such that [p/e] = [gq/¢]. Let te[t;, t;,,]; then

|x* ()—z, |-|x* )+(t,+l—t,)f(t,,z(q)
+ o =) f (6 2 (1) = 2(P) = (e s = 1) f (5, 2(P)) =
== 1) f (s, 2, (1)) .
< lx* (p)+ f1+1 —tt)l |x* flt, z (@)1 (e, Z(P)))|+

;. +(t_f,. ) (f (b 24 (89) =S (tis 2p))-

By induction and by the uniform weakly-weakly continuity of f we
obtain

x*(z,()—z,(t)) >0 for every teJ if g —p.

This proves that the map pb> z, is continuous from [0, k] to C,(J, E);
consequently the set T, is connected in C,(J, E). Since zo = x,e VN T,, the

set VN T, is connected and therefore the set W= () T, UV is connected in
zeSn
C.(J, E). Moreover, Sy < W, since z = z,€ T, for each zeSn. On the other

hand, W< Sn since T, cSn and V< Sn. Finally, Sy = W is connected in
C.(J, E).

The closure Sy of Sy in C,,(J, E) is composed of all functions u: J - E
which satisfy:

u(0) = xo, flu(s)—u()l < Mlt—s,

(6) t
|lu@—xo—[f(s, u(s))ds|| <n for ¢, sel.
0

We see that Sy is a closed equicontinuous subset of C,, (J, E) and u(t)e H for
each ueSy and teJ. Since H is weakly compact, we infer by Ascoli’s
theorem that Sy is compact in C,(J, E).

Put V,=§,,, for n=1,2,... Then V, is a decreasing sequence of non-
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empty compact connected subsets of C,(J, F); therefore the intersection

S = () V, is non-empty, compact and connected in C,(J, E). From (6) it

a=1

follows that S is the set of all solutions of the Cauchy problem (1). This
completes our proof.

Remark. If E 1s a reflexive Banach space, then B is weakly compact

and we need not suppose (2). Thus our result is a generalization of the result
of Szufla [12] and Szep [9].
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