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MODAL EXTENSIONS OF HEYTING ALGEBRAS
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R. BEAZER (GLASGOW) axp D. S. MACNAB (ABERDEEN)

1. Introduction. In [10] the second-named author defines a modal
operator on a lattice L to be a mapping f: L — L satisfying the following:

z < f(x) (f is inflationary),

f(f(®)) = f(») (f is idempotent),

f(xAay) = f(@)A f(y) (f i8 meet-preserving).

The theory of modal operators is shown to be particularly fruitful
when L is assumed to be a- Heyting algebra and has interesting applica-
tions to topology and sheafification. An account of this theory is forth-
coming. In this paper we prove only those properties of modal operators
that are necessary to meet our needs. The set X (H) of all modal operators
on a Heyting algebra H is called the modal extension of H. We show that
if H is complete, then I (H) is a complete Heyting algebra. Necessary and
sufficient conditions on a complete Heyting algebra H are found in order
that M(H) is a Boolean algebra and used to show that if H satisfies the
descending chain condition, then I(H) is Boolean. Attention is then
restricted to the study of modal operators on Post algebras. Specifically,
a normal form is obtained for modal operators on a Post algebra H and
used to show that IR (H) is a Boolean algebra. This fact is then applied to
describe those P-algebras of type n whose modal extension is Boolean
and the result is used to show that, for a three-valued Lukasiewicz alge-
bra H, M(H) is Boolean if and only if H has the smallest dense element.

2. Preliminaries. An algebra (L; A,* 0,1) is called a pseudocom-
plemented semilattice if and only if (L;A,0,1) is a bounded semilattice
such that for every a € L the element a* e L is the pseudocomplement
of a, that is v < a* if and only if anz = 0. If in any pseudocomplemented
semilattice L we write

B(L) = {we L; x = x**},
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then {B(L); u, A,*,0,1> is a Boolean algebra, aub being defined by
aub = (a*Ab*)* for all a,b e B(L). The set

D(L) = {wxe L; x* =0}

is called a dense filter in L. For the standard rules of computation in pseudo-
complemented (semi) lattices we refer to [1] or [6]. In any lattice whose
dual is pseudocomplemented, we write a®™ for the dual pseudocomplement
of a, that is # > a* if and only if avz = 1. .

A Stone algebra is a bounded, distributive, pseudocomplemented
lattice in which z*vaz** =1 holds identically. A double Stone algebra
is a Stone algebra whose dual is a Stone algebra.

A three-valued Lukasiewicz algebra is a double Stone algebra in which
z* = y* and #7 = y* imply # = y. An account of three-valued Lukasie-
wicz algebras may be found in [11].

A Brouwerian algebra is an algebra (H; A, v, *>, where (H; A, V)
is a lattice and * i3 a binary operation defined on H by Ay < 2z if and
only if # < y*z. Every Brouwerian algebra is distributive and has the
greatest element 1.

A Heyting algebra is a Brouwerian algebra with the least element O.
In a “Heyting algebra H the element x%0 is the pseudocomplement of
z in H and if a € H, then the interval [a,1] = {x € H; x > a} is itself
a Heyting algebra in which the pseudocomplement of # in [a, 1] is z*a.
For the standard rules of computation in Heyting algebras we refer to [1].

An L-algebra is a Heyting algebra in which (z*y)v (y*2) =1 holds
identically. Any L-algebra is a Stone algebra. The theory of L-algebras

may be found in [8].
A K-algebra of type n > 2 is a Brouwerian algebra in which

n
‘V (zg*2;,) =1
=1

holds identically. An L-algebra of type m > 2 is a K-algebra of type n
having the least element 0. These algebras were introduced and developed
in [7].

A P-algebra is an L-algebra whose dual is an L-algebra. Equivalently,
a P-algebra is an L-algebra whose dual is a Stone algebra. For this and
other characterizations of P-algebras we refer to [5].

A P-algebra of type n> 2 is an L-algebra of type » whose dual is
an L-algebra.

A Stone lattice of order n > 2 is an L-algebra containing a chain 0 = ¢,
<e<..<e,, =1 having the property that e, is the smallest dense
element in [¢;_,,1] (1<i<n—1). For the theory of Stone lattices of
order n we refer the reader to [9].
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A P;-algebra of order n > 2 is a Stone lattice of order » whose dual is
a Stone algebra. For other characterizations and properties of P,-algebras
the reader is referred to [4].

Post algebras can be defined in various ways. By [5], a* Post algebra
of order n > 2 is a P,-algebra of order » in which ¢}*, = 0. Other defini-
tions may be found in [3] and the references therein. It is well known that
in any Post algebra H of order n, every element # can uniquely be repre-
sented in the form

n—1
z = \Va;ne;,
1=1
where a; belongs to the centre C(H) of H and a, > a,> ... > a,_,. Thus,
we can define operators D;: H — C(H) by Di(x) =a;, (1<i<<n—1).
Furthermore, Post algebras of order n are equationally definable as al-
gebras of the form

CHi; Ay Vy %5D1yDyy ooy Dy 1560y 61400y € 1)
with 3 binary operations (A, v, *), »—1 unary operations (D,, D,, ..
...y D,_;) and » nullary operations (e, €,,...,6,_,) The following are
well known to hold in any Post algebra:
(I) The set E={ey,€15...56,_,} i8a chain 0=¢,<e¢,<...<e,_,=1
having the property that e; is the smallest dense element in [6;—1y1].

(IT) <H; A, v, *; 0> is a Heyting algebra.

(III) Dy(zAy) = Dy(z)A Di(y), Di(zvy) = Di(x)v D;(y).

(IV) Dy(z) = (egsm)*+.

(V) Dy(¢;) =1 for ¢ <j and Dy(e) =0 for i >j (0<j<n—1).

(VI) e;_,vDy(2) = (z*e;_;)*€;_;.

3. Structure of Y (H). If H is a Heyting algebra and f, g e M(H).
then M (H) becomes a meet-semilattice, fAg being defined pointwise,
Moreover, M(H) is bounded with 0 e (H) defined by 0(x) = # and with
1 eM(H) defined by 1(x) = 1. In general, M(H) is neither a lattice nor
a pseudocomplemented semilattice. If, however, H is complete and
{fs; € A} = M(H), then A f, defined pointwise is modal, and so M (H)

is a complete lattice. The join in M (H) will be denoted by u. If f, g € M (H),
then the function fxg defined pointwise is not, in general, modal.
Nevertheless, we show that if H is a complete Heyting algebra, then
M(H) is a Heyting algebra. We start with some simple observations.

LemmA 1. If H is a Heyting algebra and a € H, then the operators
Ugy Vgy Wq, defined by

U (T) = av@, 1,(2) =asw, w,(x) = (rea)*a,
are all modal.
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LeMMA 2. If H is a Heyting algebra and f € M(H), then

f(@*y) < f(@)+f(y) = 2=+f(y) for all z,yeH.
Proof. *Since zA (r*y) <y and f preserves meets, we have

F(@)Af(z*y) < f(y),
F@*y) < f(2)*f(y)-

and so

Next observe that
f@)xf(y) < z=f(y),

since f is inflationary. Moreover,

z+f(y) < fle+f(¥) < f@) +f(f(y) = f@*f(¥),

(@) *f(y) = zxf(y).
LeMMA 3. If H is a Heyting algebra, f e M(H) and H, i3 the image of
H under f, then )\ {w,; a € H;} exists and i3 f.
Proof. If x € H, then, since f is inflationary, f(z) = w,(x), where
a = f(x) € H,. Moreover, for any a € H, we have a = f(a) so that

f(@) < (f(@)*f(a) +f(a) = (z+f(a))*f(a) = (vxa)*ra = w,(x)
by Lemma 2. Therefore, f(x) is the least element in {w,(r); a € H;} and
NA{w,; a € H;} exists and is f.

LeMMA 4. If H i3 a complete Heyting algebra and f: H — H i3 infla-
tionary and idempotent, then f+ = A {w,; a € H;} 18 the largest modal oper-
ator below f.

Proof. For any « € H we have a = f(2) € H; and f*(f(2)) < w,(f())
= f(z), so that f*f<f. Since f+ is inflationary, f < f*f and, therefore,
f*f =f. However, f is also inflationary, and so f+ <f*f = f. Thus,
freM(H) and f* <f. Now suppose that g eMM(H), g<f and a e H; then
g(a) < f(a) = a so that a = g(a) and, therefore, a € H,. It follows from
Lemma 3 that ¢ < f*, and so f* is the largest modal operator below f.

LeMMmA 5. If H is a Heyting algebra and f, g € M (H), then f*g defined
pointwise i8 inflationary and idempotent.

Proof. We have

(f*g)(@) = f(®)*g(x) > g(®) > @
8o that fxg is inflationary. For idempotency we use Lemma 2 to;&ssert that

(f*g)(fxg)(®) = f(f(@)xg(x))xg(f(2)xg(®)) < f(f (@)*g(2))*(g (f(2))*g(2))

< S (f(@)rg(@)) Af (@) }+g(2) = fi@)*g(z) = (frg)(®).

If we denote the largest modal operator below fxg by fmg, then we
have the following

and so
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THEOREM 1. If H i8 a complete Heyting algebra, then so is

M(H); AyU,E,0,1).
Proof. Obse;‘ve that

Ia(fBg) < fAa(fxg) =frg<y.

Moreover, if h e M(H) and fAh<g, then h < fxg, and so h < fmg.

Our next objective is the derivation of necessary and sufficient
conditions for the modal extension of a complete Heyting algebra to be
a Boolean algebra. In this connection, we need some preliminary results
concerning function composition of modal operators. Generally speaking,
the usual function composition fg of two modal operators f and g need
not be modal; contrariwise, it is eagy to see that fu g exists and is fg.

LemvA 6. If H ts a Heyting algebra, a € H and feIM(H), then
fu, e M(H) and fu, = fUu,.

Proof. Clearly, fu, is inflationary. Idempotency follows from the
observation that

(fua) (fug) (@) = f(av fava)) = f(flava)) = fu,(@).
Finally,
fua(@ny) = flav (zay)) = f((ava)a (avy))
= flava)A favy) = fu, (@) Afu,(y)

go that fu, is meet-preserving.

LeEMMA 7. If H i3 a Heyting algebra and f e M(H), then wof = wotsg).

Proof. Since

f@)a @ < f(f(@)A2%) = f@)A fl@*) = flzaz*) = £(0),

we have f(x)A z*A f(0)* = 0 so that

f(@) < (@A f(0)*)* = (av f(0))*

@)™ < (zv f(0)*.

Moreover, zv f(0) < f(z) so that (#vf(0))** < f()** and the result
follows.

COROLLARY 1. If H is a Boolean algebra, then every modal operator
on H 18 of the form u, and H ~ M (H).

LeMMA 8. If H is a Heyting algebra and a € H, then w, and v, are
complemented in IM(H) and each is the complement of the other.

Proof. We have
(ug A v,,)(a}) = (ava)A (a*xx) = {an (axz)}V {ZA (a*x2)} = (@A T)VE = 2.

Also, by Lemma 6, v,u, € M(H) so that u,Uv, exists and

(40U ,)(2) = (V%) (%) = ax(avz) =1.

and, therefore,
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LEMMA 9. Let H be a Heyting algebra. Then w, s complemented in
M(H) if and only if H has the smallest dense element. If H has the smallest
dense element e, then w, = v,.

Proof. First observe that if f eI (H), then, by Lemmas 6 and 7,
wof € M(H) so that w,Uf exists and is w,u,, . Therefore, if w, is comple-
mented in M (H), then there exists f e P (H) such that w,u,, =1 and
woA f = 0. Now, wyuye =1 if and only if f(0) e D(H), and w,Af =0
if and only if #**A f(z) =« identically. It follows that H, contains
D(H) and, therefore, f(0) is the smallest dense element in H. Finally,
note that if e is the smallest dense element in H, then

V() = e»® = ex(T**A (zV 2*)) = (e*T**)A (ex(2V 2*)) = exp**
= (eA 2*)* = (eA *)*** = (e**AT*)* = 2** = w,(®).

LEMMA 10. Let H be a Heyting algebra and a € H. If w, i3 comple-
mented in M(H), then [a, 1] has the smallest dense element. If H is complete
and [a, 1] has a smallest dense element, then w, 18 complemented in the
complete Heyting algebra MM (H). ‘

Proof. For each feM([a,1]), define f+:H - H by f* = fu,.
Observe that f+ e M(H), f*|[a,1] =Ff and if f,geM([a,1]) are such
that f < g, then f+ < g*. Note also that if f el (H), then

flla,1]€M([a,1]) and (f|[a,1])* >

Now, if w, is complemented in JR(H), then there exists f e IM(H)
such that w,A f = 0 and w,Uf exists and is 1. But if

g eM([a, 1]) and w,|[a,1], fl[a,1]<yg,
then
we < (W,l[a, 1) < gt and f<(fl[e,1])* <g™.

Therefore, we have g* = 1 so that ¢ = ¢g*|[a, 1] = 1. Thus the join
wgl[a,1] v, f|[a,1] of w,|[a,1] and f|[a,1] exists in M([a,1]) and
is 1. We also have '

Wel[ay 1]A fl[a,1] =0,

and so w,|[a, 1] is complemented in M([a, 1]). In other words, the double
pseudocomplementation operator on the Heyting algebra [a, 1] is comple-
mented in M([a,1]) and so, by Lemma 9, [¢,1] has a smallest dense
element.

If H is complete and [a, 1] has the smallest dense element e¢,, then
w,|[a,1] =7, where ¥, eM([a,1]) is defined by 7, (7) = ¢,*x for
all z € [a,1], that is

(x*xa)*xa = ¢, »& for all xe[a,1].
Consequently, ((wva)*a)*a = e x(wva) for all x € H. However,

(zva)xa)xa = ((xxa)A (axa))xa = (z+a)*a
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holds in any Heyting algebra H. Thus,
Wy = U, Ug = VU,

which, since v,, and u, are complemented in the complete Heyting algebra
M(H), shows that w, is complemented in M(H).

THEOREM 2. Let H be a.‘ complete Heyling algebra. Then M(H) 18 a
Boolean algebra if and only if [a,1] has a smallest dense element for all a e H.

Proof. If every interval [a¢,1] in a complete Heyting algebra H
has a smallest dense element and fe(H), then fe B(M(H)), since
f = Afw,; a€'Hp}, wle B(MH ) and B(MM(H)) is closed under arbitrary
meets in MM(H). Thus, M(H) = B(M(H)) which is a Boolean algebra.

COROLLARY 1. If H s a Heyting algebra satisfying the descending
chain condition, then M(H) ts a Boolean algebra.

The corollary follows immediately from the fact that any distrib-
utive lattice satisfying the descending chain condition is a complete
lattice in which every filter is principal.

COROLLARY 2. If H 18 a complete Post algebra, then IN(H) i8 a Boolean
algebra.

‘Proof. Straightforward calculations show that in any Post algebra
of order n» > 2 the element

n—1
e, =¢,VV D;_(a)Ae;

1=2
is the smallest dense element in the interval [a, 1].
Remark. Corollary 2 will be generalized to arbitrary Post algebras
in the next section.

4. Modal extensions of Post algebras. Prior to obtaining a normal
form for modal operators on a Post algebra, recall that an algebraic func-
tion of m variables on a Post algebra H of order n > 2 is one obtained
from the constant functions a(z,, #,, ..., #,,) = ¢ and projection functions
(%, @,, ..., x,,) =2, by a finite number of applications of the operations
Ay Vyky Dy D,y ..., D, ,.In [2], it is shown that a function f: H"—> H
is algebraic if and only if it has the congruence substitution property:

a; = b,(0) (L<i<m) implies f(a,, as, ..., a,) = f(by, bs, ..., b,)(6)
for all congruences 6 on H.

Furthermore, if f,g: H™ — H are algebraic, then f = g identically
if and only if f and g agree on the chain of constants K. With these remarks
in mind we prove the following

LEMMA 11. If H is a Post algebra of order n > 2 and f ¢ M(H), then
f s algebraic.

Proof. It is well known (see [2]) that there are an isomorphism
of the lattice of congruences 6 on H and a lattice of Post filters F (lattice
filters closed under D, _,) under the correspondence
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F ={xeH;x =1(0)},
0 = {(z,y) eH*;zAna = yAa for some a € F}.

Thus, if # = y(0), then zAa = yAa for some a € F, so that f(x)A f(a)
= f(y)A f(a), which shows, since f(a) > a € F, that f(x) = f(y)(6). Hence,
any feMM(H) has the congruence substitution property and is therefore
algebraic.

THEOREM 3. Let H be a Post algebra of order n > 2. Then f: H -~ H
i8 @ modal operator if and only if it can be (uniquely) represented in the form

n—1
f(@) =V a;aD(x),

i=0
where the relations a;> a;,_,ve; (1 <i<n—1), D;(a,) < a*a, hold for all
i,ke{0,1,...,n—1} (and D, denotes the operator 1).

Proof. If fe M(H), then,-by Lemma 11, f is algebraic. Furthermore,
since f is monotone, it follows from [2] that

f(@) =V f(e) A Dy(2)

i=0
n—1

identically and is therefore of the form \/ a;A D;(x), where a;,> a;_, Ve
t=0

(1 <4< n-1), f being inflationary and monotone. Now observe that

flf(@) < f(x) if and only if f(f(e,)) < f(e;) for all ke{0,1,...,n—1}

which, in turn, is equivalent to

n—1
flay) = Van Di(a,) <a, for all ke{0,1,...,n—1}.
=0 _
Therefore, f(f(x)) < f(z) holds if and only if D;(a,) < a;*a, for all
i,ke{0,1,...,n—1}.
If, conversely, .
f(z) =£V“¢AD;’($)
=0
identically, where a;> a;_,ve; (1 <i<n—1) and D;(a;) < a;*a; for all
t,ke{0,1,...,n—1}, then

n—1
fler) = V a;aDy(e,) =\ (a;ADyler)) vV (a;ADy(ey) =V a; = ay.
i=0 i<k i<k i<k |

Consequently, the operator f is inflationary, since f(e;) = a; > e; for
all 1e{0,1,...,—1}. To show that f is idempotent, it suffices, since f
is inflationary, to show that f(f(e.)) < f(e,) for all ke{0,1,...,n—1}.
However, since f(e,) = a, it follows from the above that this holds if and
only if D;(a;) < a;*a; for all ¢,ke{0,1,...,n—1}. Finally, f is meet-
preserving if and only if

fle;ney) = fle)Afle) for all i,ke {0,1,...,n—1}
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which holds since ¢, < ¢, <...<e,_; and f is obviously monotone. The
uniqueness of the representation is clear from the proof.

THEOREM 4. If H i3 a Post algebra of order m > 2, then M(H) i3 a
Boolean algebra.

Proof. We start by showing that I (H) is a pseudocomplemented

semilattice. Let f, g e M(H) have normal forms
n-1

f@) =V aaDe) and g(a) = V b,ADa).

i=0
Now, fAg = 0 if and only if f(x)Ag(z) = = identically or, equiva-
lently, f(e,)A g(e;) <e; for 1€{0,1,...,n—1}. It follows from the equal-
ity f(e;) = a; that -
fag =0 if and only if b, < a;*¢; for all 2 € {0,1,...,n—1},
or, equivalently,

n—1
b; < N\ (ag*e,) for all 1€ {0,1,...,n—1},

k=i
gince by < b, <...<b,_,. Define f*: H - H by
' ' n—~1n—-1
ffo) = V(k/\ (ax*e;)) A Dy ().
=0 1

Clearly, if f* € M (H), then it is the pseudocomplement of f in I (H).
To see that f* e M(H), first note that if
n—1

= A (ag*e),

k=1

then

;=2 Ne, =e¢ and ¢ >=¢_, foritef{l,2,...,n—1}.

It remains to show that Dj(c,) < ¢;*¢;, for all j, ke {0,1,...,n—1}.
Clearly, ¢; <¢; whenever j <<k so that Dj;(c;) <¢*¢; whenever J< k.
Suppose that j> k. Then

n—1 n—1

Dj(¢,) = (/\ (a;xe; )) = /\Dj(a’*ez) = /\k{ej*(ai*ei)}++

n—l J 1 n-—-1-
A {a;*(e;xe;) }»++ = A {a;x(exe)} T A /\ {a;x (e;xe,)} T

i=k i=k i=j

i-1

= /\ (a’i*ez)++7
i=k
since ¢;x¢; = ¢; if j > 1 and e;xe; =1 if j < 4. Also,

n—1 j—-1 j-1

Ci*C = cj*/\ (am*em) = cj*{ /\ (am*em)'\ oj} = cj*/\ (am*em)
m=k m=k mm=k

j-1

21;\l (@m*em) = N (@ *ey)"" = Di(cy).

m=Ek m=k
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Therefore, f* e M (H).
Thus, in proving the theorem, it suffices to show that f =r" for
any f e R (H). By the uniqueness of the normal form for modal operators

we need only to show that
n—-1 n-—1
a; = N[ A(ap*e,))xe,} for all ie{0,1,...,n—1}.
k=1 m=k

Using the identity (xAy)*z = (r*2)v (y*2) which is valid in any
Post algebra (in fact, in any L-algebra) we see that

-1 n—1 n—1

(/\ (a *ey))xe) = Yk{(a m*6m) %€} = {(ag*€x) %€}V =\:{+1{(a m* €m) * 6y}

However, since a,*e,, > ¢, , (whenever m > k1) and e,,, is the

smallest dense element in [e,, 1], the element a,, *e¢,, is dense in [e,, 1],

and 8o (a,*e,,)*e¢, = ¢, whenever m > k+1. Therefore,
n—1

( ék(am*em))*ek = (@ *6,) %6y,

and so f = f** if and only if
n—1

a; = \ wg(a) for all ie{0,1,...,n—1}.
k=i

The last condition is easily seen to be equivalent to the a; being
given by
@,., =1 and a_, =w, (4 )re; foriefl,2,...,,n—1}.
Next observe that, since a;_; < w,,_ (a;_,)A a;,
@y =W, (a;_1)A a; if and only if w, . (a;_,) < @a;*a,_,.
Since
W, _ (@) = ¢,V D, (a'1 1))
6 _ S yx*a;,_;, and D,-(a,,,) < a;%ay,
we have f = f**.
In order to extend the last result to the class of P-algebras of type
n > 2, we need the following

LemMA 12. If H, and H, are Heyting algebras, then
M(H, x Hy) = M(H,) xWM(H,).
Proof. Let f; e M(H;) (¢ =1, 2). Define
@ M(H,) XM(H,) >M(H, xH,)
by
@(f1y f2) =1 XSy

where (f; Xf:)(®1, @) = (fl(wl),fz(wz)) for all (x,, #,) € H, XH,. Clearly,
¢ is a well-defined order embedding, and so it remains to show that ¢
is onto M(H, xH,). Let p,: H, xH, - H; (i =1,2) be the projection
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homomorphisms. Given feR(H, X H,), define f;: H; - H; by

fi@) = p.f(®, @) (2 =1,2).
We show that f, and f, are well defined, belong to M (H,) and M(H,),
respectively, and that f = f; Xf,. First observe that

fi(@) = p.f(2y, 2,) = Pl(f(-'vu 1A f(1, wz)) = p.f(®,, 1) AP, f(1, @,)
and, since f is inflationary and p, is monotone, p,f(1, ;) = p,(1,2,) =1
so that f,(2,) = p.f(z,,1). It follows that f, is well defined. Similarly we
can show that f,(z,) = p.f(1, z,) and so f, is well defined. To see that
f1€eIM(H,), observe that

@y = P1(®, 1) < p1f(24, 1) = fi(2y),
and so f, is inflationary. Also f, preserves meets, since so do p, and f.

To prove that f, is idempotent, it suffices to show that f,(f(2,)) < fi(wy).
To see this, observe that

fi (f1(a71)) *fi(z) = plf(fl(‘”l)’ 1)*P1f(-'”1; 1) = P1(f(f1(“’1)7 1) *f(2,, 1))
= py((f1(2)), 1) %f (@1, 1)) = 21 (fo(®), 1)*p1f (21, 1) = fi(m)fo(my) =1
and the result follows. Similarly we can show that f, e IR(H,). Finally,
f=J i X[, for
(f1 Xf2) (@1, wz) = (f1(m1)’f2(w2)) = (P1f(“"1’ 1), p.f(1, wz))
= (plf(mli @3)y Dof (#,, ws)) = f(21, @) 3 .

LEMMA 13. Let H be a Heyting algebra. Then H is an L-algebra of
type n =2 if and only if the centre of H 18 a subalgebra of H and D(H)
i8 a K-algebra of type n—1.

For the proof see [9].

THEOREM 5. If H is8 a P-algebra of type n = 2, then the following are
equivalent:

(1) IM(H) 28 a Boolean algebra.

(2) [a,1] has a smallest dense element for all a € H.

(3) There exists a chain 0 = ¢y < 6, < ...<e€,_, =1 in L such that
e; 18 the smallest dense element in [¢;_,,1] (1 <1< n—1).

(4) H 8 a Py-algebra of order at most n.

(8) H s a product of finitely many Post algebras each of order at most n.

Proof. Let H be a P-algebra of type n > 2. By Lemma 10, (1) im-
plies (2). Furthermore, (2) implies that there exists a chain 0 =¢,< e, <...
in H such that e; is the smallest dense element in [e¢;_,,1]. Since H is
an L-algebra of type n > 2, the repeated application of Lemma 13 shows
that [e,_,, 1] is an L-algebra of type 2. Equivalently, [e,_,, 1] is a Boolean
algebra, and so ¢,_, = 1. Consequently, H is a Stone lattice of order at
most » whose dual is a Stone algebra. Therefore, H is a P,-algebra of order
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at most n. It follows from [4] that H is a product of finitely many Post
algebras of order at most n. Finally, if (5) holds, then, by Theorem 5
and Lemma 12, R(H) is a Boolean algebra.

CoROLLARY 1. Let H be a three-valued Zukasiewicz algebra. Then
M (H) 48 a Boolean algebra if and only if H has a smallest dense element.

Proof. It is known that any three-valued ZXukasiewicz algebra
H is a *, *-subalgebra of a product of two- and three-element chains.
Furthermore, Varlet [11] has shown that H is a Heyting algebra and a dual
Heyting algebra in which axb = (a*vb**)A (a* vb), and a similar for-
mula holds for the dual operation. Consequently, any three-valued Lu-
kasiewicz algebra is a P-algebra of type 3. It remains only to show that
if e, is the smallest dense element in H, then 1 is the smallest dense element
in [e;,1]. To see this, suppose that x> e, and z*e, = e¢,. Since zxe,
=zt ve,, we have 2% < ¢, <« and, therefore, z = 1.

REFERENCES

[1] R. Balbes and Ph. Dwinger, Distributive lattices, University of Missouri
~ Press 1974. :

[2] R. Beazer, Some remarks on Post algebras, Colloquium Mathematicum 29
(1974), p. 167-178.

[83] — Post-like algebras and injective Stone algebras, Algebra Universalis 5 (1975),
p. 16-23.

[4] G. Epstein and A. Horn, Chain-based lattices, Pacific Journal of Mathematics
556 (1974), p. 65-84.

[5] — P-algebras, an abstraction from Post algebras, Algebra Universalis 4 (1974),
P. 195-206.

[6] G. Gratzer, Lattice theory: First concepts and distributive lattices, San Fran-
oisco 1971.

[7] T.Hecht and T. Katrinidk, Equational classes of relative Stone algebras, Notre
Dame Journal of Formal Logic 13 (1972), p. 248-254.

[8] A. Horn, Logic with truth values in a linearly ordered Heyting algebra, Journal of
Symbolic Logic 34 (1969), p. 395-408.

[9] T. Katrifidk and A. Mitschke, Stonesche Verbdnde der Ordnung n und Post
Algebren, Mathematische Annalen 199 (1972), p. 13-30.

[{10] D. 8. Macnab, An algebraic study of modal operators on Heyting algebras with
applications to topology and sheafification, Ph. D. thesis, University of Aberdeen
1976.

(111 J. Varlet, Considérations sur les algébres de Lukasiewicz trivalentes, Bulletin
de la Société Royale des Sciences de Lidge 38 (1969), p. 462-469.

Regu par la Rédaction le 12. 2. 1977;
en version modifiée le 1. 8. 1977



