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1. Introduction. Let S denote the class of functions which are regular and
univalent in the unit disc E = {z: |z] < 1} and normalized such that f(0)
=f'(0)—1 = 0. A function f belonging to S is said to be starlike of order a,
0 < a < 1, if and only if Re(zf'(2)/f (2)) > a, z€ E, and we denote by St(a) the
class of all such functions. St = St(0) will be referred to as the class of
starlike functions in E. The class K(a), 0 < a <1, of convex functions of
order a, consists of all those elements feS which satisfy the condition
Re(1+zf"(2)/f'(2)) > @, ze E and K = K (0) will be referred to as the class of
convex functions in E. It is well known that K < St(1/2).

Strohhiicker [8] in 1933 proved that if fe K, then Re(f(z)/z) > 1/2 in E.
His result was generalized by Sheil-Small [7] who showed that if

a0

feK, f(@=:z+) az"

k=2

then for each integer n > 1, we have Re(f(z)/s,(z,f)) > 1/2, ze E, where

s,,(z,f) =z+ Zn: a
k=2

is the nth partial sum of f(z). Ruscheweyh and Sheil-Small [6] further
generalized this latter result by showing that Re(f(z)/s,(z,f)) > 1/2, z€E,
holds even if feSt(1/2). _

In the present paper, making use of two powerful theorems of
Ruscheweyh and Sheil-Small [6], we obtain some results which relate
convex and starlike functions of order 1/2 with their partial sums. Some well
known results follow as particular cases from our results. We also give
alternative simple proofs of three well known results one of which is the
Ruscheweyh—Sheil-Small theorem mentioned earlier and the other two
pertain to convex functions. '
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2. Definitions and lemmas. The Hadamard product or convolution of two

power series g(z) = ). a4 z* and h(z) = ) b,z* is defined as the power
k=0 k=0 '

series
a0

(g=h)(2) = z akbkzk-

k=0

The n-th de la Vallée Poussin mean of an .analytic function f(z)

= ) 2" is the polynomial defined by

k=1
() (2n)! .
@) = o ,; (n—k) (n+k)! *°
n n(n—1) nn—1)...2-1 n

—_-—— R S A 2
S T arnme @t T

T2 .. en
The n-th Cesaro mean of the first order of an analytic function f(2)

= ) a.z* is defined by

k=1

1
on(z’f) = l_l(SI (Lf)"‘sz(z,f)‘*' +S,,(Z,f)),

where s,,(z, f) is the mth partial sum of f(z).

If g is regular in E, h is regular and univalent in E, g(0) = h(0), then by
the notation g <h (g is subordinate to h) in E, we shall mean that
g(E) = h(E).

The following two lemmas are immediate consequences of Remark (2.5)
and Lemmas (2.7) and (3.5) of [6], due to Ruscheweyh and Sheil-Small.

LEMMA 1. Let ¢ be convex and g starlike in E. Then (¢ = gF)/(¢ * g) takes
values in the convex hull of F(E) for every function F analytic in E.

LEMMA 2. If ¢ and  are starlike of order 1/2 in E, then (@ *yF)/(¢p *y)
takes values in the convex hull of F(E) for every function F analytic in E.

3. Theorems and their proofs.

[+ o]
TueoreM 1. If feK, f(z) =z+ ). a 2", then for each integer n > 1, we
k=2

have
f@—f(-2)
Re
s,,(z,f)—s,,(—z,f)
Proof. Clearly it is enough to prove the result when n is an odd

integer. So let us assume that n = 2m+ 1, where m > 0 is any integer. Since
f(@)=z+ayz*+ ... belongs to K and g(z) = z(1—2%)7"! is in St, it follows

1
> 2 (zeE).
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from Lemma 1 that for all z in E, the function w, defined by

f(2)= 1j22(1_22m+ 2)
w(z) = ’

f@)r—

1-2z2

takes values in the convex hull of F(E), where F(z) = 1 —z?"*2, However, it
is readily seen that

= s2m+l(z’f)_s2m+l(—zaf) = s,,(z,f)—s,,(—z,f)
S@=f(-2) f@=f(-2) ~

We, therefore, conclude that

IS,,(Z,f)—S,,(—Z,f)_
| J@~=f(-2)

w(z)

ll<1 (zeE),

from which the assertion of our theorem follows at once.
It is well known that if f belongs to K, then the function h, defined by

h(z) =fﬁ-_§(-_:)’

is in St. This fact and Theorem 1 together lead us to the following

CoROLLARY 1. If f belongs to K, f(z) = z+ Z a, z*, then for each integer
k=2
n =0, the polynomial

o G2kt gk
Pd)= Y 2+l aer g o,
(@) ug:o % +1 z a,

is close-to-convex [2] and hence univalent in E.
Proof. We have

z

P,,(Z) - f32n+l(t’f)—32n+l(—t’f)

2t d,

-0
from which we obtain

ZZHI(Z) = sZn+l(Z’f)—32n+l(_z’f)
Re[f(z)—f(—z)] e 0~ (-2

>0 (zeE),

This shows that P,(z) is close-to-convex with respect to the starlike function

h, h(z) = (f @) —f(—-2))/2.

9 — Colloquium Mathematicum L.2
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If in Lemma 1 we take g(z2) =z/A1—-2%), F(z)=(1+2)(1-2)""' we
conclude that for every f belonging to K,

#'(2)
Re{m}>0, zeE.

This fact and Corollary 1 yield:

CoroLLARY 2. If f belongs to K, f(2) =z+ ), a 2", and P,(2) is defined
k=2
as in Corollary 1, then the function L,(z), defined by
L,(2) =3[/ (2)+P,(2)]

is close-to-convex and hence univalent in E for each integer n > 0.

We now give a very simple alternative proof of the theorem of
Ruscheweyh and Sheil-Small mentioned in Section 1, namely

THEOREM 2. If f belongs to St(1/2), f(z)=z+ Y. a,z*, then for every
k=2

integer n > 1, we have
S (2)
sa(z, f)
where s,(z, f) is the n-th partial sum of f(z). .

Proof. Taking ¢(z) =f(2), ¥ (z) =z/(1—2z), and F(z) = 1—z" in Lemma
2, we infer that the function

z

f(Z)*l__z (1-27 saf)

p(2) = =
z f(2)
f(z)*—l_z

Re

1
>§ (ZGE),

takes values in the convex hull of F(E) and as such satisfies

$a (2, f)
/(@

The conclusion of Theorem 2 is now clear.

-1

<1 (zeE).

THeOREM 3. If f belongs to St(1/2), f(2) =z+ Y ayz* then
k=2

/@
R
() ev1 .7 >1 (zeE),
and
(b) Re—L @ -0 (zeE)

va(z, )
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for each integer n > 1, where v,(z, ) is the de la Vallée Poussin mean of order
n of the function f.

Proof. Since v, (z, f) = z/2, case (a) follows from Theorem 2. To prove
(b) we choose in Lemma 2 the functions ¢, ¥y and F as follows:

0@ =1@, ¥()=——

and

3n
F(Z) = F,,(Z) = m (1 —Z)+

Sn(n—1) e Qn+Dnn—1)n=2)... 2-1
mrDmrdm ) T P D12 . Gn@nt])

Clearly ReF(z) > 0 in E and therefore we conclude that Rep(z) > 0, zeE,
where

(1-2").

f@ = F@)

p(2) =

f@e—

It is now easily verified that in fact p(z) equals v,(z, f)/f (z). This completes
the proof of Theorem 3.

CoroLLARY 3. Let f belong to St(1/2) and for each integer n > 1, define

gn(z )“m[f(z)+V(Z NI

where
Va(z, ) = [ ((vat, NV1)dt;
0
then g, is close-to-convex (of order (n+1)/2(2n+ 1)), and hence a member of S.

THEOREM 4. If f belongs to ASt(1/2), f@)=z+ Z a, z*, then for each
k=2
integer n > 1, we have
Re(1+a,, z"+az,4 122"+ a3,+12°"+ ..)>1/2 (z€E).

Proof. In Lemma 2, letting ¢(2) =f(2), ¥ (z) =z and F(z) = (1F2z") "},
we conclude that for all ze E the function
f@*z(1F2z")7!
f(@)#z
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takes values in the convex hull of F(E). Since Re F(z) > 1/2 in E, the desired
result follows.

THEOREM 4, in particular, implies Strohhécker’s theorem and generalizes,
for n = 1, the result of Ruscheweyh and Sheil-Small mentioned in Section 1.

THeorReM 5. If feK, f(z2) =z+ ), a,z* then for each integer n> 0, we
k=2
have

Re #'(2)
(n+1) f(z)—no,(z, f)

where 0,(z, f) is the n-th Cesaro mean of f(z) of the first order.
Proof. In Lemma 1, letting ¢(z) =f(2), g(2) =z/(1—-2)*> and F(z2)

1
>— (zeE),

=1-2z"*1, we conclude that for all ze E the function
z *——-—— 1—2z"*!
f@r =gz 1=
q(2) =
z
*
(1-2)?

f(z)*[("+1)IZTZ—{nz+(n—1)zz+ +22""+z"}J
B zf'(2)

takes values in the convex hull of F(E), and therefore the inequality

(n+1) £ (2)—no,(z, f)
| o' (2)
holds in E. The assertion of our theorem is now clear.
For n =0, Theorem § yields the known result:
CoroLLARY 4. K < St(1/2).

CoroLLARY 5. If f belongs to K, then for each integer n > 0, the function
F, defined by

—1|<1

Foy = DSOSy,

is close-to-convex and hence univalent in E.

In the following two theorems we give alternative proofs of two known
results about convex functions, first one of which was established by
MacGregor [4] and the second one forms a part of a more general result
due to Brickman et al. [1].
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THEOREM 6. Let f belong to K and define
f(z1)=f(22)
45(zy, 23) = Z21—23

(2 (zy =2, =2).

(zl’ 22€E9 2 # 22),

Then |4, (z,, z,) > 1/4.
Proof. It is readily verified that the function

¥4
v _ < l
g(z, ) 1= =02 <1

is in St. Hence, in view of Lemma 1, we conclude that the function

z

(1-2)(1-{2)
f(@=(1 —C)“

f@=*(1-0)

[(1-2)(1-{2)]

Z
—z)(1={2)
f(2)*(z—{2) z2—{z

- [ f(z)*[ z ]] f@-f ()

l—-z_I—Cz

takes values in the convex huli of F(E), where
F(z2)=F(z,{) =(1-2)(1-{2).

Since the convex hull of F(E) is contained in the disc with centre at the

origin and radius = sup |F(z, (), it follows that
Izl <1,l5l <1

z—{z

f(2)—f({2)

<4

and Theorem 6 is established.

THEOREM 7. If f belongs to K(1/2), f(z) =z+ ), a2, then
k=2

1@ o liogti=2  (zeB),
V4 Z

and hence

Ref—(zz—) >log2 (zeE).
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Proof. Define g by

z

f@= J@d:, ‘

0

then g belongs to St(1/2) and g(z) = z+ Y. ka,z*. Let
k=2

F(z) = —% log(l1-2)—1 (zeE).

It is known [5] that F is univalent in E and maps E onto a convex domain
and ReF(z) > 2log2—1 (ze E). From Lemma 2 we then conclude that the
function

_9()s2F(2) _g@*[-2log(1-2)—2] _ 2@ _

= 1
YO = D z 2

takes values in the convex hull of F(E). Since the convex hull of F (E) is F(E)
itself, we have

zfz(z)—l < -glog(l-z)-1 (ze E)

or

f(2)

Z

< —;log(l —z) (ze€E).

This completes the proof of Theorem 7.
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