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Mixed covariant derivative and conjugate connections

by JACEK GANCARZEWICZ (Krakéw)

Abstract. This note is composed with two parts. In the first one we introduce
the notion of a mixed covariant derivative V,{I1:72) 4 of a geometric object 4, in the
direction of v, with respect to a pair (I, I';) of connections in P (M, G). This definition
generalizes the classical definitions in the following semse: (1) if I' = I} = I, our
definition coincides with the definition of ¥4 due to R. Crittenden; (2) if I, r,
are linear connections on M and 4 is a tensor field on M, then our definition coincides
with the definition of a mixed covariant derivative introduced by A. P. Norden.

In this part we prove also some properties of the operator F,{I1.T2).

In the second part we prove a necessary and sufficient condition under which
two connections Iy, I', are g-conjugate, where ¢ is an endomorphism of the structural
group G. This condition has the form F,(/1:T24 = 0, where A is some geometrio
object which type depends of ¢.

Last of all we consider the special case of connections of the order 7.

Introduction. This work is composed of two parts. The first concerns
the problem of a generalization of the notion of the mixed covariant
derivative and the second concerns applications of this operator to the
study of couples of conjugate connections.

The notion of the mixed covariant derivative was introduced by
A. P. Norden [9] for tensors and linear connections. Let Iy and I'; be two
linear connections in M and let g be a metric tensor on M. The condition

Vrlrzg = 0

has very interesting geometric interpretation, namely, this condition
means that for each curve y(?) in M and for each vector fields » and w
defined along y and parallel with respect to I, and I'y, respectively, the
equality g(vew) = 0 at one point of y implies this equality at each point
of y, i.e., if v and w are orthogonal at one point of y, they must be ortho-
gonal at each point of y.

Later this operator was generalized to the case where ¢ was a tensor
density [4]. In this paper we define the mixed covariant derivative V1724
in the case of arbitrary connections I, I', (defined in some principal
fibre bundle) and an arbitrary geometrical object 4 which satisfies some
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hypothesis concerning the transformation formula of 4. This generalized
covariant derivative V1724 has the following properties:

(a) If Iy, I'y are two linear connections and A is a tensor or a tensor
density, then this definition coincides with the definition of A. P. Norden
[9] or with the definition given in [4] (see Section 3).

(b) Iy = I', our definition coincides with the definition of R. Crit-
tenden [2] (see Proposition 2.13).

(e) P71 gatisfies a special form of Leibniz’s formula (see Propositions
4.7, 4.11, 4.14).

The second part of this work concerns an application of this operator
to the investigation of couples of conjugate connections. The fundamental
theorem gives a sufficient and necessary condition under which two con-
nections I', and I'y are ¢-conjugate. This condition concerns the existence
of some geometric object 4 (whose type depends only on ¢) such that
P4 =o.

Last of all we shall consider the case of connections of order r, i.e.
connections in the principal fibre bundle L"M. For r = 2 we obtain the
most interesting, which will be considered in Section 10.

In this work differentiability always means differentiability of class
C*. We shall use the following notations.

If M is a differentiable manifold and @ is a point of M, then T .M
denotes a vector space tangent to M at the point #, and TM UT M

denotes a bundle tangent to M. If f: M >N is a dlfferentlable mappmg,
then for #¢ M we denote by

df: T,M—~T,, M
a linear homomorphism induced by f (at »), and by
af: TM—~TN, (@f)|T,M =d.f,
a homomorphism of tangent bundles induced by f. It is clear that

d.(gof) = dygpg0d.f, d(gof) = dgodf.

If N is a submanifold of M, then we identify 7,N with a subspace
of T,M (by the canonical monomorphism) for # in N. If M and M  are
two manifolds, then we also -identify T, ,\(M xM') with T, Mo T, M
(by the canonical isomorphism). We shall never differentiate T\, ., (M X M')
from T . MoT, M.

In the proofs of our propositions we shall very often use the following
formula of Leibniz (see [6], Proposition 1.4, p. 11).

PROPOSITION 0. Let f: M XN —K be mapping and (p,q)e M XN,
Then for each vector
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w=wy®wye LT, (MxN)=T,MoT,N
we have

(Bip,0f) (W) = (d,'f) (war) +(dgf) (),

where
f: MK, f@) =f(o,q), @M,

“f: N>K, "f(y)=f(p,¥), yeN.

{The notations ‘f and “’f will be used in the whole work.)
We shall also use the following notations:
(1) If f: M—-K and g: N—>L we write

fxg: MxN—>EKXL, (fxg)(=,y) = (f(=),9(y)
(2) Iff: M—K and h: M— I we write
(fyh): MK XL, (f,h)(=) =(f(m)’h(w))-

1. Geometric objects and their covariant derivative. Suppose we are
given a principal fibre bundle P(M, &), a manifold ¥ and an action on
the left of the structural group G on F. We denote by L, the left transla-
tion of the group G on F. Now we can construct a fibre bundle

E =E(P1M’G’F1Lé)

associated with P(M, &), with the standard fibre F and the action L,
of @ on F. We recall only that (see [6], p. 54-55):

E =P xf|@,
where the action (on the right) of G on P x P is defined as follows:

(P, f): & = (p'E’L&—l(f))-

For (p, f)e P xF we denote by {p, > the equivalence class of (p, f) in E.
Thus,

(1.1) P, > =<p',fP>=3éc@: p" =p-£, [ =Le(f).

Now we have the following lemma (see [2], Lemma 1).

LEMMA 1.2. There ts a one-to-one correspondence between sections of
E =EP,M,G, F, L) and mappings A: P—F such that

AoR, = Ly-10A  for all £c@,

where R is the right translation of @ on P. If a section o: M —E and a map-
ping A: P—F are associated, then

o(=(p)) = <p, A(P)>.
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The proof of this lemma is trivial (see [2] and [10]). The above lemma
permits the following definition:

DEFINITION 1.3. A mapping A: P — F is called a geometric object of
the type (F, L;), or shortly an (F, L)-object on P(M, Q) if
AoR, =L.-10cA for all £e@.

The family {L.} is called the transformation formula of A.
Next we shall define the covariant derivative of a geometric object.
We are given a connection I'in P(M, G) and a vector field v: M >~TM
on M. We denote by H/ the horizontal lift of v, i.e., H): P— TP is a vector
field on P uniquely defined by the conditions:

(i) HY(p)e I', — the space of horizontal vectors at the point p,
(ii) dwroH, = wom, where n: P— M is the projection.

Now we set

DEFINITION 1.4, Let A: P—F be an (F, L;)-object on P(JM,Q);

V'A — dAoHF: P—>TF

is called a covariant derivative of A in the direction of » and with respect
to the connection I' (see [2], [10]).

It iy easy to verify that (see [2], [10]):
(1.5) (PFA)oR, = dL;-10 VT A,

This means that

ProrosrrioN 1.6. If A: P—F is a (F, L;)-object on P(M, @), then
VIA is a (TF, dL,)-object on P(M, G).

2. A mixed covariant derivative. Suppose we are given a manifold
F, a Lie group @ and two actions on the left of G on F. We denote by 1,
and 4, the left translations of G on F for these actions, and we suppose
that for all £, ne G, '

(2.1) A0d, = A,0.

This is the foundamental hypothesis adopted throughout this paper.
(2.1) permits us to define two actions (on the left) of @ x& on F as followa:

(2.2.1) Lgny: F—>F, Lg, =204,
(2.2.2) Lg,: F~F, L, =404,
and a new action (also on the left) of G on F

(2.3) LE = L(E.E) = .z(e'e) = leOAe: FF,
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In order to define a mixed covariant derivative we introduce the fol-
lowing construction.

We consider the Whitney sum P+ P (see [6], p. 82). Let us recall
that

P+P ={(p,q)eP xXP: =n(p) = =n(q)},

where n: P— M is the projection. PP is a principal fibre bundle over
M with the structural group G x@ which acts on P+ P as follows:

R y(@,9) =(py @) (&:n) = (p &, q7).
According to the definition of P4 P we can define the mapping

(2.4) g: P+P—>G, q'9(p,9 =p.

Let us remark that condition (2.4) defines uniquely the element g(p, q)
in @ and ¢ is of class C™.

We are given an (F, L;)-object A on P(M,@), where L, is defined
by (2.3). We put

(2.5.1) 4: P+P—>F, A(p,q) = Ay o(A(D),
(2.5.2) A: P+P>F, A(p,q) = Ay qld (D).

Now we have

Lemma 2.6. 4 is a (F, L ,)-object and A is a (F, L ,)-object on
P4+ P,

Proof. To begin with, let us remark that from
(@n-9(@-&qn) =p&=q49@,0¢
we obtain

(2.6.1) gp-E,qn) =n""g(p,qE.
Thus we have

[AoR, ,)(p,q) = A(p-&,g-n) from (2.5.1), (2.6.1), we have

= A1y, 0e(4 (p-§)) from AoR, =L, , oA, we have
= (A,-10 Ay, 0 A;0 Le—1)(A(p)) from (2.3), (2.2.1), (2.1)

= L(E_l.ﬂ‘l)(Aa(p.q)(A (P))) = (L-1,,-104)(p, 9)-

Analogously we verify that 4 is a (F, L, ,)-object on P+P.

Suppose we are given two connections I'; and I’y in P(M, G). They
induce a connection, denoted by I'y+ Iy, in P+ P uniquely determined
by the condition that the projections of P+ P onto the first and the
seconds component transforms I+ Iy onto I, and I',, respectively. If
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w,;, ®, and o are the connection forms of I',, I', and I + I', respectively,
then for any point (p, ¢)e P+ P and for a vector v

v =0,00,¢T, (P+P)c T, (P xP)=T,PoT,P
we have

(2.7) W(p,¢) (V) = (@)p(¥1) + (@3)g(?,)

(see [6], Proposition 6.3, p. 82). This formula implies immediately that
LEMMA 2.8. Hv*"2(p, q) = H;'(p) © Hy2(g).
Now we can define a mixed covariant derivative.

DEFINITION 2.9. Let I', and I'y be two connections in P(M, @) and
let v: M—>TM be a vector field on M. If A: P—F is an (F, L,)-object
on P, where L, is given by (2.3), then a mixed covariant derivative of A
with respect to the couple (I}, I';) in the direction of » is defined as fol-
lows:

Vit'2 A = AN+ 240 A = dAoHO 20 4: P> TF,

where 4 is the (F, L ,)-object given by (2.5.1) and 4: P->P +P is the
diagonal mapping.

Next we prove

PROPOSITION 2.10. If A i3 an (F, L;)-object, then VI1"2 4 is an (TF, dL;)-
object.

Proof.

(VhT2 4o R, = V3*T2 4o Ao R,
= V1t "2 doRg g0 4 by using (1.5), (2.6)
= dL(E—l.E~l)O V{IFZZO A
= dIle—lo V{lrzA.

To end this section we prove some properties of the operator of a
mixed covariant derivative. The proofs of these properties are based on the
“local formula” for VI1"2 A4, which we formulate below.

Let us fix a point p,e P. There exists a section g: U— P defined in

some neighbourhood U of =(p,) such that o(a(p,)) = p,. We also fix
this section o. If we write

{2.11.1) At: P4+P-—~>F, A*(p,q) = A(p),
then we have
A = Ao (g’ A+)7

where A: G xF —»F, A(&,f) = A.(f). Applying Leibniz’s formula (see
Proposition 0) to this, we obtain
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Apo, A = o' A0 d(ge, g + By A0 dip, p A
where
‘A: G>F,  'A(§) = A(E, A(po)) = A(4(p,))
"A: F>F, "A(f) = A(g(po, o), f) = Ale, f) =f =1d(f).
On the other hand, it is easy to see that
(211.2) Aippop AT = dp Ao,

where x, is the restriction to the subspace T, ,,(P+P) < Twomo) (P xP)
of the canonical projection

T (0.0 (P XP) = T, Po T, P->T, P

onto the first component.
Thus we obtain

(2.11.3) @ ipgppd = Gy A0dpy, 5§+ A0,

Now we define a function §: P|U xXP| U —G@G (among other things we
need for this purpose the section ¢) setting

(2.11.4) (a1, @) = &6,

where g; = o(n(g;)) &, 4 =1, 2. § is of class C*, and it is easy to show
that ¢ = g|(P +P). Hence, for (p,q)e(P+P)|U,

tip,09 = bp,091 T (p, (P +P).
Applying Leibniz’s formula to g and to the vector
V= 0,0Vp¢€ T(po-ﬂo)(P +P) c TPOP@TPOP,
we have
(@i, 20 9)(0) = (dpy'§) (01) + (dp, ) (0:),

where ‘g, "g: P|U—@, '§g(p) = §(p, po), "§(p) = §(po, »). By the: defi-
nition of g, "'§(p) = ('§(p))™", and hence d, '§ = —d, 'g- Thus

(2.11.5) (@ipy.py 9) (V) = (d,'F) (v, —0y).

Now from (2.11.2), (2.11.3), (2.11.5), Definition 2.9 and Lemma 2.8 we
obtain

(2.12) (V1 A)(p,) = (d(po,po)z) (Hgl(Po) © Hy2(po))
= d,, ('A0'g) (HI}(po) — Hy2(po)) + dpy A (H; (o))

Using formula (2.12), we can now prove the following properties
of the operator V)12,
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PROPOSITION 2.13. We have the formula Vi"A = VI A.
It follows immediately from (2.12).

PROPOSITION 2.14. We have V124 = VI*T1 4o A, where A is given.
by (2.5.2).

Proof. Let
f=VhleA_pl+thjoda
= Vh+ligoA—ViN 40 4.
Let us fix a point pye P and a section o: U— P defined in some neigh-
bourhood U of z(p,) such that o|m(p,)) = po. For V1+"2404 we can
find a formula analogous to formula (2.12) for V124 = VNt24o 4.

We need only to replace A by A, H{'(p,) by Hi2(p,) and inversely. Thus
we have

(2.14.1) (V" do d)(p,)
= d,, ("A0'§) (H72(po) — Hy)(po)) + d, A(H2(p,)),
where ‘A: G —F, 'A(£) = A{A(p,)). From (2.14.1) and (2.12) we obtain
f(po) = [dy,('A0'§) +dp (‘40"g) —d, AY(H;1(po) — Hy2(py)).
Since from Leibniz’s formula it follows tha.ﬁ
A 8* = dp A+, 2,
where 8*: G—+F, 8*°(£) =L/A(py) = (Ao 4)(A(p,), if we write
S = 8%o’g, then
J(@o) = (dp.,S—dpo-A)(H{l(Po)—Hfz(Po))-
Next, let us remark that
4 = Lo('g, B),
where B(P) = Legpy_1(4(p)) and L: G xF—F, L(&,f) = Ly(f). Since
B(p,) = A(p,) and ’‘g(p,) = e, applying Leibniz’s formula, we have*
dp A = d, 8+d, B,
and hence
f(pe) = —(dpB)(Hy(po) — H2(py)) -

It is easy to see that BoR, = B, that is, B is constant on the fibre of
P(M,G). Thus f(p,) = 0 because the vector HI1(p,) — HIz2(p,) is vertical
(tangent to a fibre). This completes our proof.

PRrOPOSITION 2.15. Let A: P— F be an (F, L;)-object, where L, = A;04,.
If A, =id for all £, then ’

Va2 A = P14,
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Analogously, if A, = id for all &, then
Philsg = phag,

Proof. We prove this is the case of 4, = id (the second case is ana-
logous). Let us remark that

A(p,9) = Ay, A (D)) = A(p) = 4% (p, 0),
and hence, applying (2.11.2), we obtain
(V12 4)(p) = dp,py A (H, (p) © Hy2(p))
= (d,dom)(H; (p) e Hy2(p))
= d, A (Hy'(p))
= (Py24)(p).
PrOPOSITION 2.16. We have the formula
Phl2A+VRNA = VDAL VRA,

This proposition follows immediately from (2.12) and Proposition
2.13.

3. The case of temsors. In this section we shall show that in the case
.of linear connections and tensors our definition of a mixed covariant de-
rivative coincides with the definition of A. P. Norden [9].

Let

F=pR"" = {(frgn: taydp=1,..,m, a=1,...,r,8=1,..., 8}

and let us fix two integers p and ¢ such that 0 < p<r, 0< ¢<s. For
= [aj]le GL(n, R) we write

(3.1) A~ = [af]eGL(n, R),

and we define two actions on the left of the linear group GL(n, R) on F
as follows:

AA ’A.A F—)F

(3.2.1) Aqf) = (“;;1 . f :fqﬁtl j,"all a'j,_,)’
Ky O *
(3.2.2) Auf) = L afr fTGE L g2t af)

for f = f;; :’)e F. It is clea.r that

Let 8 be a tensor field on M of the type (7, 8), that is, in our general
terminology, S is an (L, 2,0 4 ,)-object on the bundle of linear frames L M.
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If we fix a local coordinate system (U, ¢)e atl( M), then it induced & triv-
ialization of LM|U which permits us to identify LM |U with U x
XGL(n, R), i.e.,

LM|U = U xGL(n, R).
Now the tensor field 8 is uniquely determined on ZM|U by the
funection ¢(w) = S(w, I) because
(3.3) S(w, A) = (SoR,) (@, I) = (A4-1044-108)(2, I)
= (Ag-10A4-108)(@).
The functions t(w) = (t;::j’.'(w)) are called the coordinates of 8 with

regard to (U, ¢). The identification LM |U = U xGL(n, R) gives also
the following identification:

(LM+LM)|U = U xGL(n, R) xGL(n, R).

In this case the function g defined by (2.4) is given by the formula
(3.4) ge,A,B) =B 'A,
and for the object S defined by (2.5.1) we now have the formula
(3.5.1) 8(w, A, B) = Ay, 4, 5(8(x, A)) = (Ag-101-10%)(@),
that is,
(3.56.2) &S(w, 4, B)

= (agh ... G bR b

[ Igql l
'l...l_‘, (m)a,: see ajgb a+1 .o bj:) .

Jg+1°
Let I and I' be two linear connections on M, and let I, and I7,

be Christoffel’s symbols of I' and j’, respectively. We consider a vector
field » on M. The identification LM |U = U xXGL(n, R) implies also
the identification TM|U = U xR", and now for we U

v(®) = (a’r ”k(w)ak)f

where {e,} is the canonical base of R". Since the functions I, are defined
as coefficients of the decomposition

(05 @) (@) = I} (0) B,

where {Ei} is the canonical base of T;(GL(n, R)) =R", o, U>LM,
o(®) =(w,I) and o is the connection form of I, the condition
w(z'l)°[H”(w’ I)) = 0 implies

Hil;(m! I) = (my 11 vi(w)ei) '_Pl:ﬂ(m)Eg)
(let us remark that T(LM|U) = LM|U x R*xR™). Analogously,
Hi(2,I) = (0,1, 9 (@)e;, — I',() B9).
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In order to find V[ F S, we need only to calculate (see Proposition
2.10)

(PIES) (@, I) = (dgg, 1,1,5)(HE (@, I)o HL (@, I)

= (d,1.,8) (@, I, I, o' (@) e;, — Ip()0* () B, — k,v(w)'v"x
X (@) Ff)
= (t(2), [(3. 8151 (@, I, I) — Tj(@) (828524 (@, I, ) —
— Ip(a) (B (@, I, D]o* (@) Bix-d),
where {E]Js} is the canonical base of ¥ = E»"**, and

0, = 0/00%, 03 =0/oa3, 03 =0|obj.

Since
(@ad)(I) = — 88}, (3BT = — &8,
we have
(0, 8fi) (@, I, I) = (9, t1::50) (@),
B8 Qiy...3, P"(z)_ 2ﬂi{
. —_ LS TRTTY O | e
@8 @, 1 1) = = Do @)+ Do ),
v r 4) 8
(058 (@, I, 1) = — ) hgemiri@)+ Y Hfety
A=p+1 Amg41 »
@)

where #1* (@) means that at the i-th place there is ¢ and at the

other places there are indices j,, ..., ¢, (instead of ;). From these formulae
we obtain

g o LA )
(Vs '8) (@, I) = (t(w), [(%E’-}:.‘Z};) (o) + 217;2‘.(0)1}}2:.'5-:""" (@) +
Am]
LA .G L ,
+ D Ti@)grz-r(@)— Y Ty (@)% (@) —
A=p+1 i=1 )

8

- Z r fu(”’)‘;i::f; ..,,(m)] v*(2) ng.--f.,)

s o l---‘r .
1-q+1 (")

The expression in the brackets [...] is the definition of a mixed co-
variant derivative introduced by A. P. Norden [9].

Analogously, we can show that in the case of tensor densities our
definition coincides with the definition given in [4].
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4, Leibniz’s formulas for a mixed covariant derivative. Suppose there

-are three manifolds F,, F,, F, and two actions on the left of a Lie group
G on each F;

1(5‘)7/1?): F,—~F, i=1,2,38,

such that {0 AP = APo i) for all &, ne @. We introduce the notation
(as in Section 2, see (2.1), (2.2.1)):

(4.1.1) L, =iPoad,

(4.1.2) L, = 49029,

(4.1.3) LY = LYy = LY, = 4PoAP.
Now suppose there is a mapping

(4.2) ' y: F, xF, > F,

such that

(4.2.1) po (A xidg,) = APoy,

(4.2.2) yo(idp x A4P) = AP0y,

(4.2.3) po (AP x AP) = y.

In order to simplify the notation we set

v(fi, fo) =fi-fae Fy  for fie Fy, fre F,.
Let us remark that if F, = F, = F,, A" =21 =i, AP = 4P
= AP, then v is a multiplication law in F,.
If A;: P—~>F;is a (F,;, L{)-object on P(M, (@), then we consider
objects 4;, 4; on P+ P (in the same way as in Section 2, see (2.5.1),
(2.5.2) and Lemma 2.6)

(4.3.1) A, q) = Aiy (4D},
(4.3.1) j-i(?v q) = ﬂ,(fp,q) (Ai(p))a

where ¢ is given by (2.4). We now prove

LEMMA 4.4, If A;: P —F,; is a (F,;, L")-object on P(M,@), i =1, 2,
then
A =A4,-4, = yo(4,, 4,): P~ F,

is an (Fy, LY)-object on P(M, G).
Proof.

AoR, = yo(4,, 4,)oR;
= po(A,0R,, A,0R,) since 4; is a (F;, LP)-object
= yo(Ifiod,, 104, from (4.1.1), (4.1.3)
= po (A1 X idp,)o (idy, x Af21)o(AfL10AP1)o(4,, 4,)

from (4.2.1)—(4.2.2)
= l(eallo A.gallowo (Al’ Az) = L(E’llvo
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LeMMA 4.5. If A; and A are the same as 1n Lemma 4.4, then
AY =404, = po(4,, A-z)a

where At is given by (2.11.1).
Proof.

(4,-4,)(p, 9) = v(4,(p, 9 Ay(pg)) from (4.3.1), (4.3.2)
= 9(455,0(4:(2)), Hfp,0(4:(p)))  from (4.2.3)
= p(4.(p), 4,(p)) = A(p) = A% (p, q).

In order to formulate Leibniz’s formula we introduce the following
notation. We define the mapping

vp": (TF, xF,)u(F, xTF,) >TF,,
(4.6.1) ¥ (v, fo) = (dBF,)(v) for veTF,,fye Fy,
(4.6.2) v (fu,w) = (dLg)(w)  for fie Fy,we TF,,

where R,z: F,—~F,, L,l: F,>PF,, R,z(fl) =L,!(f,) = (f1,f.) and next
we set
(4.6.3) 'P‘('D’fz) = - fa, 'I"(fn w) = f, w.

Now we have

PROPOSITION 4.7 (Leibniz’s formula). If A4,: P - F; is an (F;, L{")-
object on P(M, @) for » =1, 2, then, using the notation of (4.2.4), (4.6.3),

for any connections I'y, I'y in P(M, @) and for any vector field v on M,
we have

Vol (A, 4,) = (Vo172 A))- A, + 4,-(V;214,).

Proof. From Lemma 4.5 and Proposition 0, for an arbitrary fixed
point pe P we obtain

d(p. D) At = dRA-.-(p)o d(p.p) 4 1+ dLAl(p)o d(p.p) ‘iz

(let us remark that A,(p, p) = A,(p) and 4,(p,p) = 4,(p)). Thus,
Definition 2.9 and Proposition 2.14 imply

(Por24,)- 4,4+ A, (V211 4,)(p)
= (AR 4y by, 5y A, + AL 4y Ao, ;7 A ) (H (P) + H2 (p))
= A,y AT (H (p) + Hg2(p)) from (2.11.2)
= d, A(Hy'(p)) = (V52 4)(p),
and now the proof is complete.

3 — Annales Polonici Mathematicd XXXIL3
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We also prove other forms of Leibniz’s formula. In order to do this,
suppose there are manifolds F, H,, H,, and actions on the left of @

Aey Az F—>F,
WO H;—~H, i=1,2,

on F, H, and H,, respectively. We suppose that .04, = 4,04,. Next,
we assume a mapping

(4.8) &: H,xF->H,

such that *

(4.8.1) Go(hM x 2) = @,
(4.8.2) @o(idy x4;) = k0.

Let us remark that if #, = H, and ) = h{), then & is an exterior
multiplication law on H,. For this reasons we shall note

(4.8.3) ®(h,f) = h-f, heH,, feF,

also in the general case.
It is easy to show

LeMMA 4.9. If A: P—~F is a (F, L;)-object on P(M, @), where L,
= A0A;, and a: P —~H, is an (H,, h¥)-object on P(M,G), then

b=a-A =do(a, A)
is an (H,, h)-object, because
boR; = ®o(a, A)oR, = Po(acR,, AoR,)
= dio(h(;lwa, L,104)
= @0 (k21 X Ag-1)0 (idgg, X Ag-1)0(a, A)
= h?llo Po(a, A) ='h(:lnob.
In the same way as for y, we define
o*: (H, xTF)u(TH, xF)—->TH,,
(4.10.1) &*(h,v) = dL,(v) for heH,, veTF,
(4.10.2) b*(w,f) = dR,(w) for weTR,, feF,
where L,: F -H,, R;: H, >H,, L,(f) = R/(h) = P(h,f) =h-f, and we
note
(4.10.3) &*(h,v) = hv, D*(w,f) =w-f.
Now we can prove

ProPosITION 4.11. If a: P—>H, i8 an (H,, h{")-object and A: P >F
i8 an (F, L;)-object on P(M, @), where L, = 2.0 A, then, using the notation
of (4.8.3), (4.10.3), we have

Vil(a-4) = (Vita)-A+a- (Vi1 2 4).
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Proof. We define the trivial action of @ on H,, denoted by H{,
that is,

HY =idg, for all £e@.
Now each (H;, h{))-object is also an (H;,k¥Po HY)-object and if
(Fy, 20, AD) = (H,, HY, 1Y),
(Fyy A9, AP) = (F, A, 4,),
(Fy, A9, APy = (H,, HD, b®),

then @ satisfies conditions (4.2.1)—(4.2.3), and thus, by Proposition 4.7,
we have
L))

Vil(a-A) = (V' 2a)- A +a-(V,2 1 4).

Now, from Proposition 2.15, we obtain our assertion.

Using the above Leibniz’s formulas, we can prove the following inter-
pretation of the condition V,' 4 = 0:

Suppose we are given a manifold F and two actions on the left of
the group G on F; let 1, 4, denote left translations for these actions.
As usual, we suppose that .04, = A4,04,. Next, suppose we are given
a manifold H, an action (on the left) of G on H and an exterior multipli-
cation law H xF —H which satisfies conditions (4.8.1), (4.8.2). (This
is the case (H,, h{") = (H,, h¥)) = (H, h;).) Now we have

ProPOSITION 4.12. Let A be an (F, A0 A;)-object on P(M,Q@) and
v: M —TM be a vector field on M. If V;*'*A = 0, then for each (H , h,)-object
t on P(M, Q) we have

Vot =0=V,%(t-4) = 0.

Furthermore, if we suppose that F is a semi-group with the unity and

(h-a)-b = h+(a-b), h-1 = h for all a, be F, he H, then for a non-singular

(F, A0 A,)- obJect A (that is, A (p) i8 an mvertzble element in F for all p)
the condition V, kel 7 implies

Vilt = 0Vi2(t-4) = 0.

(We suppose also that F xF> (fy, fy) >fi'f.e F satisfies (4.2.1)—(4.2.3).)
Proof. If we suppose that V:’t = 0, then from Leibniz’s formula
(Proposition 4.11) we obtain

Vi2(t-A) = (Vi) A4t-(V,1"24) = 0.

If we suppose additionally that F is a semi-group and A is non-singular,
then the condition V:z(t-A) = 0 implies (V,‘,“t)-A = 0. Multiplying
that by A", where A~'(p) = (4(p))~}, we obtain V,'t = 0.
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5. r-affinors. In this section we shall consider some objects on L"M.
First of all we define the group L and the fibre bundle L™ M.
Let F7, be the set of all r-jets (at 0) of mappings ¢: E"—E" such that

#(0) = 0 F". is a manifold diffeomorphic with RY, where N = n[("jr) -1].
We define the semi-group structure (with the unity) on Fy,, setting
(p1ly] = [poyl.
Let L}, be the set of invertible elements in F7, that is,
I, = {[ple F: ¢ is a local diffeomorphism in some neighbourhoof of 0}.

L} is an open subset of ¥ . It is a Lie group.
DEFINITION 5.1. L7 is called a differential r-group.

Next we shall construct the principal fibre bundle L™ M called the
bundle of r-frames. This construction is the following:

Let M be a manifold and let atl( M) denote an atlas in M. For two
charts (U, @), (U, ¢')eatl(M) and for a point @e UNU’ we write

Ji(¢'op™) = [T_p(@)og 0p™ 0T gy,)],

where T,: R* >R", T (@) =@+, ve R*, j7(¢'0p™") is an element of L],
n = dimM. In the set

Z = U|U x {g} xLi: (U, p)eatl(M)}, n =dimM,

we define an equivalence relation

(6.2) (0, p,a)~ (0,9’ ,a )0 =0, a =j(popNa,
and let
(5.3) I'M =Z|~, =n:L'M-M, =n(0,9,a]) =0,

‘where [@, ¢, a] denotes the equivalence class of (w, ¢, a) in L' M. A dif-
ferential structure on L'M is defined as follows. If (U, y) is a chart of
atl(M), then we consider

(5.4) y: o (U) =L'M|Us [@,9,a] >(@, ji(vop")a)e U X L.
p is a well-defined injective mapping because
[9,9,a] =[0,¢',d']lead =0, o =ji(¢p'op )aws =0,
Jz(pop~h)a’ = jr(yoy™)ji(y'op~)a = ji(yop~)a.

v is also surjective because ¢([@, ¢, a]) = (@, a). It is easy to see
that for two charts (U, y), (U’, ¢')e atl( M)

Pov " (UNT) xLy~(UNT') x L,
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.

is a C®-mapping (precisely, it is easy to verify that (p'cp~')(@, a)
= (m, jiy'oy 1 a)). Thus there is a differential structure, and only one,
on L' M such that ¢ given by (5.4) is a diffeomorphism for all (U, y)
¢ atl(M). The action of L], on L'M, n = dim M, is defined by

(5.5) [@, ¢, a]'B = [z, ¢, aB].

In this way we obtain a principal fibre bundle L™ M.

DEFINITION 5.6. L'M is called the bundle of r-frames. I'M = LM
is the bundle of linear frames.

We shall define some objects in L' M. In order to do this, we assume
two action of the group L] on ¥,

(6.7.1) bt Fo—>Fy, A (f) = df,
(5.7.2) Ay Fy>Fry  A(f) = fa™?,

It is easy to see that 1,04, = Az,04, for all a, B¢ L}, thus
(6.7.3) ad, = A,04,

defines also an action of L, on F7.

DEFINITION 6.8. (F7, ad,)-objects on L"M, n = dimM, are called
r-affinors on M. 1l-affinors on M are tensor fields of the type (1,1) on M.

Next, let H], be a set of all -jets at 0 of functions ¢: R"— R such that
t(0) = 0. H’, is a manifold diffeomorphic with RZ, where L =("':T) —1.
We define an action on the left of L} on H, setting

(5.9) ho: Hy—~Hy,  ho([t]) = [tog™'],

where a = [ple Lj,.

DEerINITION 5.10. (H, ha)-objects on L'M are called r-jet fields,
or shortly r-jets, on M. 1-jet fields on M are covector fields on M.
We can define

v FoxFos T, ®(a, f) = af,
&: H; XH,-’-F:., D([t], [¢]) = [toe],

and it is easy to verify that conditions (4.2.1)-(4.2.3), (4.8.1) and (4.8.2)
are satisfied.

In the case of r-affinors and r-jets, Proposition 4.7 can be proved
in the following form.
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ProprosiTIiON 5.11. Let A be an r-affinor on M, let I'y, I', be two con-
nections in L'M and let v: M —>TM be a vector field on M. V:’r’A =0

if and only if for each r-jet t on M and for each integral curve y of v (i.e., y(8)
= p"9)

(5.11.1) Vo't =0 along y=>V,2(t-4) = 0 along y

(we say that V:t = 0 along y if(V:t)(y(s)) = 0 for all s).

If A is non-singular (i.e., A(p)e L], for pe L' M), then in condition
(5.11.1) the symbol of implication *‘ ="' can be remplaced by the symbol of
equivalence ‘¢ <>".

Proof. The same proof as in Proposition 4.7 shows that the con-
dition V,"? A implies (5.11.1).

Inversely, we suppose that condition (5.11.1) is satisfied. Let us fix
a point p, in L"H and let ¢ be the integral curve of » such that y(0) = p,.
For each ae HY, there is an »-jet t on M such that ¢(p,) = a and Vf‘t =0
along y. From Leibniz’s formula (Proposition 4.14) we obtain

Pi2(t-A) = Vilt-A+t-Vil'24 =0 along y,

and hence, a-(V:‘P’A)(po) = 0. Since a is any element of H}, we have
(V:’rzA)(po) = 0. This completes our proof because p, has been arbitrary.

6. Principal objects. Let us suppose we are given a Lie group G and
two endomorphisms ¢ and y of G. We define two actions (on the left)
of @ on G, setting

(6.1.1) A G>G, P (2) = ¢(a),
(6.1.2) AV @G, AV(2) = ayp(a7h).

It is easy to see that APoA{P = APoi?, and hence we can define
another action (on the left) of G on G

(6.1.3) LEY = }P0 AW @@,

DEFINITION 6.2. (G, L®Y)-objects on P(M, @) are called principal
objects of the type (¢, v), or shortly principal (¢, y)-objects, on P(M, @).
Principal (¢, id)-objects are called covariant objects of the type ¢ and prin-
cipal (id, ¢)-objects are called contravariant objects of the type . Principal
(id, id)-objects are called G-affinors.

If @ = L} and P = L' M, then G-affinors are (non-singular) r-affinors
introduced in Section 5.

Let us remark that in the case of the linear group L) = GL(n, R)
and P = LM principal objects on P are tensors (precisely tensor fields)
or tensor densities whose types depend only on (¢, ). Namely, we have:
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Our terminology Classical terminology

principal (id, id)-object

L}, -affinor tensor of the type (1, 1)

1-affinor

covariant object of the type g, tensor of the type (0, 2)
where @o(X) = (X-1)t

contravariant object of the tensor of the type (2, 0)
type ¢,

covariant object of the type ¢,, tensor W-density (if ¢ = 1) or tensor
where @-density (if (t) = sgn?) of the weight
@1 (X) = e(det X) |[det X|~9 X, a and type (1, 1)
e =1 or e(f) = sgnt

contravariant object of the tensor W-density (if ¢ = 1) or tensor
type ¢, G-density (if £(t) = sgn?) of the weight

—a and type (1,1)

covariant object of the type ¢,, tensor W-density (if ¢ = 1) or tensor
where G-density (if e(t) = sgnt) of the weight
@5 (X) = g(det X) |det X |~ (X 1)t a and type (0, 2)

contravariant object of the tensor W-density (if ¢ = 1) or tensor
type @, G-density (if e(f) = sgn?) of the weight

—a and type (2, 0)

(Let us remark that ¢,, ¢, and ¢, are all endomorphisms of GL(n, R)
instead of ‘‘scalar endomorphisms’; see [7]. For definitions of W- and
G-densities, see [5].)

It is easy to see the following

ProPOSITION 6.3. (a) If A is a principal (¢, y)-object and B is a prin-
cipal (¢, x)-object on P(M, @), then A-B, (A-B)(p) = A(p) B(p), is a prin-
cipal (¢, x)-object on P(M, Q).

(b) If A is a principal (¢, y)-object on P(M,Q), then A~*: P -G,
A7 (p) = (A(p))~! is a principal (y, @)-object, and furthermore

Piil24 =0V 47 =0,

Proof. We prove only the last formula. In order to do this, let us
remark that A-A~! = § is a G-affinor such that é(p) = 1 for pe P. Thus,
applying Leibniz’s formula, from P16 = 0 we obtain

(PR 4)- A7 + A (P72 A7Y) =0,

and this proves the equivalence in question.
Now we shall prove a very important proposition for our considera-
tion.
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PROPOSITION 6.4. Let : G—@G be an endomorphism and
H? = {£e@G: p(§) = &}.

For each reduced bundle Po(M, H?) of P(M, G) there is ome and only one
covariant object A of the type ¢ on P(M, @) such that A(p) = 1 for pe P,.
Furthermore, the correspondence which with Pyo( M, H?) associates the object
A is a one-to-one correspondence between the set of reduced bundles Po( M, H®)
and the set of covariant objects A of the type ¢ on P(M, @) such that A (P)
c 0%, where 0% denotes the orbit through 1 of the action L®'9,

Proof. Let Py(M, H®) be a reduced bundle of P(M,G) and let A
be a covariant object on P(M, @) of the type ¢ such that A(p,) =1
for pye Py. Now, if p ¢ P, then there are pye P, and £e G such that p = p,- &,
and hence

A(p) = A(po£) = (Ao Ry)(py) = (LMo 4)(po) = p(£7Y) €.

This proves the uniqueness of A.
To prove the existence of 4 associated with a reduced bundle Po(M, H)
we define

(6.4.1) A(p) = (&Y€,

where p = p,- & and pye Py A(p) does not depend on the choice of p,
in P,. Exactly, if p = py'& = po- &, then p, = py-i for some element
Ae H®, From py- & = py-A& follows & = A&, and hence

P& ¢ = (¢ TNp(A™AE = p(£7) ¢,

Now it is easy to verify that A is a covariant object on P(M, @) of the
type ¢ such that A(p) =1 for pe P, and A(P) < 0°.

In order to prove the second part of our proposition, let 4: P> @
be a covariant object of the type ¢ such that 4 (P) c 0°. We define

P, ={peP: A(p) =1}.
We must verify that P, is a reduced bundle of P(A3, G) with H?® as a struc-
tural group, that is, we must verify two conditions:
(i) if poe Py, then py- Ee Py« £ H?,
(ii) in some neighbourhood of each point of M there is a section
g: U—P such that ¢(U) = P,.
The first condition is trivial. To prove the second one, let o: U—P

be any section defined in some neighbourhood U of a point wye¢ M, and
write 7, = (Aoo)(@y)e @°. We consider the mapping

n: G@3E—>q@(E 1) Ee O°.
It is easy to see that

x2(&,) = =#(&,) *615-1€Hw1
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and hence x induces a diffeomorphism y for which the diagram commutes
G— = 0°
AN G l H? /;
Since »: G -G [H? is a principal fibre bundle (see [6], p. 55, example 5.1),
in some neighbourhood of the point y~!(7,) there is a section g of . Now
@ = poyp~! is defined in some neighbourhood of 7, and x0¢ = id, that
is,
(6.4.2) (en)™)e(n) = .
Next we define a section:

o: U>P, gq(2) = E(m)-g((A(a(w)))'l).
o(w@) belongs to P, because
(4oa)(@) = A(a(2)-¢((405)(m))7)
= p[e(4 (c(2)))] 4 (3(a))[e(4 (7 ()]
=g(e(m)n{e(n)™, where n = A(s(a))

(6-4.2)
=1,

and this completes the proof.
To end this section we state the following notation: for the action
L*¥ of @ on @ and ne¢@, we denote by

(6.5) _ 0PN = {p(&)np(E™"): &G}
the orbit of G through #.

7. Definition of conjugate connections. Suppose we are given a prinei-
pal fibre bundle P(M, &), two connections I; and I', in P(M, @) and an
endomorphism @: @G —@G of the Lie group G. Let w, and w, denote connec-
tion forms of Iy and I',, respectively.

DEFINITION 7.1. I is called @-conjugate with I', if there is a reduced
fibre bundle Py(M, H) of P(M, @), where

(7.1.1) H = {£¢G: B(&) = &},
such that for every local section o: U—P, of P,(M, H) we have
(7.1.2) O'*wz = g¢'u‘w1,

where o* w; i3 an inverse image of w; by o, £® is an endomorphism of the
Lie algebra #(@) induced by & and the operation #®-o*w, is defined
by the formula (LP-o*w,), = LPo(d*w,), for » in U.
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In [3] we prove that if @ is an involutive automorphism, then this
definition coincides with the definition of W. Wiediernikov [11].

‘Now we prove the following lemma.

LEMMmA 7.2. I'y i8 D-conjugate with I'y if and only if there is a reduced
fibre bundle Py(M, H), where H i3 defined by (7.1.1) such that for any
point p, in P, and for any trivialization of P in some nieghbourhood U of
Dy = 7(Po) such that P|U = U xG, Py|U = U xH, p, = (@,, &) (precisely,
the above formulas give some identifications), and for any vector field v:
M—->TM, we have

(1.2.1) HD\(py) = v, 0w, HA(py) = v, 0(d,P)(w),

Jor some vector we T,G.

Proof. To begin with, we suppose that I is ®P-conjugate with I',
and let Py(M, H) be a reduced bundle of P(M, G) satisfying condition
(7.1.2). Let we fix a point pye P,, a trivialization of P(M, @) such that
PolU = U xH, py = (@y,¢), and a vector field »: M—>TM. There is
an h: U—@ such that h(®,) = ¢ and

(1.2.2) H\(po) = dyo(v,) = v, 0(d,h)(v,) = v, 0w,

where 0: U —P, a(@0) = (@, h(2)). If we denote by go(#) = (@, ¢) a section
of P,, then ¢ = 04-h and from Proposition 1.4 in [6], p. 66, identifying
Z(G)with T, G, we obtain

0= w:(Hfl(Po)) = wl(dzoa(’oco)) = (o* wl)zo(v::o)
= [adh“(za)o(o'* wl)zo]('vzu) +dzoh('”a:,,)

= (0} @y)gy (0g,) +
or '

(7.2.3) (05 W1)g, () = —w.
Now, from (7.2.2) and (7.2.3) we obtain
0y (HT(Po)) = (0% 03)g () = (05 y)y, (0) + 6y B(0,,)
= (2P0 (05 0y)z,(v,) + )
= —d,P(w)+w,

because if we identify £ (@) with T,G, then £ is identifies with d,®.
This last formula implies (7.2.1), that is, H.2(p,) = v, ©d,P(w), because

03 (02, B (05,)) = wo(Hi(po) +0 @ (d, B(w) —w))
= —-d,P(w)y+w4+d,P(w)—w = 0.

{Let us remark that w,(06u%) = %.)
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Secondly, we shall prove the sufficient condition. We suppose that
there is a reduced bundle P (M, H) of P(M, @) satisfying (7.2.1). We
must show that for each section o: U—P, of P, formula (7.1.2) is true.
TIn order to do this, let us fix a section o: U —P,. It defines a trivialization
of P(M,G)|U such that Py|U = U XH and o(x) = (v,¢) for ve U.
Let us fix an arbitrary point #, of U and an arbitrary vector %, of T, M.
We can choose a vector field v on M such that v, = u,. Since for ue T, P

(7.2.5) wi(w) = o;(u—H5(p)),
we have
(U*wz)zo(uo) = wz(dxo 0'(’“'0)) = wy(Up+0) from (7.2.5),
= wy(uy 0 — Hy2(o(a,))) from (7.2.1),
= w00 (—d, ) (w))
= —d,P(w) because w;(0+4%) = u
for ueT,Q,
= —(d,@ow,)%wew) from (7.2.5),
= —-(d,diow,),,o(oew—Hfl[a(w,,)j) from (7.2.1),
= —(d,P0 w,),,(%,®0) from (d%a)('ozo) = uy,®0,
= (de¢0 wl)(dzoo(uo))

= (LD 0" wy),, ().
Since z, and u, have been arbitrary, formula (7.1.2) is proved.
8. Geometric interpretation of conjugate connections — the main
theorem. Now we prove our main theorem:

THEOREM 8.1. Let I'; and I', be two connections in a principal fibre
bundle P(M, @), and let @ be an endomorphism of the group G. We denote

by o, and w, connection forms of I', and Iy, respectively. The following
conditions are equivalent:

{8.1.1) I, is D-conjugate with I,.

{8.1.2) There is a covariant object A on P(M,G) of the type @ such that
A(P) < {9, and for each vector field v on M

phifag — o,
(8.1.3) There is a contravariant object B on P(M, @) of the type D such
that B(P) c 0!'%9, and for each vector field v on M
rrhp =o,
(The sets 'Y and %9 are defined by (7.5.).)

Proof. If A: P—@ is a covariant object of the type @, then B = A~
is a contravariant object of the type @ and the equivalence of (8.1.2)



258 J. Gancarzewicz

and (8.1.3) follows immediately from Proposition 6.3. Thus, we need
only prove the equivalence of conditions (8.1.1) and (8.1.2).

According to Lemma 7.2 condition (8.1.1) is equivalent to the existence
of a reduced fibre bundle P,(M, H) of P(M, @) satisfying (7.2.1). Let
A be a covariant object on P(M,G) of the type @ associated with
P(M, H) (see Proposition 6.4). If we fix a point p,e P, and a trivializa-
tion of P(M,@)|U in some neighbourhood U of @, = =(p,) such that
P,|U = U xH and p, = (@,, €), then the object A is given by the for-
mula

(8.1.4) A(w, &) = (AoR,)(w, €) = Li* V(A (2, ¢)) = B(E7")¢&

e—l
for (#, §)e P|U = U x@. The trivialization of P|U defines also a tri-

vialization of (P+P)|U = U x@ x@ and the object A (see (2.5.1)) is
given by

(815)  A(w, &) = A9

Y

(A(2, &) = B(EY)n = 4°(&, 7).
If we introduce the notation

(8.1.6) H,' (p)) =
then we have

— T
(Vo2 4)(Bo) = dipy,p9d (Hy' (Po) 0 By (20)
= dy, A" (wew) from Propositior Q,

r. —
2, ®W, Hoz(pll) = Ve @ W,

= d,/A%w)+d, A’ (w),
where
(A°) (&) = A°(&,e) = D(&7) = (Pok)(§), k(&) =&,
("A°) (&) = A°(e, &) = £ =id(§). .
Since d,k = —id, we obtain
(8.1.7) (Vo2 4)(po) = —d, P (w) + 0.

This last formula implies that P,(M, H) satisfies (7.2.1) if and only if

Vf 12 g 0, and hence conditions (8.1.1) and (8.1.2) are equivalent.
We can also prove other forms of the main theorem.

THEOREM 8.2. Let & = ad,ovy, where v is an endomorphism of G and
ne@, and let I’y and I’y be two connections in P( M, @). The following con-
ditions are equivalent:

(8.2.1) I, 18 D-conjugate with I,.

(8.2.2)  There is a covariant object C on P(M, @) of the type y such that
C(P) = 09, and for each vector v on M

7,20 = 0.
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(8.2.3) There is a contravariant object D on P(M, @) of the type v such
that D(P) = 0P, and for each vector field v on M

72D =o.

Proof. Let C be a covariant object of the type y and write D = ¢,
Now

C(P) = {p(Emé: £e G} = 0P,
;
D(P) = {(§7'77 p(£): £} = 0

and hence Proposition 6.3 implies the equivalence of (8.2.2) and (8.2.3).
Thus, in order to prove our theorem we only need to show the equivalence
of conditions (8.1.2) and (8.2.2).

Let A: P—>@ be a covariant object of the type @, and set

(8.2.4) C: P>, C(p) =97"A(p) = (L, _,04)(p),

where I _, is the standard left translation on @. C is a covariant object
of the type v because

Clp &) =n"A(p-& =n7'B(E)A(p) = p(£ )0 " A(p)
= (I#1%0)(p).
Next it is easy to see that

A(P) = {P(E7")§: Ee@) = 019,
(8.2.5) $
C(P) = {p(§")né: £<G} = OP1Y.

Let us remark that (see (2.5.1))
C(p, @) = A0(C () = v(g(p; D)~ A(p) =~ P(g(p, 9)A(p)
= (L,_,04)(p, 9),
and hence,

Vo120 = a0 -H,'* %0 4 = dL .,0dAoH,* "0 A = dL_,0 V'

nry

A.
Since dL__, is an isomorphism we have
(8.2.6) 70 = 0« P, 24 = 0.

- Formulas (8.2.5) and (8.2.6) prove the equivalence of (8.2.2) and
(8.2.3).
Now follows

THEOREM 8.2. The following conditions are equivalent:
(8.3.1) I, is ad,conjugate with I,.



260 J. Gancarzewicz

(8.3.2)  There is a G-afinor C on P(M, @) such that C(P) c i1 gnd
7,120 =0
for each vector v on M.
(8.3.3) There is a G-affinor D on P(M,Q@) such that D(P) c 0":‘1'1"’),

and
viitp =0

for each vector field v on M.

9. Image of conjugate commections. Let P(M,G) and P (M, @) be
two principal fibre bundles over the same base M, and let f = (f,, fg)
be a homomorphism of P(M, G) into P'(M, &); i.e., f;: G—>G is a homo-
morphism of Lie groups and fp: P—P’ is a differentiable mapping
which makes the diagram

) A
u\ / n’
M

commutative, and, furthermore, fp(p-:§&) = fp(p)-fa(£) for peP and
Ee@.

Let I' be a connection in P(M, Q). From Proposition 6.1 in [6],
p. 79, there is one and only one connection I in P'(M, @) such that
dfp transforms horizontal vectors for I' into horizontal vectors for I".
If w and o' are the connection forms of I" and I", respectively, then

(9.1) fpo' =2(fo)
(see Proposition 6.1 in [6], p. 79). We write I"" = f(I').

Next, suppose we are given two manifolds F, F' and families of
left translations

Ay Ag: F—>F  (ée@),
Apy Ay FF>F  (Ee@)
such that A,04, = 4,04, and A,0Ad, = A,01;,. Also, let I: F > F’ be
a mapping such that for all {e @
(9.3) lody = Aygol, lod, = Ay pol.

For a homomorphism f = (fp,fs) of P(M,G) into P'(M,G') we

write

f+f =(fp+fesfoxfa): P(M,@)+P(M,G) ~P(M,F)+P (M, &),
where fp+fp is the restriction of fpxXfp to P+P < P xP. It is clear

that f+f is a homomorphism.
Now we show two lemmas.

(9.2)
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LeEMMA 9.4. If Iy and I, are two connections in P(M, G), then
ry+Tly

A(fp+fe)oH, "= HY V0 (1ot fp).

Proof. If o, and ; denote the connection forms of I'; and f(I7),
respectively, then, by (9.1), we have

f;w; = 2 (fo) o
and hence, for each pe P, the condition (m,-)p(Hf"(p)) = 0 implies

0 = (L(fo) 0)o(Hy' () = [Foi(H, (D)) = ()| dpfelHy' ()

Thus Hy °(fp(p)) = dufa(H, (p) or H, Pofp = dfpo H,*. By applying
(2.7) this formula implies our lemma.

LemMma 9.5. If A: P—>F and A': P'—>F' are an (F, A0 A,)-object
and an (F', A0 Ay)-object on P(M,Q) and P'(M, @), respectively, such
that
(9.5.1) lod = A'ol,
then

dloV,i24 = Pl 405,

Proof. As usual, we define 4 and 4’

Z(P: q) = Ag(p,q)(A (P))y Z'(p, qQ = A'a'(p.a)(A'(P))y
where g: P+P—>@, g': P'+P — @ are defined by (2.4). Let us remark that.

[4'o(fp+fo)1(2, @) = A'(fp(P), fo(a))
= ;’(!w),m))(A'(fP(P))) from (9.5.1),
= Ay spo((lo4)(p))  from (9.3),
= (loA,0 A)(p),
where £ is any element of G such that fy(£) = ¢'(fp(p), fr(g)). Since the
equality ¢ = p-g(p, q) implies
fe(@) = fe(p)- falg (P, @),

and hence g'(fp(p), fp(9)) = fe(9(p, q)), we can put & = g(p, ¢) in the
last formula. Now we obtain

A'o(fp+fp) =104,
and hence

V{,(Pl)f(rz)ArofP — dzloﬂ»i(rl)+f(rz)o AlofP
= dZoH,"™" "o (fy 1 fp)o 4
= dloddoH " 04 = dloV, 2 4.

Now we can prove
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PrOPOSITION 9.6. Let P = (fp,fg) be an epimorphism of P(M, Q)
onto P'(M,@) and ¢: G—>G, ¢': G -G be endomorphisms of G and @
respectively such that foop = ¢'ofy If I is g-conjugate with I',, then
JF(I',) i8 ¢’-conjugate with f(I,).

Proof. By Theorem 8.1, there is a covariant object A on P(M, @)

of the type ¢ such that A(P)c ¢® and V, 24 = 0. Let Po(M, H) be
a reduced bundle of P(M,G) associated with A (see Proposition 6.4),
where

H = {(e@: g(8) = &

Now P, = fe(P,) is a reduct bundle of P'(M, @) with structural group
H' = fy(H). Let us remark that

b H b H: & = fold) |
<>teG: & =f3(6) and @(§) =¢
<& = (feop)(§) = (¢'0fg)(§) = ¢'(£)),

and thus '

HBc{te@: 9 ()=¢}=H.

By Proposition 5.3 in [6], p. 63, there js one and only one reduced bundle
Py(M,H') of P'(M,&) such that P, c P,, and, by Proposition 6.4,
P,(M, H') determines a covariant object A’ of the type ¢’ on P'(M, @)
such that

Py ={peP': A'(p') =1}.

Now it is clear that A'(P') c €'Y and, for p = p,*¢&, p,e P,

(A’ofp)(p) = A'(fp(o) fa(&)) since A’ is of type ¢’, and thus
= 'P'(fa(f_l)) A'(fp(f’o))fa(f) from fgop = @'ofy, and
fP(po)‘Pt’n

= falp(&™)fal&)
= falp(§7") &)
= (fq0 4)(p) because 4 (p) = @(£7")4(p,) €
=g(& N1
or
A'ofy, =fg0A.
Thus Lemma 9.5 implies (for I = f) dfgo V124 = VI g'0f, = 0.

Since fp is surjective, VW24’ =0, i.e. f(I}) is ¢'-conjugate with
J(Ty).
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10. Conjugate comnection of the order r, r > 2. For investigations
of couples of conjugate connections defined in P(M, @) it is important
to know a classification of endomorphisms of the group @. Such a classi-
fication is due to M. Kucharzewski and A. Zajtz [7] for the linear group
GL(n, R) = L} and to A. Zajtz [12], [13] for the group L}, r > 2.

Conjugate linear connections were considered by the author in
[3]. Now we explain the case of connections of the order », r > 2. First
of all we recall the classification of endomorphisms of the group L},
r=2.

Let us remark that L2 = GL(n, R) x ', where

Q' = {(ai) e R™: a}, = ai})
and for ¢ = (4, X), = (B, Y)e L}
af = (AB, X-B+A-Y),
where 4 = [af], B = [b}], X = [af;), ¥ = [y};] and

X B =[a,bb7), A'Y =[ay5].

It is clear that (A, X)™' = (4", —A7'- XA,
For r > 2, we have

I = L' x @ = GLtn, R) x M x .., x &
where

- +1, g . L . ,
Q7! = {(a,.flm,-r)e RV a;,...;, is symmetric with regard to 14y, ..., 4},

and, furthermore, the canonical projections L7 —L7~! and the canonical
inclusions GL(n, R)—L; are homomorophisms.
Now we can formulate (see [13])

ProPoSITION 10.1. (a) If ¢: L} —~ L2 is a homomorphism, then either
(101.1) ¢ is an inner automorphisms, or

(10.1.2) @ is a composition of an inner automorphism and a homomorphism
D, for some constants x, ve R, where
5 2 2 (*)
¢(,¢',)(A., X) = (A, x(mjk —_ n—_H'az(j.’B;:)' b:) + m a:jmz),bf.)
and A =[af], A" =[b}], X = [af}], or
{10.1.3) ¢ is a composition of an immer authomorpism and a homorphism

(4, X)—~>(p(4), 0),

) @4, k) denotes the symmetrization.

4 — Annales Polonici Mathematici XXXII.3
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where y i8 an endomorphism of the linear group GL (n, R),

(b) If @: L, —L} is an endomorphism, r > 3, then either ¢ is an inner
automorphism or ¢ i8 a composition of an inner automorphism and a homo-
morphism

(4, Xy, ..., X)) _’-(V'(A)’ o..., 0)1

where y is an endomorphism of the linear group GL(n, R).

Hence follows immediately (see [12])

ProposIiTioN 10.2. (a) If ¢: L), - L,, r>3, is an automorphism,
then ¢ 18 an inner automorphism.

(b) If ¢: L. —~ L2 ts an automorphism, then ¢ is8 a composition of
an inner automorphism and a homomorphism D, ve B (let us remark
that @, = id).

Connections in L™ M are called connections of order r on M. The above
propositions mean that the most interesting case for investigations of
conjugate connections of order r is the case r = 2 and the endomorphism
®..- We shall consider this case; we begin with some general remarks.

First, Propositions 8.3 and 6.11 imply

ProPOSITION 10.3. Let I'y and I'y be two connections of order v, r > 1,
on M and e L;,. Iy is ad,-conjugate with I'y if and only if there is an r-af-
finor A on M such that

A('M) = 6% = {EnE™": ¢ G)

and for each vector field v on M, each integral curve y of v and each r-jet t
on M we have

V't =0 along y< V. 2(t-A) = 0 along y.
Secondly, for r > 2, let '
=x,: L, >QGL(n,R), =m: L'M >I'M =LM

denote the canonical projections. It is clear that =,.(p-§) = =,.(p) #,.(£).
By Proposition 10.1, for each homomorphism @: L] — L} there is 2 homo-
morphism ¢: GL(n, R)—>GL(n, R) such that the diagram

L, ® I
il \*r
GL(n,R)3GL(n, R)
commutes. Now, Proposition 9.6 implies
ProPoSITION 10.4. Let I', and I', be connections of oreder r on M, and
le¢ &: L, > L, ¢: GL(n, R) >GL(n, R) be endomorphisms such that

70D = gom,. If Il is P-conjugate with I'y, then = (I'y) is ¢-conjugate
with w, ().
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Now we shall consider the case » = 2 and the endomorphism &,
of the group L? for some x, ».

If we introduce the mapping

| |2 L3 >
setting for & = (af, @) '
(10.5.1) la| = (a(;@5),b5),
where [b] = [a}]~', we can write
2(v—x
(10.5.2) By (4, X) = (A, xX + —(2—) 4, X)l).

We define an action of the group L on R"a, setting for a = (4, X)e L?
e, R”R" (0, we R),

2w
4!
1 |l

. (@) = Au-A1—pXA™?
(10.6) A8 (u) u-A o XA~ 4+ Y

. 20
= (uﬁpbfbfai— 0rgjbL + 3 843 blyre :)’

where u = [4},], X = [#},], 4 = [a]] and A~ = [b]. It is easy to see
that
10 e = 25
for a, be L.
DEFINITION 10.7. An (R", Ae).object on M, where A*® is given
by (10.6), is called an object of (¢, w)-connection on M.
We propose the above terminology because:

(10.71) If ¢ =1 and o = 0, we obtain an object of linear connection
8}, [5).

(10.7.2) If p = @ =1, we obtain an object of projective connection [8].
(10.7.3) If p =0 and w = 1, we obtain an object similar to an object

of contractible connection on M, {8], [5].

In our terminology, an object of contractible connection in an
(R, hy)-object on LM, where

(10.7.3.a) ho(u) = (ugb}— biw?, b2)
and ¢ = (4, X), 4 =[a}], A™' =[bj], X = [0}], » = [4;]. In order
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to verify that an (R™, A®")-object in similar to an (R, k,)-object, we
consider two mappings:

(10.7.3.b) j: BV >R, () =[],

. 2
it BB, J(e)) = [ dha],
and it is easy to see that

jod®V = h 0§, Joh, =A% dJ.

These formulas mean that each of the above two objects is a concomitant
of the second omne [1], [B].
We introduce the following definitions (see [8]).

DEFINITION 10.8.1. An (2, A%*") object on L2M is called an object

of symmetric linear connection on M, where
Q = {(af}) e B™: af, = al)}

and A0 denotes the restriction (we use the same symbol for this restric-
tion) of A" defined by (10.6) to Q. It is possible because AJ” (L) = Q.

DEFINITION 10.8.2. A (K, A{"")-object on L*M is called an object
of projective connection on M, where

K = {(a},)e R": o, =0 for i =1,...,n}.
It is clear that A"V(K) < K.

DrrFINITION 10.8.3. An (R, h,)-object on L2M is called an object
of contractible connection on M, where k, is given by (10.7.3.a).-

Before we formulate our propositions we find some properties of the
mapping
(10.9.1) fomi Li>B%,  fou(a) = A22(0).
From the formula (4, X)' =(47', 47 X-4"") and from (10.6) we
have

) 20
(10.92) St af) = (abiofe— 2 dfaibt)
where b};aj’ = 6;' (). Now we calculate Jio.y© P(x,y- Namely we have
: . 2(r—x)
(fies)© Do) (F5 D) = Sio,) ("’f’ "W+ = oy "’bsb:)
) 20—n)ow 20w :
= (Q%b:m;k—l- W abﬁg,)'b;"l- n—_l_l[xé(jm};)sbﬂﬁ—

2(v—x) _;
o 5(1%1:”3])’

(*) In the whole of this section we shall use the following notation: if 4 = [aﬁ],
then 4-1 = [b}].
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n+1
where y2, = 8%.af,,b%. Since y2,b? = T+w;;,b:, we have
: 2(vp—xp— wv)
(f(e.w)o ¢(x,f))(aj? mjk) = Q”b:mjsk+ e &:Jy%)pbg ’
n+1
that is,
(10.10) f(g,w)o ¢(a¢.v) = f(ex,m+ue—vo)‘

Now we can prove

PrOPOSITION 10.11. Let I'y and I', be two connections of order 2 on M,
and let m: L*M—~LM be the canonical projection. I'y is D,-conjugate with
Iy, where ®, = D, ,,, » #0,1, if and only if =n(I'\) = =n(I,) and there
18 an object of symmetric linear connection I' on M such that for all vector
Jields v on M

(10.11.1) Vil = xV1T.
Proof. First of all, we suppose that I'; is @P,-conjugate with I',.

According to Lemma 7.2, this means that there is a reduced bundle
Py(M,H) of L*M, where

H = {acL}: ®,(a) =a},
such that for each point p, in P, and for any trivialization of P in some

neighbourhood U of the point #, = #(p,), such that L*M|U = U x L%,
Py|U = U xH, py, = (2, ¢), we have

(10.11.2) _H:z(po) = ’UonBdc@,,(’W), H{l(po) = Vy,0W,

for all vectors field » on M.
Let us remark that
(10.11.3) acHe D, (a) = (af, x0}) = a
<), =0 (because x # 1).
Thus Po(M, H) defines the mapping

(10.11.4) I': L*M—>2, I(p) =A0(0) = fae(a) = (b55),

where p = p,-a and pye P,. (10.11.3) implies that I' is independent of
the choice of p, in Py, and it is not difficult to show that I" is an object
of symmetric linear connection on M.

Next, let us fix a point p,e P, and a trivialization of P, for which
condition (10.11.2) is satisfied. Now

P(‘”; a’) =f(1,0)(a)
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for (, a)e I* M| U. From (10.11.2) we have

(Vo' T)(@y, €) = Biaye I'(05,0W) = i, (10)

(Vo2 T)(@, ) = gy [0z, + &4 By (w)) = d(fg,0 Bo) (0]
From (10.10) we obtain
(10.11.5) f(,,o)o b, = f(l_,,)o di(,",,) = f(,,'o) = ".f(l,o)’
and hence

(Vo) (po) = %(V;' I)(p,)
for all p, in P,, and by (1.5) this implies
Vil — xVIi 0.

The condition #(I;) = =(I,) follows immediately from Proposition
9.6.

Now we suppose inversely that x#(l;) = = () and there is an object
of symmetric linear connection I" on M such that condition (10.11.1)
holds.

We shall first prove that

P, = {pe I*M: I'(p) = 0}
is a reduced bundle of L M. Since for each point p, of P, we have
po'a€P0°a€ .H,

where H is given by (10.11.3), in order to verify that P, is a reduced bundle
we need only to prove that in some neighbourhood .U of any point of M
there is a section o: U —L*M with values in P,. If o: U~>L*M is any
section, we define

g: U>L;, gle) = (I, s(l@)), I=1[4]

(g is well defined because I' is symmetric), and ¢ = o-g is a section of
I*M such that o(w)e P, for @¢ U, because

I(o(@)) = I(3(@)-g(x)) = A5 _(I(s(a)) =0
(g(@)™" = (I, —I'(o(a)))).
It is clear that H is a structural group of P,.
Next we fix a point p, in P, and a trivialization of P, in some neigh-
bourhood U of @, = n(p,) such that I*)M|U = U xL:, P,|U = U x H,

Po = (hg, €). In order to prove that I, is @,-conjugate with I'y, by Lemma
7.2, we need only to verify condition (10.11.2).
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Let us remark that in our trivialization I" is defined by formula
(10.11.4), and hence, by (10.11.5), condition (10.11.1) means

dc(f(l,o)o b)) (w) = cﬁl,o)(w)a
where H,'(p,) = 0,0 W, H(p,) = v,,©W, that is
{10.11.6) %—d, D, (w)ekerd,f -
It is easy to see that
kerd,fy,, = I1GL(n, R)o0 < T;,GL(n, R)+T,Q =T L;,

and hence, if w = w,ow,, W = w,ow, are decomposition of w and w,
respectively, such that w,, w,eT;GL(n, B) and w,, w,e¢T,2, then
{10.11.6) implies

w, = de ¢x(w2) .

On the other hand, the condition =(I3) = =n([l,) implies w, = %,.
Thus we have

1'—0- = de ¢,‘(W),
because @, |GL(n, R) = id, and this completes the proof of our proposition.

We also show the following

ProrosiTioN 10.12. I'y is D,-conjugate with I'y, where p, = D, 1), %
# 0,1, if and only if =n(I')) = =x(l,) and there is an object of projective
connection x on M (see Definition 10.8.2) such that

(10.12.1) Vitll = xV' T

Jor all vectors field v on M.

Proof. The proof of this proposition is similar to the proof of Prop-
osition 10.11. For this reason we shall not prove the above proposition
in detail, but we shall only explain some points of its proof — namely
the points it which the proofs of the above two propositions are different.

First, the structural group H of P, is given by

H = {a< Ly: p,(a) = a},
and hence, instead of (10.11.4), we obtain

2(1—
seHoyp,(a) =(4,wX+ 2 lal) = (4, D) =0
2(1 —x) _

<~

] la] =X (because x # 1).
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Secondly, instead of (10.11.4) we consider the mapping
I L2 M — K I v 2 i W RS
i <, (p) =f(1,1)(a') = (b.wf-k— m 6(jwk)sb, ’

where p = py-a, poe Py, which is independent of the choice of p, in P,.
IT is an object of projective connection on M.
Thirdly, since (10.10) implies

f(l.l)o L2 =f(l,l)o ¢(u,l) =f(n,x) = "‘f(],l)y

instead of (10.11.1) we obtain (10.12.1).
Using the same method we can prove
ProrosiTioN 10.13. I'y is y,-conjugate with Iy, where y, = D, v

# 0, if and only if n(I'y) = =(I'y) and there is an object of (0, 1)-connection
A on M such that

(10.13.1) VitA =9V, A4

for all vectors field v on M.

Since an object of (0, 1)-connection is similar to an objeet of contrac-
tible connection, we can prove

ProposITION 10.14. I'y @8 y,-comjugate with I';, where y, = D, »
# 0, if and only if n(I'y) = =m(l',) and there is an object of contractible con-
nection y on M such that

(10.14.1) Vity — o)ty

for all vector fields v on M.

Proof. We need only to prove that the existence of an object of

(0, 1)-connection A satisfying (10.13.1) is equivalent to the existence

of an object of contractible connection y satisfying (10.14.1). But if A4

is given, then y = jo A, where j is defined by (10.7.3.b), is an object of

contractible connection on M, and by applying the formula
Vyip =djoV,*4, i=1,2

-

(which follows immediately from the definition of V: Y), condition (10.13.1)
implies (10.14.1).

Inversely, if y is given, then A = Joy, where J is defined by (10.7.3.b),
is an object of (0, 1)-connection on M, and by

VA =dJoV,'y

condition (10.14.1) implies (10.13.1).
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