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MINIMAX SEQUENTIAL ESTIMATION
OF PARAMETERS OF RANDOM FIELDS

1. Introduction. The paper is devoted to the problem of minimax sequen-
tial estimation of parameters of random fields. We prove a theorem (Theorem
3) which is related to the results of Dvoretzky et al. [2] and Rhiel [7]. The
theorem proved is an improvement of the result obtained by the author in [10].
We prove that, under some assumptions, for a square loss connected with the
error of estimation and for a cost function c(|K|[) of the observation of
a random field X, s€ R?, on the set K the simple plan is a minimax sequential
Plan among all sequential plans (z, f), where 7 is a Markov stopping set with
respect to some family & of compact subsets of R?. Examples of the application
of this theorem to the Poisson, Wiener and Ornstein—Uhlenbeck fields are also
given. Analogous problems of minimax sequential estimation for stochastic
processes were considered in [7}, [8], [12]. '

2. Preliminaries. Let X, seR? be a random field, and V a set of
realizations of this field. Assume that this random field generates a probability
measure p,, defined on (¥, &), where & is a o-algebra of subsets of V generated
by cylindrical sets, and 8e 4 = R is a parameter. Let ¢ denote a family of
compact subsets K of R?, and §(K) the diameter of K. Suppose that the family
Y satisfies the following condition ([9], [11]):

CONDITION 1. There exists a countable family of compact sets P,(n), neN,
iel = N, such that

sup{6(P;(n))} -0 as n—>w

and for each K €% there exists a finite covering C,€ % of K by some sets among
Pyn), iel, for which '

C,=K.

s

Cn+ 1 < Cn"

n=1
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The ‘g-algebra of subsets of V generated by cylindrical sets
{v: (v(s,), v(s)-.., v(s,))€B}, BeBp, s;€K,i=1,2,...,n

is denoted by #, and the restriction of , to the g-algebra #  is denoted by

1 -

DEerINITION 1 (see [3] and [9]). A Markov stopping set T is a mapping
7: V=% such that for every Ke¥%

{v: 1) = K} e Fy.
DEFINITION 2. A g-algebra & of sets Ue # such that for every Ke¥%
Un{v: t(v) = K}eFg
is called a pre-t- a-algebra corresponding to a Markov stopping set t.

- Denote by pg the measure y, restricted to the ¢-algebra &% ,. The following
is true

TueoreM 1 ([9], [11]). If & satisfies Condition 1 and

d,uo (v) goo(K, v, 0) for each Ke %,

where g, is such tha_t for each K,|K
goo(Km v, 0)—+goo(K, v, 0)

Ug-almost surely for each O¢ A, then

Vo < g, and = g, ((0), v, ).
~ DEFINITION 3. By a sequential plan we mean a pair § = (t, f) that consists of
a Markov stopping set 7 and a mapping : :

[V, F)-(4, 2,

where #, is a family of Borel subsets of 4. The mapping f is called an
estimator of the parameter 6.

Let the density function duf/duf be given by the formula

duy -
20 = 00,(QK), S(K, 1), 0),

where g, is a Borel function on R?x 4; S: ¥ x V- R is such that, for every
Ke¥, S(K,') is & y-measurable and S(K,, v)—>S(K, v) py-almost surely for
each @€ A whenever K, | K, K, K,€%; Q is a set function-from ¥ into R such
that for each K,|K, K,, Ke¥%, Q(K,)— Q(K) as n— .

In this case we can infer by Theorem 1 that the statistic (Q(), S(1)) is
sufficient for the parameter 0, and therefore we can restrict ourselves to the
estimators of the form f(Q(z), S(7)).
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Let L(f, 6) denote the loss incurred by a statistician if 0 is a true value of
the parameter and f is an estimator of A he uses. Let ¢(|K|), where |K| denotes
Lebesgue measure of the set' K, be the cost function representing the cost of the
observation of the random field on the set K. The function c: [0, co] = [0, o]
is assumed to be continuous, non-decreasing with ¢(0) =0 and c(o0) = oo.
Then the risk function is given by

. R(9, 0) = Eg[L(f, 8)+c(z])].
We assume that R(S, 0) < co.
DerINITION 4. A sequential plan §=(,f) is called minimax if
sup R(S, 6) = inf sup R(3, 9).
8 ' § ] .
Let ® be a prior distribution on the parameter space (4, # ). If R(S, ) is

a % ,-measurable function, then for each sequential plan & the Bayes risk with.
respect to the prior distribution & is given by

r@,®) = [ R, 6)®(df).
A
DEFINITION 5. A sequential plan & = (£, f) is called a Bayes plan with
respect ot @ if -
r(8, ®) = infr(5, ).
5

Let us define a probability measure 75, on (V x A, # x #,,) by the formula
(U x B) = I‘uo(U)é(de) |
B

for each Ue#F aﬁd Be 4% ,. Observe that
7p(V x B) = | py(V)P(d0) = $(B)
‘ 3 .

and .
nip(U x A) = | uo(U)@(d8) = to(U)
. A b
for each Ue# and Be#,. | :
From the general theorem ([1], p. 293) on existence of a transition

probability we infer that for any Markov stopping set © there exists a transition
probability measure ¥4 (v, -) such that

7I"'ﬁb(lj X B) = tj;le,-:(Ua B)d,u,,(v)

for each Ue %, and Be#,. We can also write
¥o,.(0, B) = (no(Vx B)|F, x (D, A4})(v)

hg-almost everywhere. The measure ¥, is called the posterior probability of
6 having- observed the realization v on the set .
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DerFINITION 6. The mapping Ygo: V—R,, Ke¥%,
Y¢ o(v) = inf[ [ L(f, 6)¥o (v, d0)+c(K])]
fF A

is called a stochastic decision process.

DEFINITION 7. A sequential plan § = (1, f) is a simple planif t1(v) = K, Ke ¥
for almost all veV.

3. Minimax sequential estimation in random ﬁelds.
THEOREM 2 (see also [7]). If there exists an estimator f '(Q(z), S(r)) such that

Ye,0(v) = £ L(f(Q(K), S(K, v)), 6) ¥o,x(v, d0)+c(K])

pg-almost surely for each K€%, then for any Markov stopping set t
E,qu(Yl:.d’) = r(é” ¢) = infr(a’ Q):
E

where &' = (t, f'(Q(7), $(7))).

Proof. For every sequential plan & = (r, f(Q(1), S(r))) we can write
r6, @) = Er,[L(f(Q(2), S(@)), 0)+c(l])]
= § duy(v)( £ L{f(Q(2), 8(z)), 0)¥o,.(v, dO))+E,,(c(])

> [dol®) (§ LU Q@) 56), 6) o, 46)+Ex (e ()

=B (L(f'(Q(), $@)), 0)+Erge (it = By, Yo,
Remark 1. If the decision process Yx o is deterministic and there exists
a simple plan 7y = K, such that )
YK0,¢ = inf Yx,qp,
) Ke¥
then the sequential plan 85 = (o, f'(@(z,), S(z,))) is a Bayes plan among all
sequential plans. |

The following theorem that we prove is related to the well-known theorem
of Dvoretzky et al. [2] and to the theorem of Rhiel [7]. This theorem improves
.the results obtained by Rozanski [10].

THEOREM 3. Assume that for some sequence ®,, n=1, 2,..., of prior
distributions of the parameter 0 the corresponding stochastic decision processes
Yz 0, are deterministic. Let

Y% = lim YK,(p" lim inf YK,d) n — inf lim YK.G'"'

n—rwo n-+ oo Ke¥ Ke¥n—w
If there exists a simple plan 8, = (1o, f(Q(to), S(z,))) such that o = K, ae.,
Kq,e¥%, and .
supR(dy, ) < YE, = inf Y,
o .

Ke¥
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then &, is a minimax sequential plan among all sequential plans (z, f ), where 7 is
a Markov stopping set with respect to %.

Proof By Theorem 2 we get
infr(d, ®,) =infYg o ,
[ K

sup R(d,, 0) < Y§, = lim iof Y o, = lim r(d;, @,).
7] .

n—wc Ke¥ n—co
By the well-known theorem (see, e.g., the monographs [4], p. 90, and [15], p.
374) we infer that the plan (4, f;) is minimax.
4. Examples.
1. Poisson random field.

DEerINITION 8. Let #%: be the family of bounded Borel subsets of R2.
Assume that the family {N(B), Be %%} of random variables has the following
properties:

1° for an arbitrary set of disjoint bounded Borel subsets B,, B,,..., B, of
R? the random variables N(B,), N(B,),..., N(B,) are independent;

2° P(N(B;) = k) = (0|B|)*exp(—0|B{)/k!.

The random field

N,=N(R,), R,=[0,x1x[0,y], (x,y)eR%,
is called a Poisson random field. |

The unknown parameter § is to be estimated. By [6] the measure
Uq* corresponding to the random field N, se R,, is absolutely continuous with
respect to the measure uy= corresponding to the Poisson random field with
0 =1 and | '

dug* ‘
——— = =exp(—0|R,)).
P p(—0IR.])
Let L(f,0)=0"1(f—0)*> and let us choose a sequence of prior dis-
tributions of the parameter 0 given by the density functions

@a(0) = n"'exp(—0/n).

The density of the posterior distribution of the parameter having observed the
realization v on the set R, takes the form

(dps/dpt) 9, (6)

[0}

| (dpg=/dps) @, (6)d0

0
1\¥R)+1 gNR2) 1
- - —o(IRJ+-)).
('R"+n) N(Rz)!e"p( 0(‘ "+n))

Tn,Rz =
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We also have

Yen= ———+e(Ry)
Rem IR J+n 1 =
From Theorem 3 we infer that the simple plan 8, = (R,,, f(N(R,,))) such that
N(R,) . ( 1
N(R,)) = > +c(R, ]} = min +c(|Rz|))
SR =T 1™ Ry TR = min {7 |

is a minimax sequential plan among all sequential plans § = (z, f(N(z))), where
7 is a Markov stopping set with respect to % = {R,, ze R%}.

2. Wiener random field.

DEFINITION 9. Assume that the family {W (B), B e #%.} of random variables
has the following properties:’

1° for an arbitrary set of disjoint bounded Borel subsets B,, B,,..., B, of
R? the random variables W(B,), W(B,),..., W(B,) are independent;

2° the random variable W(B) is normally distributed with the mean value
equal to zero and the variance |B|.

Then the family of random variables W, = W(R,) is called a Wiener
random field.

Let us consider the random field X, = 8{R, |+ W,. By [13] the measure
pe= corresponding to the random field X, se R,, is absolutely continuous with
respect to the measure u§* corresponding to the Wiener field W and

dug= 6%
— = ——|R,} .

Let L(f, 0) = (f—6)* and let us choose a sequence of prior distributions of
the parameter 6 given by the following density functions:

1
§0n (9) — /—‘—‘znn

Then the density of the postérior distribution of the unknown -parameter
having observed the realization v on the set R, takes the form

o LT (0=t 1R

exp(—6%/2n).

2 20T ¥R
So , : "
| Y= W+C(IRZD- | |
By Theorem 3 we conclude that the simple plan 8, = (R,,, f(X,,)) such that

X 1 -1
fX,) ===, +c(IR,.]) = min
|Rzo' leol ° Rgz,zeR2 |Rz|

+c(R.)
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is a minimax sequential plan among all sequential plans & = (z, f(X(2))), where
T is a Markov stopping set with respect to ¢ = {R,, zeR%}.

3. Ornstein-Uhlenbeck random field (see also [10]).

By the Ornstein—Uhlenbeck random field we mean a homogeneous Gaus-
sian random field X, se R%, with the mean walue § and the covariance
function :

R((hy, hy)) = expt—alhy|—Bih,))

(see [5]). By [14] the measure ug* corresponding to the Ornstein—Uhlenbeck
field with mean 6 is absolutely continuous with respect to the measure
1g* corresponding to the Ornstein—Uhlenbeck field with mean 0 and

where

S(R,, v) = v(0, 0)+v(x, 0)+v(0, y)+v(x, y)+a}v(u, 0)du
0
+a}cv(u, y)du+ﬁ}v(0, t)di+B]"v(x, t)dt
0 0 0 '

xy
+af | | v(u, t)dudt,
00

Q(R,) = (ax+2)(By+2).

Let L(f, 6) = (f —6)% As in [10], let us consider a sequenbe of prior
distributions of the parameter 0 given by the density functions

{ _
0) = ——=—exp| —— J.
*.(0) 2./2xn p( 8")

The density of the posterior distribution of the parameter takes the form

Rom = e T\ 24)
where

e _g__ SR)
A=gwmyent ™ Pl omyse T

So
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By Theorem 3 we infer that the simple plan 6, = (R,,, f(Q(R,), S(R, ) such
that ‘

_S(R,)
f(Q(Rzo)7 S(Rzo)) - Q(Rzo)
and
4
R.)= mi R
ok, HelRsD = min, (Q(R,)““ "’)

is a minimax sequential plan among all sequential plans é = (z, f(Q(7), S(7))),
where t is a Markov stopping set with respect to 4 = {R,, ze R3}.
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