R. RÓŻAŃSKI (Wrocław)

MINIMAX SEQUENTIAL ESTIMATION OF PARAMETERS OF RANDOM FIELDS

- 1. Introduction. The paper is devoted to the problem of minimax sequential estimation of parameters of random fields. We prove a theorem (Theorem 3) which is related to the results of Dvoretzky et al. [2] and Rhiel [7]. The theorem proved is an improvement of the result obtained by the author in [10]. We prove that, under some assumptions, for a square loss connected with the error of estimation and for a cost function c(|K|) of the observation of a random field X_s , $s \in \mathbb{R}^2$, on the set K the simple plan is a minimax sequential plan among all sequential plans (τ, f) , where τ is a Markov stopping set with respect to some family $\mathscr G$ of compact subsets of \mathbb{R}^2 . Examples of the application of this theorem to the Poisson, Wiener and Ornstein-Uhlenbeck fields are also given. Analogous problems of minimax sequential estimation for stochastic processes were considered in [7], [8], [12].
- 2. Preliminaries. Let X_s , $s \in \mathbb{R}^2$, be a random field, and V a set of realizations of this field. Assume that this random field generates a probability measure μ_{θ} , defined on (V, \mathcal{F}) , where \mathcal{F} is a σ -algebra of subsets of V generated by cylindrical sets, and $\theta \in A \subset \mathbb{R}$ is a parameter. Let \mathcal{G} denote a family of compact subsets K of \mathbb{R}^2 , and $\delta(K)$ the diameter of K. Suppose that the family \mathcal{G} satisfies the following condition ([9], [11]):

CONDITION 1. There exists a countable family of compact sets $P_i(n)$, $n \in N$, $i \in I \subset N$, such that

$$\sup\{\delta(P_i(n))\}\to 0 \quad as \quad n\to\infty$$

and for each $K \in \mathcal{G}$ there exists a finite covering $C_n \in \mathcal{G}$ of K by some sets among $P_i(n)$, $i \in I$, for which

$$C_{n+1} \subset C_n, \qquad \bigcup_{n=1}^{\infty} C_n = K.$$

The σ -algebra of subsets of V generated by cylindrical sets

$$\{v: (v(s_1), v(s_2), \dots, v(s_n)) \in B\}, \quad B \in \mathcal{B}_{R^2}, \ s_i \in K, \ i = 1, 2, \dots, n,$$

is denoted by \mathscr{F}_K , and the restriction of μ_{θ} to the σ -algebra \mathscr{F}_K is denoted by μ_{θ}^K .

DEFINITION 1 (see [3] and [9]). A Markov stopping set τ is a mapping $\tau: V \rightarrow \mathscr{G}$ such that for every $K \in \mathscr{G}$

$$\{v: \ \tau(v) \subseteq K\} \in \mathscr{F}_{\kappa}.$$

Definition 2. A σ -algebra \mathscr{F}_{τ} of sets $U \in \mathscr{F}$ such that for every $K \in \mathscr{G}$

$$U \cap \{v \colon \tau(v) \subseteq K\} \in F_K$$

is called a pre-τ-σ-algebra corresponding to a Markov stopping set τ.

Denote by μ_{θ}^{τ} the measure μ_{θ} restricted to the σ -algebra \mathscr{F}_{τ} . The following is true:

THEOREM 1 ([9], [11]). If G satisfies Condition 1 and

$$\frac{d\mu_{\theta}^{K}}{d\mu_{\theta 0}^{K}}(v) = g_{\theta 0}(K, v, \theta) \quad \text{for each } K \in \mathcal{G},$$

where g_{θ_0} is such that for each $K_n \downarrow K$

$$g_{\theta_0}(K_n, v, \theta) \rightarrow g_{\theta_0}(K, v, \theta)$$

 μ_{θ} -almost surely for each $\theta \in A$, then

$$\mu_{\theta}^{\tau} \ll \mu_{\theta_0}^{\tau}$$
 and $\frac{d\mu_{\theta}^{\tau}}{d\mu_{\theta_0}^{\tau}}(v) = g_{\theta_0}(\tau(v), v, \theta).$

DEFINITION 3. By a sequential plan we mean a pair $\delta = (\tau, f)$ that consists of a Markov stopping set τ and a mapping

$$f: (V, \mathscr{F}_{\tau}) \to (A, \mathscr{B}_{A}),$$

where \mathcal{B}_A is a family of Borel subsets of A. The mapping f is called an estimator of the parameter θ .

Let the density function $d\mu_{\theta}^{K}/d\mu_{\theta_{0}}^{K}$ be given by the formula

$$\frac{d\mu_{\theta}^{K}}{d\mu_{\theta_{0}}^{K}}(v) = g_{\theta_{0}}(Q(K), S(K, v), \theta),$$

where g_{θ_0} is a Borel function on $R^2 \times A$; $S: \mathscr{G} \times V \to R$ is such that, for every $K \in \mathscr{G}$, $S(K, \cdot)$ is \mathscr{F}_K -measurable and $S(K_n, v) \to S(K, v)$ μ_{θ} -almost surely for each $\theta \in A$ whenever $K_n \downarrow K$, K, $K_n \in \mathscr{G}$; Q is a set function from \mathscr{G} into R such that for each $K_n \downarrow K$, K_n , $K \in \mathscr{G}$, $Q(K_n) \to Q(K)$ as $n \to \infty$.

In this case we can infer by Theorem 1 that the statistic $(Q(\tau), S(\tau))$ is sufficient for the parameter θ , and therefore we can restrict ourselves to the estimators of the form $f(Q(\tau), S(\tau))$.

Let $L(f, \theta)$ denote the loss incurred by a statistician if θ is a true value of the parameter and f is an estimator of θ he uses. Let c(|K|), where |K| denotes Lebesgue measure of the set K, be the cost function representing the cost of the observation of the random field on the set K. The function $c: [0, \infty] \to [0, \infty]$ is assumed to be continuous, non-decreasing with c(0) = 0 and $c(\infty) = \infty$. Then the risk function is given by

$$R(\delta, \theta) = \mathbf{E}_{\theta}[L(f, \theta) + c(|\tau|)].$$

We assume that $R(\delta, \theta) < \infty$.

Definition 4. A sequential plan $\delta = (\hat{\tau}, \hat{f})$ is called *minimax* if $\sup_{\theta} R(\delta, \theta) = \inf_{\delta} \sup_{\theta} R(\delta, \theta).$

Let Φ be a prior distribution on the parameter space (A, \mathcal{B}_A) . If $R(\delta, \theta)$ is a \mathcal{B}_A -measurable function, then for each sequential plan δ the Bayes risk with respect to the prior distribution Φ is given by

$$r(\delta, \Phi) = \int_A R(\delta, \theta) \Phi(d\theta).$$

DEFINITION 5. A sequential plan $\delta = (\hat{\tau}, \hat{f})$ is called a Bayes plan with respect of Φ if

$$r(\delta, \Phi) = \inf_{\delta} r(\delta, \Phi).$$

Let us define a probability measure π_{Φ} on $(V \times A, \mathscr{F} \times \mathscr{B}_A)$ by the formula

$$\pi_{\Phi}(U \times B) = \int_{B} \mu_{\theta}(U) \Phi(d\theta)$$

for each $U \in \mathcal{F}$ and $B \in \mathcal{B}_A$. Observe that

$$\pi_{\Phi}(V \times B) = \int_{B} \mu_{\theta}(V) \Phi(d\theta) = \Phi(B)$$

and

$$\pi_{\Phi}(U \times A) = \int_{A} \mu_{\theta}(U) \Phi(d\theta) \stackrel{\mathrm{df}}{=} \mu_{\Phi}(U)$$

for each $U \in \mathcal{F}$ and $B \in \mathcal{B}_A$.

From the general theorem ([1], p. 293) on existence of a transition probability we infer that for any Markov stopping set τ there exists a transition probability measure $\Psi_{\Phi,\tau}(v,\cdot)$ such that

$$\pi_{\Phi}(U \times B) = \int_{U} \Psi_{\Phi,\tau}(v, B) d\mu_{\Phi}(v)$$

for each $U \in \mathcal{F}_{\tau}$ and $B \in \mathcal{B}_A$. We can also write

$$\Psi_{\Phi,\tau}(v, B) = (\pi_{\Phi}(V \times B) | \mathscr{F}_{\tau} \times \{\emptyset, A\})(v)$$

 μ_{Φ} -almost everywhere. The measure $\Psi_{\Phi,\tau}$ is called the *posterior probability* of θ having observed the realization v on the set τ .

DEFINITION 6. The mapping $Y_{K,\phi}: V \to R_+, K \in \mathcal{G}$,

$$Y_{K,\Phi}(v) = \inf_{f} \left[\int_{A} L(f, \theta) \Psi_{\Phi,K}(v, d\theta) + c(|K|) \right]$$

is called a stochastic decision process.

DEFINITION 7. A sequential plan $\delta = (\tau, f)$ is a simple plan if $\tau(v) = K$, $K \in \mathcal{G}$ for almost all $v \in V$.

3. Minimax sequential estimation in random fields.

THEOREM 2 (see also [7]). If there exists an estimator $f'(Q(\tau), S(\tau))$ such that

$$Y_{K,\Phi}(v) = \int_A L(f'(Q(K), S(K, v)), \theta) \Psi_{\Phi,K}(v, d\theta) + c(|K|)$$

 μ_{Φ} -almost surely for each $K \in \mathcal{G}$, then for any Markov stopping set τ

$$E_{\mu_{\Phi}}(Y_{\tau,\Phi}) = r(\delta', \Phi) = \inf_{\delta} r(\delta, \Phi),$$

where $\delta' = (\tau, f'(Q(\tau), S(\tau))).$

Proof. For every sequential plan $\delta = (\tau, f(Q(\tau), S(\tau)))$ we can write

$$\begin{split} r(\delta, \, \varPhi) &= \mathrm{E}_{\pi_{\varPhi}} \big[L \big(f \big(Q(\tau), \, S(\tau) \big), \, \theta \big) + c(|\tau|) \big] \\ &= \int_{V} d\mu_{\varPhi}(v) \big(\int_{A} L \big(f \big(Q(\tau), \, S(\tau) \big), \, \theta \big) \Psi_{\varPhi,\tau}(v, \, d\theta) \big) + \mathrm{E}_{\pi_{\varPhi}} \big(c \, (|\tau|) \big) \\ &\geqslant \int_{V} d\mu_{\varPhi}(v) \big(\int_{A} L \big(f' \big(Q(\tau), \, S(\tau) \big), \, \theta \big) \Psi_{\varPhi,\tau}(v, \, d\theta) \big) + \mathrm{E}_{\pi_{\varPhi}} \big(c \, (|\tau|) \big) \\ &= \mathrm{E}_{\pi_{\varPhi}} \big(L \big(f' \big(Q(\tau), \, S(\tau) \big), \, \theta \big) \big) + \mathrm{E}_{\pi_{\varPhi}} c \, (|\tau|) = \mathrm{E}_{\mu_{\varPhi}} \, Y_{\tau,\varPhi}. \end{split}$$

Remark 1. If the decision process $Y_{K,\phi}$ is deterministic and there exists a simple plan $\tau_0 = K_0$ such that

$$Y_{K_0,\Phi}=\inf_{K\in\mathscr{Y}}Y_{K,\Phi},$$

then the sequential plan $\delta'_0 = (\tau_0, f'(Q(\tau_0), S(\tau_0)))$ is a Bayes plan among all sequential plans.

The following theorem that we prove is related to the well-known theorem of Dvoretzky et al. [2] and to the theorem of Rhiel [7]. This theorem improves the results obtained by Różański [10].

Theorem 3. Assume that for some sequence Φ_n , n=1, 2, ..., of prior distributions of the parameter θ the corresponding stochastic decision processes Y_{K,Φ_n} are deterministic. Let

$$Y_K^{\infty} = \lim_{n \to \infty} Y_{K, \Phi_n} \quad \lim_{n \to \infty} \inf_{K \in \mathscr{G}} Y_{K, \Phi_n} = \inf_{K \in \mathscr{G}} \lim_{n \to \infty} Y_{K, \Phi_n}.$$

If there exists a simple plan $\delta_0 = (\tau_0, f(Q(\tau_0), S(\tau_0)))$ such that $\tau_0 = K_0$ a.e., $K_0 \in \mathcal{G}$, and

$$\sup_{\theta} R(\delta_0, \, \theta) \leqslant Y_{K_0}^{\infty} = \inf_{K \in \mathscr{F}} Y_K^{\infty},$$

then δ_0 is a minimax sequential plan among all sequential plans (τ, f) , where τ is a Markov stopping set with respect to \mathscr{G} .

Proof. By Theorem 2 we get

$$\inf_{\delta} r(\delta, \Phi_n) = \inf_{K} Y_{K,\Phi_n},$$

$$\sup_{\theta} R(\delta_0, \theta) \leqslant Y_{K_0}^{\infty} = \lim_{n \to \infty} \inf_{K \in \mathscr{A}} Y_{K,\Phi_n} = \lim_{n \to \infty} r(\delta'_n, \Phi_n).$$

By the well-known theorem (see, e.g., the monographs [4], p. 90, and [15], p. 374) we infer that the plan (τ_0, f_0) is minimax.

4. Examples.

1. Poisson random field.

DEFINITION 8. Let $\mathscr{B}_{R^2}^b$ be the family of bounded Borel subsets of R^2 . Assume that the family $\{N(B), B \in \mathscr{B}_{R^2}^b\}$ of random variables has the following properties:

1° for an arbitrary set of disjoint bounded Borel subsets B_1, B_2, \ldots, B_n of R^2 the random variables $N(B_1), N(B_2), \ldots, N(B_n)$ are independent;

$$2^{\circ} P(N(B_i) = k) = (\theta | B_i |)^k \exp(-\theta | B_i |)/k!.$$

The random field

$$N_z = N(R_z), \quad R_z = [0, x] \times [0, y], (x, y) \in R_+^2,$$

is called a Poisson random field.

The unknown parameter θ is to be estimated. By [6] the measure μ_{θ}^{Rz} corresponding to the random field N_s , $s \in R_z$, is absolutely continuous with respect to the measure μ_1^{Rz} corresponding to the Poisson random field with $\theta = 1$ and

$$\frac{d\mu_{\theta}^{R_z}}{d\mu_{\perp}^{R_z}} = \theta^{N_z} \exp(-\theta |R_z|).$$

Let $L(f, \theta) = \theta^{-1}(f-\theta)^2$ and let us choose a sequence of prior distributions of the parameter θ given by the density functions

$$\varphi_n(\theta) = n^{-1} \exp(-\theta/n).$$

The density of the posterior distribution of the parameter having observed the realization v on the set R_z takes the form

$$\Psi_{n,R_z} = \frac{(d\mu_{\theta}^{R_z}/d\mu_1^{R_z})\varphi_n(\theta)}{\int\limits_0^\infty (d\mu_{\theta}^{R_z}/d\mu_1^{R_z})\varphi_n(\theta)d\theta}$$

$$= \left(|R_z| + \frac{1}{n}\right)^{N(R_z)+1} \frac{\theta^{N(R_z)}}{N(R_z)!} \exp\left(-\theta\left(|R_z| + \frac{1}{n}\right)\right).$$

We also have

$$Y_{R_z,n} = \frac{1}{|R_z| + n^{-1}} + c(|R_z|).$$

From Theorem 3 we infer that the simple plan $\delta_0 = (R_{z_0}, f(N(R_{z_0})))$ such that

$$f(N(R_{z_0})) = \frac{N(R_{z_0})}{|R_{z_0}|}, \quad \frac{1}{|R_{z_0}|} + c(|R_{z_0}|) = \min_{R_{z,z} \in \mathbb{R}^2} \left(\frac{1}{|R_z|} + c(|R_z|) \right)$$

is a minimax sequential plan among all sequential plans $\delta = (\tau, f(N(\tau)))$, where τ is a Markov stopping set with respect to $\mathscr{G} = \{R_z, z \in R_+^2\}$.

2. Wiener random field.

DEFINITION 9. Assume that the family $\{W(B), B \in \mathcal{B}_{R^2}^b\}$ of random variables has the following properties:

1° for an arbitrary set of disjoint bounded Borel subsets $B_1, B_2, ..., B_n$ of R^2 the random variables $W(B_1), W(B_2), ..., W(B_n)$ are independent;

 2° the random variable W(B) is normally distributed with the mean value equal to zero and the variance |B|.

Then the family of random variables $W_z = W(R_z)$ is called a Wiener random field.

Let us consider the random field $X_z = \theta |R_z| + W_z$. By [13] the measure $\mu_{\theta}^{R_z}$ corresponding to the random field X_s , $s \in R_z$, is absolutely continuous with respect to the measure $\mu_0^{R_z}$ corresponding to the Wiener field W and

$$\frac{d\mu_{\theta}^{R_z}}{d\mu_{0}^{R_z}} = \exp\left[\theta X_z - \frac{\theta^2}{2} |R_z|\right].$$

Let $L(f, \theta) = (f - \theta)^2$ and let us choose a sequence of prior distributions of the parameter θ given by the following density functions:

$$\varphi_n(\theta) = \frac{1}{\sqrt{2\pi n}} \exp(-\theta^2/2n).$$

Then the density of the posterior distribution of the unknown parameter having observed the realization v on the set R_z takes the form

$$\Psi_{n,R_z} = \frac{\sqrt{n^{-1} + |R_z|}}{2} \exp\left(-\frac{\left(\theta - X_z(n^{-1} + |R_z|)\right)^2}{2(n^{-1} + |R_z|)}\right).$$

So

$$Y_{R_z,n} = \frac{1}{|R_z| + n^{-1}} + c(|R_z|).$$

By Theorem 3 we conclude that the simple plan $\delta_0 = (R_{z_0}, f(X_{z_0}))$ such that

$$f(X_{z_0}) = \frac{X_{z_0}}{|R_{z_0}|}, \quad \frac{1}{|R_{z_0}|} + c(|R_{z_0}|) = \min_{R_{z_0}, z \in \mathbb{R}^2} \frac{1}{|R_z|} + c(|R_z|)$$

is a minimax sequential plan among all sequential plans $\delta = (\tau, f(X(\tau)))$, where τ is a Markov stopping set with respect to $\mathscr{G} = \{R_z, z \in R_+^2\}$.

3. Ornstein-Uhlenbeck random field (see also [10]).

By the Ornstein-Uhlenbeck random field we mean a homogeneous Gaussian random field X_s , $s \in \mathbb{R}^2_+$, with the mean value θ and the covariance function

$$R((h_1, h_2)) = \exp(-\alpha |h_1| - \beta |h_2|)$$

(see [5]). By [14] the measure $\mu_{\theta}^{R_z}$ corresponding to the Ornstein-Uhlenbeck field with mean θ is absolutely continuous with respect to the measure $\mu_0^{R_z}$ corresponding to the Ornstein-Uhlenbeck field with mean 0 and

$$\frac{d\mu_{\theta}^{R_z}}{d\mu_0^{R_z}} = \exp\left(\frac{\theta}{4}S(R_z, v) - \frac{\theta^2}{8}Q(R_z)\right),\,$$

where

$$S(R_z, v) = v(0, 0) + v(x, 0) + v(0, y) + v(x, y) + \alpha \int_0^x v(u, 0) du$$

$$+ \alpha \int_0^x v(u, y) du + \beta \int_0^y v(0, t) dt + \beta \int_0^y v(x, t) dt$$

$$+ \alpha \beta \int_0^x \int_0^y v(u, t) du dt,$$

$$O(R_x) = (\alpha x + 2)(\beta y + 2).$$

Let $L(f, \theta) = (f - \theta)^2$. As in [10], let us consider a sequence of prior distributions of the parameter θ given by the density functions

$$\varphi_n(\theta) = \frac{1}{2\sqrt{2\pi n}} \exp\left(-\frac{\theta^2}{8n}\right).$$

The density of the posterior distribution of the parameter takes the form

$$\psi_{R_{x},n} = \frac{1}{\sqrt{2\pi A}} \exp\left(-\frac{B^2}{2A}\right),\,$$

Where

$$A = \frac{4}{Q(R_z) + n^{-1}}$$
 and $B = \theta - \frac{S(R_z)}{Q(R_z) + n^{-1}}$.

So

$$Y_{R_z,n} = \frac{4}{Q(R_z) + n^{-1}}.$$

By Theorem 3 we infer that the simple plan $\delta_0 = (R_{z_0}, f(Q(R_{z_0}), S(R_{z_0})))$ such that

$$f(Q(R_{z_0}), S(R_{z_0})) = \frac{S(R_{z_0})}{Q(R_{z_0})}$$

and

$$\frac{4}{Q(R_{z_0})} + c(|R_{z_0}|) = \min_{R_{z_0}, z \in R_+^2} \left(\frac{4}{Q(R_z)} + c(|R_z|) \right)$$

is a minimax sequential plan among all sequential plans $\delta = (\tau, f(Q(\tau), S(\tau)))$, where τ is a Markov stopping set with respect to $\mathcal{G} = \{R_z, z \in R_+^2\}$.

References

- [1] J. R. Barra, Notions fondamentales de statistique mathématique, Dunod, Paris 1971.
- [2] A. Dvoretzky, J. Kiefer and J. Wolfowitz, Sequential decision problems for processes with continuous time parameter. Problems of estimation, Ann. Math. Statist. 24 (1953), pp. 403-415.
- [3] I. V. Evstigneev, Optional times for random fields, Theory Probability Appl. 223 (1977), pp. 575-581.
- [4] T. S. Ferguson, Mathematical Statistics. A Decision Theoretic Approach, Academic Press, New York 1967.
- [5] C. X. Guyon and B. Prum, Identification et estimation de semi-martingales représentables par rapport à un brownien à un indice double, pp. 211-232 in: Processus aléatoires à deux indices, Lecture Notes in Math. 863, Springer-Verlag, Berlin 1981.
- [6] K. Krickeberg, Statistical problems on point processes, pp. 197-224 in: Mathematical Statistics, Banach Center Publications 6, Warszawa 1980.
- [7] R. Rhiel, Sequential Bayesian and minimax decisions based on stochastic processes, Sequential Analysis 4 (1985), pp. 213-245.
- [8] R. Różański, On minimax sequential estimation of the mean value of a stationary Gaussian Markov process, Zastos. Mat. 17 (1982), pp. 401-408.
- [9] Sequential estimation in random fields, Probab. Math. Statist. 9 (1987), pp. 77-93.
- [10] Minimax sequential estimation in random fields. Application to the Ornstein-Uhlenbeck case, Statistics and Decisions 5 (1987), pp. 271-279.
- [11] Markov stopping sets and stochastic integrals. Application in sequential estimation for a random diffusion field, Stochastic Process. Appl. 32 (1989), 237-251.
- [12] S. Trybuła, Some investigations in minimax estimation theory, Dissertationes Math. (Rozprawy Mat.) 240 (1985).
- [13] E. Wong and M. Zakai, Likelihood ratios and transformation of probability associated with two-parameter Wiener process, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 40 (1977), pp. 283-308.
- [14] I. I. Yadrenko, On the absolute continuity of probability measures corresponding to Gaussian homogeneous random fields, Theory Probab. Math. Statist., Kiev, 9 (1972), pp. 152-161.
- [15] S. Zacks, The Theory of Statistical Inference, J. Wiley, New York 1971.

ROMAN RÓŻAŃSKI INSTITUTE OF MATHEMATICS TECHNICAL UNIVERSITY OF WROCŁAW WYBRZEŻE WYSPIAŃSKIEGO 27 50-370 WROCŁAW