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An inverse function theorem in Fréchet spaces
without smoothing operators

by B. Przerabzki (LodZ)

Abstract. Inverse function theorems in Fréchet spaces are proved without use of smoothing
operators as in the classical theory of Nash and Moser.

1. We consider Fréchet spaces with increasing sequences of norms; for
instance C* (M), the space of C™-functions on a compact manifold M, S(R"),
the space of rapidly decreasing functions and H (D), the space of holomorphic
functions on D with the topology of uniform convergence on compact. The
Nash—Moser inverse function theorems are designed to overcome the diffi-
culty caused by a “loss of differentiability” in solving the linearized problem.
This is usually done by means of smoothing operators. If a space admits
such operators, the method of Nash—Moser works (see [2]-[4]), but one can
consider spaces without this property. We avoid the need of smoothing
operators, but our assumptions about differentiability are very strong. The
theorems obtained are similar to those of Bourbaki [1] and they are well
applicable to spaces with norms not expressed by derjvatives.

Let E and F be Fréchet spaces with topologies given by increasing
sequences of norms; i.e, E and F are equipped with norms ||‘||,, ne N, and
for each n and each vector x, ||x||, < ||x|[,+; both E and F are complete. The
same topology is induced by the F-norm

lIxile = 3 27" Ixl/A1 +llx]l,).-
neN

We shall consider only continuous mappings between these spaces. Let U
and V be open subsets of E and F, respectively, and let p be an integer.

DEerFINITION. A mapping f: U — F continuous with respect to the topo-
logies given by the (n+ p)-th norm in E and the n-th norm in F (for each
ne N) is called a mapping of order p. A bijection f: U — V such that f is of
order p and f~! is of order —p is called a p-homeomorphism.

It is obvious that a p-homeomorphism is a homeomorphism and a
mapping of order p is continuous. For linear operators these definitions
admit a simple interpretation. A linear operator T: E — F is of order p if
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‘and only if, for each ne N, there exists ¢, > 0 such that
”Tx“n < cn”x“n+ps xekE.

For a linear operator T of order p we can define the sequence of its

norms, ||T||, = supl|Tx|[,/|[x|l,+,- It is not increasing in general.
xz0

2. DeFiNITION. Let xoe U < E, where U is open, and let f: U — F. We

say that f is uniformly strictly p-differentiable (u.s.p-dif) at x, il there exists a
linear operator T: E — F of order p such that

hm ”an+ p(xa y)”n = 0
-llp+ p
X,y =X

uniformly with respect to ne N, where

o p (X, ) = (S ()=f (1) = T(x = pIYlIx = Ylln+ -

For example, linear operators of order p and constant maps are u.s.p-dif.
at any point. The strength of the condition imposed in the definition consists
in the demand of uniform convergence. Observe that bilinear operators of
order p, i.e., bilinear maps with the property

||f(xli x2)“n < cn”x1“n+p”x2“n+p
for any n, are us.p-dif. only if the sequence (c,) is bounded.
ExampLE. In the space C® (a, b) consider the norms

lIxll, = max sup |x* ()},
k<n teab)

and the map f C®{a, by — C*® {a, b) given by
L)) = (x" (1)

It is easy to see that

im || () =S DIl/lIX = Yllasy =0

xy"Hlo
for any ne N, so the uniform strict derivative at 0, if it exists, is equal to 0.
But if we take x;(t) =Aexpt, y(t) =0, then

IS (x2) =S DNAIX2 = Yllasr 1 = 24 exp b,

which proves that the convergence is not uniform.
We shall give below examples of spaces which better suit our definition.
We assume that the following condition is satisfied in E:

(%) N K,(0, 8) # {0} for every é >0,
neN

where K,(0, ) = {x: ||x||, < d}. Condition (») means that there exists xe E
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such that sup||x||, < co. Hence, the spaces
C®(M) with |[|x]|, = max sup|D*x(t)|,

la| <n teM

H(D) with |ix|l, = sup|x(?),

tek,,

where (K,) is an increasing sequence of compact sets whose union is a
complex domain D, satisfy condition (*) (they include constant functions). On
the other hand, the space of rapidly decreasing functions with norms:

lIx|l, = max sup(1 +[t]?)"*|D x(¢)|

lal <n 1

does not possess this property.

ExampLE. Let A = [ay ],y be an infinite matrix of real (or complex)
numbers and suppose that a,, # 0 for ke N. Let S, denote the space of
sequences (& )y such that (ay t,), v 1S bounded for each /e N, with the norms

lI(t)l], = max sup|ay .

I1<n keN

Then S, is complete and does not satisfy condition (*) if and only if a; — o
as | - o for any keN.

Lemma 1. If f: U—F is us.p-dif. at x,, then
im |[f(x)=f ()= T(x=ylle/llx—yllr =0

x.y—*xo
(convergence with respect to the topology in E).

Recall that we have assumed the continuity of f. We use this assumption
only in the proof of Lemma 1.

Proof. Let ¢ > 0. There exists d€(0, 1) such that, if ||x—xqll,+, <4,
ly—xoll+», <6 and ne N, then

Han+p(x, y)”n < 5/3 ’ 2p’

where a,,, ,(x, y) is defined in Section 2. Owing to condition (), the set of all
such pairs (x, y) is nonempty. We have:

”f(x)*f(.l’)_ T(x_y)”f' < 2p.sup {“an+p(x’ y)“n(1+“x_y“n+p)}”x_y”F

<2°(e/3-2°)(1420) [|x— yllf
and therefore

WS (X)—f ()= T(x—yNe/llx—yllr <e.

By the continuity of the function on the left on U x U\ 4, where 4 is the
diagonal, the set of pairs (x, y)e U xU\4 for which the above inequality
holds is open. Projecting this set onto the product factors and taking the
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intersection, we get a neighbourhood of x,, on which the inequality is true.
Q.ED.

3. Let us assume that a linear operator T: E — F is of order p and
surjective. T induces T: E/ker T — F and, from the Closed Graph Theorem,

T is a linear homeomorphism. In E/ker T we have the sequence of induced
norms

ICx]ll, = inf {lx—pll,.

yekerT

It is easy to check that T is of order p, || 71|, < |IT]|, for each ne N and that
the condition

(**) sup sup inf |Ix—yll.+ /I Txll, = M < o0

neN xgkerT yekerT

implies that T~ ! is of order —p and, moreover,

sup| T~ Mlpsp < M.

Consider the following condition for ker T:

(«*x) for each xcE, there exists xekerT such that [x—X|, <

2 inf ||x—y], for all ne N.
yekerT

It is satisfied, for instance, when ker T = {0}.

THEOREM 1. Let f: U — F be us.p-dif. at xoe U. If the derivative T is
surjective and conditions (xx) and (x*x) are satisfied, then there exists a
neighbourhood V of xq, such that f|V is open.

Proof. Let us consider g: U—x,— E/ker T given by
g0 = T~ (f (x+x0)—f (x0))-

It is obvious from (**) that g is us.0-dif. at Oc E with the canonical
projection pr: Eax — [x]eE/ker T as the derivative. By Lemma 1

h'mollg (x}—g () —Lx—yllte/llx—yilr = 0.

xy—

Using (+*#), we can define a selector-function S: E/ker T — E by taking for

S[y] an element of E such that pr S[y] = [y] and |IS[y]llr < 2]I[v]llf.
One can choose &y >0 such that ||x||f <d, and ||yl|r <, imply

llg(x)=g(y)=[x—=ylllr <47 'lIx—yll;. We shall show that Kg(g(x),0)

= g(Kr(x, 40)) for xe U—x,, ||Ix|lp <5 '8, and ¢ <57 '5,, where Kz(y, r)

= \y: llyllr <r}. Let [[[yY]—g(x)llr <o We shall find zeE such that

llz— x|l < 4¢ and g(z) = [y]. We construct z as the limit of a sequence (z,),
which we define inductively.
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Taking z, = x+ho, where hy = S([y]—g(x)), we have
lhollr < 20, llzo—xllr <20, llzollr <20+57 '3,
lg(zo)— DIl = ”9(20)—9()‘)—1” S([J’]—g(x))”F <47 zo—xllp <271 0.

Assume that we have already defined z, =z, _, + h, such that

(1) Ihllr <27% 1o,
k
2 lox—xllp < ) 27",
i=0
k .
3 lzellp < ), 277 1@+ 57 1,
i=0
4 llg(zo)—Dvllp <27* .

Putting z,,; = z;+ Iy 4y, where by = S([y]—g(z,)), we get

s ollr < 200y1 =g @Ile <27 %0,

k+1
2+ 1 —xllr < lze = Xllp+ A+ llF < Z 27"y,
i=0

i=
K+l

lzk+alle < llxlle+llzis s =Xl < Y 2777 0+571 4,
i=0

g (zi+ ) =DVl = ”g(z,‘,r V—g(z)—pr S([y]—g(zk))”,r
=11g(ze+ 1) =9 @) —Pr harallr <47 e llr < 27% 2p.

By induction, we obtain a sequence (z,) satisfying (1){4). Condition (1) shows
that (z,) is a Cauchy sequence, so we can write z = lim z,. Moreover, by (2),

lz—xllp < Y 277%' 0 = 4p, that is, ze Kz (x, 40). In view of (3) all z, belong
i=0
to Kg(0, &), which was necessary for the calculations. Inequality (4) shows

that g(z) = [y), and this ends the proof. Q.E.D.

4. Suppose, from now on, that also F s‘atisﬁcs condition (=).

THEOREM 2. Let f: E > U — F be us.p-dif. at xoc U and let the deriva-
tive T be a p-homeomorphism satisfying condition (xx) (here this means simply
that T~ ' is of order —p and sup||T"||,4, < ®). Then there exist neighbour-
hoods V of xo and W of f(xo) such that f|V is a homeomorphism of V onto
W, (fI1V)" ! is us.—p-dif. at f(x,) and its derivative is T '.

Proof. By the previous theorem, there exists an open set V; such that
xoe V; and f|V; is open. We denote by E, the completion of E in the n-th
norm, and similarly for F. By differentiability, f: (U, ||-]|,) = (F, ||*|lo) satis-
fies the Lipschitz condition on a neighbourhood of x,. Hence, f has an
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extension to f,: E, o U — F,, where U is open in E,, xo€ U. Moreover, T
is extendable to T,: E, — F,, a linear homeomorphism, and T is the strict
derivative of f, at x, in the Banach space sense, ie.,

lim [ fo(x)—fo()—Tolx—ylo/lix—l, =0

Iy—p*_to

Therefore, by the Inverse Function Theorem (see [1]), fo is injective on a
certain neighbourhood U’ of x, in E,. Taking V, = U’ NE, we see that f|V,
is injective. Thus f maps V=V, n Vz homeomorphically onto an open set
W cCcF.

Let us consider h = (f|V)™!: W — V. We shall show that h is u.s.— p-dif.
at f(xo) with T™! as the derivative. Let M =sup||T" ||+, < co. We choose

ee(0, 2M)~ '), write «,,, as in Section 2 and take 6 >0 such that
||an+p(x9 y)“n < ¢ for “x_x0||n+p < 6’ ||y—x0||n+p <6 and neN. Then

T—l(f(x)—f()’))_(x*}’) = "x_y||n+p T_lan+p(x9 )’)
Hence,

1X = Ylins p < M(1=Me)™ i f(X)=f Wllx < 2M |1 £ (X)=fWNln-
Now, let u, veW, f(x) =u, f(y) =v. We get

Ih () —h(0)— T~ (u—v)ll,+ /llu—vll,

=[|x=y=T7 (£ )= W+ LS ) =f Wl
S 2MINT " Hlps oIl S D=1 ()= T (x = YMI/I1X = Ylln+
s 2M2 ||an+p(xi Y)“m

so the left-hand side tends to O uniformly with respect to ne N. Q.E.D.

5. DeriNITION. Let f: U — F, xoe U, and let p be an integer. We shall
say that f is strictly p-differentiable (resp. p-differentiable) at x, if there exists
a linear operator T: E — F of order p such that

1 (x)=f W)= T(x= /X =Ylnsp— 0

When le_x0||n+p - Os ”y—x()“n'*p - 0

(resp. || f (x) =S (x0) = T (x = Xo)llo/llX — Xolla+p = O as |Ix—Xolln+, —0) for
all neN.

We denote by L,(E, F) the space of linear operators of order p
from E into F, with the topology given by the norms: ||T]|,
= sup {|| Tx|l/I|x|l.+ ,: x # O}. Although this is not an increasing sequence of
norms, we shall use the same definition of the order of a mapping for
functions taking values in L,(E, F}.

We shall need a special result on differentiability in Banach spaces.

LEmMMA 2. Let X, Y be Banach spaces, U an open subset of X, and let
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f: U= Y. For f to be of class C' on U, it is sufficient and necessary that f
be strictly differentiable at any point xqe U.

Proof. Suppose that feC!(U), xoe U and ¢ > 0. Take § > 0 such that
IDf (x) — Df (x0)l| <& for ||x—xol| <& and consider the mapping g: U — Y

g(x) = f(x)—f (x0) — Df (x0) (x — xo).
Then Dg(x) = Df (x)—Df (x,) for xeU. By the Mean Value Theorem,

ILf (%) =1 (¥) = Df (x0) (x = Y)| = llg (x) —g W)
< llx—ylisup {|IDg (2)lI: 11z~ xoll < 8} < ellx—yl,

which shows the strict differentiability at x,. -
Assume that f is strictly differentiable at any point, x,e U and ¢ > 0.
There exists 6 > 0 such that, for ||x— x| < and ||y —x,ll <6,

3& 2 ||f (%) =1 (») = Df (x0) (x = Yl/llx — yll
> (DS (xo) = Df () (x=p)|/lIx—yl) -
—(I1f () =S (x)=Df (x) (y = %)lI/lly — xIl)-
Now, take d,(x)e(0, & —||x — xo||) such that

£ () =f (x)=Df () (y=|/lly —xIl < 3¢
for jly—x|| < &, (x). Hence

DS (xo) = Df () (x = /lix— il < &
for ||x—xoll <0, |ly—x|| <d,(x). The set of all such (x—y)s contains a
neighbourhood of 0, so ||Df (xo)—Df (x)}ll < & for [[x—x,l < &, which proves
the continuity of Df at x,. Q.E.D.

LEmMMA 3. Let f: E> U — F and let Df (x) stand for the derivative of f
at x (the sense of the term differentiability must be always made clear). The
following conditions are equivalent:

(a) f is strictly p-differentiable at each point xe U,

(b) f is p-differentiable at each xe U and the map Df: U~ L,(E, F) is of
order p.

Proof. Suppose f to be strictly p-dif. on U. Since f, considered as a
map of (U, [||l,+,) into (F, ||-|l,), satisfies locally the Lipschitz condition, f
has an extension f,: U,,,— F,, where U, ., is open in the completion E,, ,
of (E, ||‘|l,+,) and U is dense in U, ,. Moreover, f, has a strict derivative at
every point of U in the Banach space sense, so, by Lemma 2, f,e C*(U). For
an arbitrary xe U, Df,(x) is the extension of Df(x) to a linear bounded
operator of E,, , into F,. Since {|Df,(x)|| = ||[Df (x)|l,, we see that ||x; —x]|,.,
— 0 implies ||Df (x,)—Df (x)||, — 0, which proves (b).

The converse is obvious because f is of class C! on U as a map of
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(U, 1l *lla+p into (F,|-[l,) for all neN. In view of Lemma 2, this map is
strictly differentiable. Q.E.D.

"~ We shall write fe C1(U) if f satisfies one of the conditions of Lemma 3.
Notice that all such mappings are of order p.

Theorem 3. Let e CL(U) and let both E and F satisfy condition (%). If f
is u.s.p-dif. at xoe U and the derivative Df (x,) is a p-homeomorphism satisfying
(%x), then there exist neighbourhoods V of x, and W of f(x,) such that f|V is
a Cl-diffeomorphism of V onto W, i.e, {|VeC,(V) and (f|V) 'eCL, (W).

Proof. Using Theorem 2, we find V and W such that f|V is a
homeomorphism of ¥V onto W. By the same arguments as in the proof of
Theorem 2 we obtain that (f|V)~' has a strict derivative of order —p at
each point f(x)e W, equal to (Df(x))™"'. Thus (f|V) 'eCL (W). QED.

6. The strength of the assumption of uniform strict p-differentiability is
the reason for which typical nonlinear operators are not good for the above
scheme. However, if f = T+ h, where T is a linear operator of order p and h
maps a neighbourhood of x, into F™ = {yeF: (|y|, =supllyll,) and

1h(x)—hWN/lIx—Yllss, — O for n < m when x, y — x, in the (n+ p)-th norm,
then f is us.p-dif. at x, with the derivative T.

ExampLE. Let E = F = C®(K), where K is a compact subset of R, ||x]|,
= max sup|D* x(¢)|. Taking g,: C*(K)— C*(K), k = (ky, k4, ..., ky), |k| < m,

|| €n 1ek
such that ||g, (x) —gx (Wo/llx—yll, = 0 when x, y — x, in the p-th norm, we
define a nonlinear integral operator h: C*(K)— C*(K) by the [ormula

h(x)(t) = Y t* [g(x)(s)ds.

ikl<sm K
If T is a linear operator of order p (differential, for instance), then f = T+ h
behaves locally as T

ExampLe. Let X denote the space of sequences (f)i=, such that
([(k+1)!/k'Jt, +1)=, is bounded for any le N. The n-th norm in X is de-
fined by the formula

(t)lls = max sup [(k+1)!1/k!][tes .

osisn &k

It can be shown that X with the sequence of norms ||-||,, ne N, is complete,
and that condition (*) is satisfied.
Fix p> 1 and define a linear operator T: X — X by

T((t) = ([k+p) Yk Tty ).

It is easily seen that || T((t)||, < l(t)ll.+ , for any ne N; thus T is of order p.
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Moreover, ker T = {(s,)e X: s, =0, k > p}. Let (t,)¢ker T Then
.nf “(tk) _(-Sk)||n+p — psr?sa:(+p SL:p [(k + l) '/I}"] |rk+l| —
(sp)eker T “T((tk))Hn Ongra} S‘:p[(k"'l'*‘P) Y/kV] Itk+l+p|

ixn

L,

which proves condition (x%). Condition (**%) can be obtained immediately by
using the natural projection onto ker T.
Take h: X — X given by h((t)) = (t+,)- It can be shown that

R () = BOX = Vs p < X0t p+ [Vl -

Hence f = T+ h is us.p-dif. at xo = 0 with the derivative T The assumptions
of Theorem 1 are satisfied and therefore f is open on a neighbourhood
of xg. .

ExampLE. Let H(D) be the space of all holomorphic functions on a
complex domain D with the norms introduced in Section 2. Let x,e H (D)
and let g be a holomorphic function on a neighbourhood V of m; if
X0 (D) is unbounded, g is assumed to be holomorphic also at infinity. Let U
be an open subset of H(D) containing all functions xe H(D) for which
x(D) c V. We define a mapping f: U — H(D) by the formula

f(x¥) (1) = g(x()).

We shall show that f is us.O-dif. at x, with the derivative (Th)(t)
=g'(xo(1)) h(1). Let W be an open set in the complex plane such that
xo(D) =« W =W < V. If xo(D) is unbounded, we can choose W with a
compact boundary. By using the Maximum Principle and. the Cauchy
Inequalities, one can very that the power series with coefficients M,/k!,
where

M, = sup|g® (2)],
zeW
has the radius of convergence é > 0. Take x, ye U such that ||x— x|[, < 39,
Iy —xoll, <36 and x(D)u y(D) = W. Then

ILf () =f (¥)— T (x = pila/llx = Yla

x
< f;;: {lg’ (y(®)—g' (xo (D) + .gl TEY g* () [x(t)—y (] }
M,
<llg'oy=g'oxollat ¥ g5k =yl

This inequality and the continuity of g’ on W give the assertion.
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If we assume additionally that
inf |g'(z)] >0,

zexg(D)

then the derivative T is invertible and sup||T~!||, < co. Hence, by Theorem
3, f is a C}-diffcomorphism on a neighbourhood of x,.

7. Remark. We can replace everywhere the words “for all ne N” by “for

all n belonging to a subsequence of N”; but then, in Theorem 3, f|V will be
only a diffecomorphism.
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