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Some properties of a non-linear integral
Volterra equation with deviated argument

by BoGDAN RzEPECKI (Poznan)

Abstract, The aim of this paper is to indicate some effect caused by the deviated,
continuous argument % in the equation

u(z) = F[m, u(z), fH (a;,t, % (w(t)))dt].

By the emission of deviation we understand a set consisting of all continuous
solutions of this equation. By the region of emission of deviation we understand a set
of poinis of the plane which belong to all curves generated by emission of deviation
funections.

In Section 1 we establish the conditions for compactness and upper semi-con-
tinuity (with respect fio inclusion) of emission. In Section 2 we give some theorems
concerning the regions of emissions.

The solution of our equation can be considered as an operation (multivalued,
in general) defined on the space of points (F, H, ). In Section 3 wa give sufficient
conditions for this operation to be continuous, and also sufficient conditions under
which the solution depends confinuously on a functional.

In this. paper we consider a collection of non-linear integral equa-
tions of the Volterra type

(1) (@) = F[a:, 'u.(w),fH(sc, t u(ap(t)))dt] (wed),

where % denotes an unknown function and F, H, ¢ are given real functions.
Our aim is to indicate some effects which are caused by deviated argu-
ment in equation (I).

As regards theorems on the existence and unigqueness of solutions for
an equation of the type (I), see [1], [9], [10] and [3]. The problem of
the existence and uniqueness of the solution for equation (I) when
I (xz,y,2) = 2z has been treated in [2], [b], [7] and [8].

0. Assumptions (a), (b) and (c¢), given below, are valid throughout
this paper and will not be repeated in formulations of particular theorems.
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Suppose that:

(a) the function F(z, s, 2) is defined and continuous on ¢ < @< b,
~o0o< 8,2 00,

(b) the function H(s,t,v) is defined and continunous on e <2 <b,
i<y, —co < V< 0o,

(¢c) @ denotes the set of all continuous functions from [a, b] into
[a, b]. |

By |-l we denote the usual supremum norm on the set of bounded

and continuous functions. If 4, B are non-empty subsets of & plane with
metric p, then

dist(4, B) = max [ sup o(#, B), sup o(y, 4)],
zed yveB

where go(2,Z) = inf{p(z, 2): 2¢Z}.

By a solution of (I) we mean any funection ueC[a, b] satisfying equa-
tion (I).

Let ye® and 4 = @. By the emission of a deviation p we understand
the set &, consisting of all solutions of (I). An emission &, of a set 4 is
said to be the set '

&y =\ {€,: ped}.

By the region of the emission of a deviation y, or of the set of devia-
tions 4, we mean a set of all those points in [a, b] X ( — oo, oo) through
which pass the curves generated by the functions belonging to the corre-
sponding emission. These regions will be denoted by ¢,y €4, TBSpectively.

Let a < @, < b. Denote by e,(w,) the intersection of the region of
the emission e, of a set 4 with the hyperplane & = z,.

1. In this section we assume that the investigated -emissions are
non-empty.

1.1. THEOREM. Let 4 = @ and let & function F satisfy the Lipschiiz
condition with a constant A << 1 with respect to the second variable. If &, is
o bounded set, then the functions &, being its members, are equi-
CONLINUOUS.

Proof. Let @, mse[a,b] and %e¢&,. On account of the Lipschitz
condition one can easily get the inequality

)
(1 —2) Jufw,) — u(®,)] <|F[w2, u(wz),f H(wz,t,u(ep(t)))]dt—

~F [wh.'u(wﬂ’ _le(ml’ t,u ('P(t))) dt]"

where ye 4 is such that % ¢&,. Therefore, by uniform continuity of functions
F and H on corresponding compact sets, our assertion follows.
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1.2, THEOREM. Let a set of deviations 4 = @ consist of equi-continuous
Sfunctions. If the set &, is bounded, then the set &5 is closed (1).

Proof. Let (%), u;e&3, be a sequence convergent to u,¢Cla,b].
For any ¢ =1, 2, ... there exists y;ed such that u;e&,.. By the Arzeld
theorem we can choose from it a convergent subsequence (y,,). Let (y,) —vy,.
We consider the restrictions of H and ¥ to the suitable compact set.
Because

lim s, (9, (®) = 2e(yo(2)) uniformly on [a, b],

and

|fu0(w) —F [m, wo(2), f-H(o:, t, 'u..,(%(t)))dt]l
< luo(@) — 1, (@) + | F [, 4, (), [ Bla,, (1 (0))) 1] —

—F [m,fun(m), fH(w, t, uo(qpu(t)))dt“

we have
tto(@) = F [@, uy(a), f Hlo, t, uolyo(®))a@t]  for wela, 1.

From 1.1 and 1.2 there follows:

1.3. THEOREM. Let a function F satisfy the Lipschitz condition with
a constant 2 < 1 with respect to the second variable, and let a sct of deviations
4 = @ consist of equi-continuous functions. If the set &, is bounded, then
the set &7 ts compact.

'Now we formulate conditions concerning upper semi-continuity with
respect to inclusion of the emission of deviations.

1.4, THmoREM. Let A = & and let &, be a bounded sel consisting of
equi-continuous functions. Then for any deviation wed and for any
e > 0 there ewists such 6 >0 that if ped, {p—ol < 6, then

&, = {veCla, b]: infv—ul < e}.
usd",

Proof. Fix yed and ¢ > 0. We have to prove the existence of such
a number § > 0 that conditions ged, |lp—gll< é imply &, = K(&,,¢),
where K(&,, ¢) denotes the generalized open ball with its center in &,
and radius e. '

M 4 denotes a closure of A (in Ofa, b]).
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Suppose that the theorem is false. Let § = . Thenforanyi =1, 2,.
there exist 5;¢4 and u;ed, so that

lm; —wll < ¢7% w4 K (&,, ).

Because &, iy & conditionally compact set, (#;) has a convergent
subsequence (u,). Let (u,)—>u,. We prove that uge&,.
If suffices to prove that

lim f Hz, t, 10, (n, (1)) & = f Hlw, t, w,(p (1)) dt.

We have |, —9l—0 and |[[u, —u|—-0. If we restrict H to a suitable
compact set, then for any £ > 0 there exists a natural number N such
that

|fH[w,t,u,,(nn(t))]dt—- fH[w,t,uo(w(t))]dtl

< [ B[z, t, wafn. ()] —H [z, 1, 2o (p(0))]| @t < elb—al

for » > N and ®xe¢[a,D]. Thus

1, () =17'[w,uo(m), fH(w, t uo('tp(t)))dt]

for we[a, d].

Because inf{flu,—ul: wed,} < [lu, — u%,ll, for e there exists N (¢) such
that u,eI((&,, ¢), where 1 > N ().

1.5. COROLLARY. Let the assumptions from 1.4 be satisfied. Assume
that yoe 4 and equation (I) has only one solution w, for v = .. Then for
any € >0 there exisis 6 >0 such that if ped implies |p — ol < 6, then
for v = ¢ any solution u of (X) fulfils the condition

[l — ol < &.

2. In this section we give some theorems concerning the regions
of emissions.

2.1. TEEOREM. If the emission of a set of deviations 4 = D is compact,
then its region e, is compact.

Proof. Let (P,) be a sequence of points beloging to e¢,. For any
1 =1,2,... there exist the function u#;e#, and the number «;e[a,b]
such that Py = (w;, ().

From the sequence (%;) we can choose a subsequence (u,,) convergent
uniformly in [a, b] to some function u,e¢&,. Without loss of generality
we can assume that (@,) converges to wye[a,d]. Let P, = (m,,, un(w,,)),
Py = (g, %o(%,)). Then Pyee, and (P,)—P,.
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2.2. THEOREM. Let the assumptions from 1.4 be satisfied. Then for any
deviation we:d and for any e>0 there enists 6 >0 such that if ped,
iy —gll < 8, then

€ < [(a’a Y)ela, b] x (—oo0, oo): inf{jo—Z|+ |y — 7I: (E’-?._/)ee-p} < 5}'
Proof. Fix ¢ > 0 and ped. There exists such a number § > 0 that
from ged and |lg—pll< 6 it follows that

6, < {veCla, b]: infv—ul < ¢}.

md“,;.

Let @y = (@, yy)ce,. Then there exists wyed, such that wuy(z,) = y,
and inf{llug—ul: wedy} < e
Since

inf{o(@, @): ): Qee,} = lnflnf{g(Q Qy): @ = (@, ¥), u(w) =y} .

= infinf{|s — a'ol—{-[u(m)—uo (@o)l: (2, w(w))e[a, b] X (— o0, o)}
md’w

< Inf {|o — @] + [u (Do) — Up(Zy)|: ued,} = igilu(wo)—'uo(wo)l
Ue v
L inf fju — 4yl < e,
ued’w

we have
QuEK(G‘,, E).

This completes the proof.

2.3. TAEOREM. Let (A4,,) be a sequence of non-empty and closed subsets
of the set @ such that 4,,2 4,,, (m =1,2,...) and lim é(4,,) = 0 (2).
Assume, moreover, that F is bounded and satisfies the Lipschitz condition
with & constant 2 << 1 with respect to the second variable, and that 4, is a sel
of equicontinuous functions.

Then there exists exactly one deviation %Eﬂ 4,, and the following holds:

if &, #0, then for any &> 0 there ewists a fnatuml_ number M such that
st [e,,(2), ey, (2)] < ¢,

where m > M and ze[a, b].
Proof. Assume the existence of ¢, > 0, & sequence of numbers (),
a < 2;<b and a subsequence (4;) such that

dist e, (), &, ()] > ¢
It suffices to consider the case

sup {Q(P: 3\«0(9}5)): PE@Ai(%)} 2 &

(%) 6(4,,) denotes a diameter of 4,,.

3 — Annales Polonici Mathematiei 31.3
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Fix an index i. Then there exists a sequence of points (PH),

) . (2) . (7)
PO =z, wi)(2;)), where w8,
such that
eo— 1" < o(PY e, (a))

for n =1, 2, ... Because the set &, is compact, the sequence (u) con-
tains a %ubqequence (4)) such that (u{’)23%, on [a, b], where Ue by,
We denote

P; = (w;, %(w;)).
Beeause lim o(Py), P;) =0, where P{ = (s, u(2;)), we have
]}_1:2 o (P, e, ($Br= o(Py, e, (@;)). Hence
e (P ey, (3;)) > &

Since d"dl &4, the sequence (%;) contains a subsequence (%) such
that (%,)=3% on [a b]. Consider the sequence (P,) and let limay, = 7.
Then

o(P,, P)—0, where P = (%, u(%T)).

It can be easily proved that
o(P, e, (2)) > 2.

It .suffices to prove that %ed, . Since U.ed, , there exists §ed,
such that %, ¢ &5, . Without loss of generality we can assume that (9,) 39,
on [a,b]. We have

lim llpy — el <limé(4,) =0

Hence

Po(®@) = yo(o) for zela,bd].

Now consider the restriction of H to a suitable compact set. Then

for &> 0 there exists K(e) such that

IIH[“’s ty (@ (t))] dt — IH[w, t, %(pe(1))] dtl

< [|B[z,t, % (5 0)] —H [, ¢, T(vo(1))]| @t < £1b —al

a

for k> K (&) and ze[a, b]. From this it follows that

a(x) = F[m, fu'(o:),fH(m, t ﬂ(fcpo(t)))dt] for zela, b].
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2.4, THEOREM. Let a function F satisfy the Lipschitz condition with
a constant A << 1 with respect to the second variable. Let a set of deviations
d = @ be closed and consist of equicontinuous functions, and let its emission
&4 be non-empty and uniformly bounded. Then the function

T—e (o)

maps continuously [a, b] info the melric space of non-empty compact subsets
of the plane.

Proof. Let P eey(@,) and £ > 0. Then there exist a solution ueé,
and a number é = J(¢) >0 such that

P, =(m, u(z)) and |u(@)—u(@)<e for lp—m]< 6.

It follows that the distance of any point P,ee,(#,) from the point
P = (v, u(2)) ees(m) is less than ¢ whenever |ov—a,|<< 4. Analogously,
the distance between each point from the set e, () and the set ey (w,)
is less than & if § > 0 is small enough. So

dist[es(2,), es(@)] < e for |o—m,]| < 6(e).

This completes the proof of the theorem.

3. The solution of (I) is dependent on the functions F, H and .
This solution can be considered as an operation (multivalued, in general)
defined on the space of points (F, H, ). In this section we give sufficient
conditions for this operation to be continuous, and also sufficient con-
ditions under which the solution depends continuously on a functional
parameter.

Let:

¢(F, H,p) be the set of solutions of (I) for F=F, H =H,
Y =9 . :

# is the set of real functions F(z, s, 2).defined, continuous and
bounded ona < 3 < b, —oo< §,2< oo, and in the second variable satis-
fying the Lipschitz condition, with a common constant A <C1.

# is the set of real functions H(z,?,v) defined, continuous and
bounded for a <o <b, a<i<wy, —c0o< V< 0o,

Let us asswine, moreover, that &(F, H, ) # @ for any Fe&F, HeH,
ped, '

3.1. THEOREM. For any functions FoeF, Hoed, ypoe® and &>0
there exists such a number 6 >0 that if FeF, Heslt, ped

(FoFoll< 8, [H-Hyli<d, Ily—1p<S3,
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then
E(F, H, p) = {veCla, b]: inflv—ul: wed(Fy, Hy, py)] < £}

Proof. Fix FyeF, Hyest’, woe ® and ¢ > 0. Suppose that the theorem
is false, Then for any = =1, 2, ... there exist F,«%#, H,e#, y,e® and
u,e&(F,, H,, p,) such that

1

1Py —Foll <n™, (H,—Holl<n™ lya—poll <n”
and
Un ¢ K,y

where K, denotes the genernlized open ball having its centre in & (F,, H,, v,)

and radius e.
Let C,, C; be numbers that bound the functions H, (n =1, 2, ...),
F, (n =1,2,...), respectively. Let us write

QL ={mHr):a<e<<) a<s<i<y, I'Dlgcl}_i
Q@ ={(2,82): a<ogd, 18<0,, RI<0,|b—al}

Because the sequence of the restrictions H,, n =1,2,..., to the
set @, consists of equi-continuous functions, for every & > 0 there exists
7 > 0 such that

Ty zy
| [ Hulous ty walvattl| @t = [ oo, t, wfwn(0)]dt]
< [ | Bulor, ty (o O] —Hn [0, 1, 10 (wn 0)]| 6+

oy
+ f | Ho [2) 2y va (1 ()] G

31
2!
< Cilwg—ml+ [ |H, oy, 25w (v (O)] —Hy[oa, 1, 1, (v, ()] 22

for |z, —ay| <% and » =1,2,... The sequence of the restrictions F,,
n=12,..., to @, consists of equi-continuous functions. We obtain that
for ¢ > 0 there exists 6 = §(¢) > 0 such that

| B [0, 1a(s), f IH,.(wl, b, 2, (1)) @8] —

—Fﬂ [wh 'un(mﬂ)’ f Hn(wh t! 7Ln(wn(t)))dt]'< €
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for [#,—>,| < d and n =1,2,... Hence we have
. &y
Iu'n(ml) - u’u (w'.!)l < ]-an.["nl) u’n (wl)i f 'Hu(ml) t! un(’pn(t)))dt] -
I
—Fyfoy, (@), [ Halwss b, walva () @8] +
Ty ’
+ IF“ [‘171) U, (Ta) f Hn("vu iy “’n('l’n(t)))d]—
[

—F, [0, uy(2), [ 2 (w1, (v (1)) 81|

< Al (®y) — U, (@) + &

if [g,—®,< d, »n=1,2,... Thus the functions u,, » =1,2,..., are
equi-continuous on [a, b]. By the Arzeld Theorem each subsequence of
(u,) contains a convergent subsequence (u). Let (u)=2u, on [a, b]. We
prove that uge&(Fq, Hy, o).

Because wuye8(Fy, Hy, ;) and (u,)Zug on [a, b] and (F) T F, on @,
it suffices to prove that

lim f ‘Hk[m, t, u(pe(2))] &t = f Hy|o, t, us(wo(d)] .

We have (H,)ZH, on @, and (y,)=Xy, on [a, b]. If we restrict H,
to the set @;, then for any ¢ > 0 there exists & natural number K such
that

| f__Hk[m’ t uk('/’k(t))]dt— f-Ho[my t, u’n('/’o(t))]dti

x

< f (lH,,[m, ty (e ()] —Ho|®, 1, (e (D)]| +

a

+ Ho[m 1, we(pe(0)] —Hol@, 8, wolwo(0))][) 28 < 2616 —al

for k> K and ze[a, b]. Thus uy e &(F,, H,,., Yo
Since

inf [, —ull: we&(Fy, Hyy o)l < g — %l

for ¢ there exists N(e) such that u,eK,, where &k > N(e).
3.2. COROLLARY. Let

IF,—Foll >0, IH,—Hol->0, lin—1vol-0,
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where FeF, H, ety ppe® (m = 0,1, ...). Suppose that equation (I) has
for ' =T, H = H, and p = yp, exactly onc solution uq, and u, 18 a solu-
tion of (I) for I = F,, H =H, and y =y, (n =1,2,...). Then

lim |je,, —ugll = 0.

Let H and v fulfil our assumptions and f(z, s, 2, ») be a real function,
continuous and bounded fora < o< b, —o0< 8,2, p < oo, and satisfying
the Lipschitz condition with a constant 2 < 1 with respect to the second
variable. We consider the equation’

T
(I1) w(@) =flo, (@), [ Hlo,t, ulp@))@, plo),
s
where ueC[a, b]. Let &(u) denote the set of continuous solutions of equa-
tion (II) on [a, b] for g = u. We assume, moréover, that &(x) 7 @ for
peCla, b].
3.3. THEOREM. For any function peeCla,b] and any &>0 there
ewists 6 > 0 suoh that for ueCla,b] ond |lu — poll < &

E(u) = veCla, b]: inf [v—ul < &}.
el (1)

The proof is similar to that of Theorem 3.1 and therefore will be
omitted.

3.4. COROLLARY. Let equation (II) have only one solution ueCla, b]
tor any peCla, b]. Then this solution, ireated as a function of u, is a con-
finuous mapping from Cla, b] to C{a, b].

4. Let R™ be an n-dimensional Buclidean space with the norm |- |
and C,[a, b] the space of confinuous functions from [a, b] to R™ with
the norm |yl = max{ly(2)l: a < o <b}. Denote

H = (H(l): sevy H(ﬂ))’ Y = ("r')(])’ ceey 1/’(n))) Yy = (y(l); ceey ?/(n));

f H[a’) t, ?/(w(t))]dt = (f H(i)[w: t):?/(l)('{-’(l)(t))‘; ey ?/(n)('l’(n)(t))]dt) ce

xr

oy [HO[a, 1, g0 (00), - (W) ).

a

In this section we formulate a theorem of the Kneser type for an
equation ' '

(I1T) y@) = [ Elo,t, y(po)dt.

Suppose that H®, 4% (3 = 1,2, ..., n) are given real functions such
that '
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10 the function H® (v,t,v,,...,7,) is defined, continuous and
bounded for a <o <<h, a <t <E, —00< Vyy.uny 1, < 0O,

20 the funection ¢(x) is defined, continuous and satisfies the ine-
quality '

o< yp(e) Lo
for e<z <.

It is known ([4]) that under the above assumptions equation (IIT)
has a solution in C,[a, b], and the set & of all its continuous solutions
is compact. We shall now prove that & is a connected set.

Suppose that & is not connected in C,[a, b]. Then there exist non-
empty, closed and disjoint sets &,, &, such that

6:' - 6:1U€2c

For the restriction of H to a suitable compact set @ there exists
([4], [6]) a sequence (H,) of equi-continuous functions satisfying the
Lipschitz condition with, respect to the last variable and (H,)=H on
the set Q.

Take ¥,¢&,, 9,¢&, and consider the integral equation

¢ z
(IIn)  y(@) = [H[z,t, g:lp0)]@t+ [ Halz, b, gl (0 =1,2),
a §
where @ < £ << b. This equation has exactly one solution yi™ ([4]). For
1 =12, n=12..., let

Yi (@) for

M () a<w<é,
i (z)  for E< <D,

and
yEm (£) = nm.
Then %" is a continuous function from [a, b] to C,[a, b] and
I = (3™: Eela, b}
.is the connected set. Because il = 1™ we obtain that

I, = rhury
‘is the connected set.
By normality of C,[a, b] for the sets &, &, there exists a pair of
open, disjoint sets A, 4, such that
S cd;, (1=12).
Since I, is non-empty (¥;, ¥»€l},) and connected and 4,, 4, are
disjoint sets, I,\I,n(4,U4d,) # @ for every m. Take a sequence (h;),

hpely, Th,dd,0A4A, (m=1,2,...).



252 B. Rzepecki

It is easy to verify that the funections forming I,
.I" = Flurnu v UI‘";U Ve

are commonly bounded and equi-continuous, hence a sequence () con-
tains a subsequence (h,) uniformly convergent to some function 2.
Without loss of generality we can assume that 54, = h?'"’ whero
(&,)—~& . Then hy(2) =y (o) for a <» < & and

$n x
o () = f Hlz, t, ya(v(0)]dt+ f H,[o,t, by, (p(0)]ds

for £, < @ < b. Thus h, fulfils (IIIn) in [a £] and
¢,

hio() = lim f Hlw, ¢, yl(w(t))]dt+lim f H,[m, %, b (w(®)] a¢

for me(&, b]. It can be easily proved that
£ &

im [ Hlo,t, 5, (p®)]dt = [ H(v, 1, y:(p(@)]dt

and
lim f H,[o,t, hy(p)]d = f Hs,t, hy(w(®))]dt.

Because a < () <t < &, then 3, [w(t)] = ly[w(t)). Hence

ho(m) = fH[aJ, t, h.,(w(t))]dt

for (<2< b. Thus we have proved that h,ed. '
On the other hand, if h,¢&, then hyed,U4,. Since (h,)—>h, and
4,UA4, is open, there exists an index N such that h,ed,Ud, for n > N.
This contradiction proves that hy¢&.
So we have proved the following:

4.1. TEEOREM. Let assumptions 1° and 2° be fulfilled. Then the set &
of all solutions of equation (III) is non-empty, compact and connected in
C.la, b].

4.2. CorOLLARY. Under the assumptions of Theorem 4.1, for any
zela, b], the set {y(=): ye&} is compact and connected in R"
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