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ON MIXED PRODUCT OF BOOLEAN ALGEBRAS

BY

J. PLONKA (WROCLAW)

0. Let (L;; v, A),7 = 1,2, 3, be three distributive lattices and let L
be the cartesian product of the sets L;,. We define a new algebra—called
mized product of distributive lattices () — (L; O,, O,, O;) with three
binary operations O,, O,, O; on L as follows (2):

(@15 T2y B3) O1(Y1y Yoy Ys) = (T1V Yy, Ly AYzy 3N Ys),
(I) (%1 @gy X4) 02(_?/1, Yoy ?/3)_ = (B, A Y1y T2V Ya,y ms’\?_/a)’
(1, @3y %3) Og (Y1) Yoy Ya) = (T, A Y1, Ty AYs, T3V Ys).

The class of all mixed products of distributive lattices is a generali-
zation of the class of all distributive lattices. In fact, by taking L, and Lj
as one-element lattices one arrives at the distributive lattice L,. The
equational class of algebras generated by such algebras was described
in [2].

The situation becomes more complicated if, instead of distributive
lattices, we take Boolean algebras (B;; v, A, >, ¢ = 1, 2, 3. We consider
the set B = B; X B; X By and- want to introduce Boolean operations on B
analogous to that of (I).

In Boolean algebras the complementatmn is connected with the
two binary operations by the crucial de Morgan laws and it is but natural
to have'its analogue in our set up. Accordingly we define three binary
opera,tlons 0,, 0,,0; as above and three unary operatlons (one Wlth
each pair of binary operations) z — 2, & — 2,  — 2® as follows:

(@ @, ws)( 2 = (wn wzy AP
(II) (2 22, wa)(la = (wu Ty a’s)a-

(41, 22, @3)*) = ('?1’1.71‘”;9 @3).

(*) This terminology was suggested to me by Professor G. Gratzer
(2) B. ‘H. Arnold exarnines in [1] similar algebras. :
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Definition. An algebra (B;O0,, 0,, O, 2, 13 )% with three
binary operations O,, O,, O; and three unary operations (2,3 (23)
defined by (I) and (II) is called a miwed product of Boolean algebras (MPBA
for brevity).

It is clear that every Boolean algebra can be thought of as an MPBA.

One can easily verify that the following identities (3) are true in an MPBA
(Bj; Oy, Og, Oy, (12)7 (13)’ (23)>:

(1) zO0;x = o, t=1,2,3,
(2) 20,y =y0O,x, t=1,2,3,
(3) 20;(y0,;2) = (v0,y)0;z, t=1,2,3,
(4) (®0;¥)0;2 = (£0;2)0,(y0;2), 1,je{1,2,3},
(5) 20,;(x0;(20,y)) = , i #£j £k #1,
(6) (@0,y) ) = 201 0,y
(7) 20;(z0,;0) = »,
(8) (2 O; () 0;(y Oi?/(m) = 20, (™) 0,y Oi?/w)’
(9) 2™ 0, [(#™) 0,5™) 0, (2 0,4)®] = 2™,

(10) (@D = g

(11) (w(ia'))(ik) = w(ik)’ j #k.

So the identities (1) to (11) hold in the equational class X'z of algebras
generated by all MPBA’s (i.e., the smallest class of algebras closed under
the formation of homomorphic images, subalgebras and direct products).
The purpose of this paper is to prove the converse of this statement,
namely, that X2y is characterized by the identities (1) to (11).

1. We need the following

LEMMA. Let A = (X; Oy O,, Og, 13, 13 @ pe an algebra in which
the identities (1) — (11) hold. If xO;y = xO;y holds in W for some i +# j,
then we have

(a) ) — x,

(b) %) — w(?‘k)’

(¢) #0;a* = yO,y™.

Proof. (a) We have

& = 20;(©0;47) = #0,(20,4”) = 20,47,

(3) Obviously, this list of axioms can be replaced by a smaller one.
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where the first equality is by virtue of (7), and so
" = (302 = 20,8 = 20,8 = w,

where the second equality follows by (10).
(b) follows immediately from (a) and (11).
(c) We have

20,0 = (£0,0™)0,((z0,4™) 0, ((0,;2) O, (y 0,y™))
= (@0,2") 0, ((20,2™) 0, (y 0,3™))
= (20,2) 0;((0,2™) 0;(y 0,4™))
= (@0;2)0,(y0,3™)

where the first equality follows by (5), the second by O; = O;, and the
third by (8). Since the last expression is symmetric in  and y, we have (c).

COROLLARY. Under assumptions of the lemma the algebra A becomes
a Boolean algebra if we denote O; = A, O, = v and 7 = z'.

THEOREM. An algebra A = (X; Oy, O,, O, !, 13 3% sqtisfies equa-
tions (1)-(11) of and only if it is a subalgebra of some MPBA.

Proof. The ‘“if” part being obvious we will prove only the ‘‘only if”
part. Let us define three relations R,,, R,5, R,; in A as follows:

aR;b iff a0,(a0;b) = a and b0O,;(b0;a) = b,
(¢, j)e{(l, 2), (1, 3), (2, 3)}

It follows from Lemma 5 of [2] that the R,;’s are congruence relations
in the reduct (X; O,, O,, O3>. We now prove that they are congruences
in A by verifying the substitution laws for the unary operations ¢/,
Let aR;;b. Then

a® — (aOi(aO,-b))“j) — a,(i")O,-(anb)(i")

= g\ O,.(a(ij) 0, b)) = gl Oi(a‘ij)Oj i),
and, similarly, ) ) _
pli) — b(")Oi(b(”)O,- a,(”)),

which -proves that &' R,
Again,

a™®0;(a™0,b™) = o™ 0,((a0;(a0;b))™ 0; (b0, (b0, a)™))
= a™0,((a™ 0, (a 0;b)™) 0, (6™ 0, (bO,a)™))
= a™0,((a™ 0,;b) 0, (a0,b) ) = a®,

where the first equality follows by a R,;b, the second by (6), the thiﬂrdl (2)
and (4), and the last by (9).
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Similarly, 5 0,(b%¥0,a™) = b, and hence a™ R,;b™,

From lemma 7 of [2] we have (xO,y) R;;(¢0;y). Thus by the corollary
of the previous lemma, the algebra U/R; becomes a Boolean algebra if
we denote, in A/R;, 20,y = vvy, 20,y = 20,y = xAy and 2 =o'
For aew, let [a]; denote the equivalence class (of the relation E;) to
which @ belongs. It follows from Lemma 6 of [2] that the mapping

a — {[a], [alis, [a)ss)

is one-one and thus the above correspondence sets an isomorphism between
A and a subalgebra of M = A/R, X U/R,3 X A/R,3. This completes the
proof of the theorem.

Remark. In virtue of the above theorem one can omit the words
“homomorphic images’ and ‘‘direct products’ in the definition of X.
In other words, the class of all subalgebras of MPBA’s is automatically
glosed'with_ respect to the formation of homomorphic images and direct
products.
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