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1. Introduction. In 1953 Sierpinski [11] proved that any real-valued
function defined on an interval I is the limit of a sequence of Darboux
functions. This result was also established by Fast [3] and has been
extended to very general spaces by Marcus [6]. Sierpinski mentioned
in [11] that not every function is the uniform limit of a sequence of
Darboux functions, although there are functions which are such limits
without themselves satisfying the Darboux condition. The main purpose
of this article is to provide an intrinsic characterization of those
functions which are uniform limits of Darboux functions.

2. Preliminaries. Throughout this article we shall be concerned with
real-valued functions defined on an interval I (which can be taken to be
the entire real line). Such a function f is called a Darboux function provided
the set f(J) is connected for every interval J — I. We shall be concerned
with the two generalizations of the notion of Darboux function which
we now define.

Definition. A function f is in the class %, if for every interval
J < I, the set f(J) is dense in the interval [inff(z), supf(«)]. The func-
zeJ xeJ

tion f is in the class # if for every interval J = I and every set 4 of
cardinality less than ¢, the set f(J—A) is dense in the interval [i.n.ff(w),

supf(a:)] (In these definitions the interval [inff(z), sup f(z)] ca.n be
zel

repla.ced by the interval [f(a),f(b)] where [a, b] J.) As we shall see
below, the class % is the uniform closure of the class of Darboux
functions. The class %, has been considered by Ellis [4], ;Ma,ssera, (71,
and Radakovic [9], and will be of use in our study of the class #.

If 4 and B are sets, then 4 is said to be c-dense in B provided every
open interval which intersects B contains ¢ points of A. We shall use
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freely those properties of Borel sets, and Baire functions which can be
found in Kuratowski [5]. We shall use the notation card A to mean the
cardinality of the set A.

3. Characterizations of the classes %, and #. In this section we
obtain various characterizations of the classes %, and  which we shall
find useful in the sequel. We begin with a definition.

Definition 3.1. For a function f on I and each point xel define
the sets Cy(f,x) and C(f,x) of extended real numbers by: yeCy(f, x)
provided for each neighborhood N of y and each neighborhood M of x
the set f~'[N] ~ M is non-empty; similarly, yeC(f, #) provided the set
f'[N]~ M has cardinality c¢. The one sided cluster sets Cg (f, z),
Cy (f,z), C*(f,z), C~ (f, ) are defined similarly with one sided neigh-
borhoods M.

Below we make use of the easily verified fact that yeC,(f, ) if and
only if for some sequence {x,}, z, —> x, we have f(x,) > y. Note that
f(x)eCq (f, @) ~ Cg (f, ).

LEMMA 3.1. If fe, then C(f,x) = Co(f, x) for each zel.

Proof. Suppose y,¢Co(f, x), say, ¥y, = limf(x,), ®, > x,. Let N
be a neighborhood of y,, M of x, and let C = f~'[N] ~ M. Choose n
so large that the interval between x, and «,., is contained in M and
that between f(x,) and f(«,,;) in N. Since fe# that subset of C con-
sisting of those points between x, and x,,, which map between f(x,)
and f(x,,,) already has cardinality c¢. Hence y,eC(f, x,).

THEOREM 3.1. For a function f defined on I the following conditions
are equivalent:

a) fel,;

b) each of the cluster sets Cy (f, ), Cf (f, «) i3 a closed interval for each
zel;

c) for each a,bel with a < b,

U Oo(f, ) = [inf f(x), supf(z)],
zefa,b] ze[a,b] ze[a,b]
where Co(f, a) and Oy (f,b) must be interpreted as Cq (f, a) and Cy (f, d)
respectively.

Proof. a)=>Db): Let fe%,, let x,el, and let o = infC{ (f, x,),
B = supCy (f, z,). If a = B, there is nothing to prove. Otherwise let
ve(a, f). Choose @, — @y, Yn — @y With f(@,) — a, f(ya) — B, and let I,
be the closed interval determined by z, and y,. Let N be a neighborhood
of y, M a one sided neighborhood of z,. For n large enough we have
I, =« M and f(x,) <y < f(y,). Since fe#,, there is a point z, between z,
and y, with |f(2,)—y| <1/n. Clearly y = limf(z,) and z, >z, so
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yeO¢ (f, z,). Consequently, [a,f] = Cf (f,®,) and since the reverse in-
clusion is clear we have proved b).
b) = ¢): Suppose each of CfF (f, ), Cy (f, ) is a closed interval for
each zrel. Let a,bel with a < b, and let
K= U Cf, ).

z¢[a,b]

We first show that K is dense in its closed convex hull K. If this were
not the case there would be an interval (a, f) < K—K. Since each
Co(f, x) is an interval, it must lie either entirely above § or entirely below a.
Let Cy(f, z,) lie below a. If every interval [z,, ,+d], 6 > 0, contained
an xs;e[a, b] with C,(f, ;) above g8, it would follow that C,(f, #,) had
points above §f — an impossibility. Hence, the supremum ¢, of all § such
that C,(f, ) is below a for all x in [z, £,+ 0] ~ [a, b] is positive. If
8o # oo, then x,+dy€(a, b) and since every interval about x,4-d, contains
points xe[a, b] with Cy(f, x) below a, we would have Cy(f, z,+ J,) below a.
But the argument above on the point x, may be repeated for x,4 4,
contradicting the definition of J,. Hence J, = co. A similar argument
shows that C,(f, z) lies below a for all x < x,. This contradiction esta-
blishes our assertion.

Let ye]AI . Then, by what we have just proved, for each » there is an
Zpela, b] and a y,eCo(f, x,) ~ (y—1/n,y+1/n). We may assume that
x, — ®ye[a, b]. Hence, there are z,e(r,—1/n, x,+1/n)~ [a,b] with
f(2a)e(y—1/n, y+1/n). Thus yeCo(f, x,) = K. This proves that K = K.
Since K is easily seen to be [ inf f(z), sup f(z)], we have proved c).

ze[a,b] re[a,b]
c¢) = a): Suppose c) holds for f. Let a,bel, a < b,
a = inf f(x), g = sup f(=), K = U Ouf,2).
ze[a,b] ze[a,b] ze[a,b)
Then, if ye[a, f], ye K. Thus every interval about y contains the image
of a point in [a, b], and fe%,.
We turn now to characterizing the class #. The proof of Theorem 3.2
below makes use of the results obtained in Theorem 3.1.
THEOREM 3.2. For a function f defined on I the following condittons
are equivalent:
a) fe¥;
b) for each a,bel with a < b,
U C(f, ) = [ inf f(z), sup f(2)],

we[a,b] xefa,b] xe[a,b]

where O(f, a) and O(f,b) must be interpreted as C*(f,a) and C(f,b)
respectively ;
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c) fe%, and for each open interval N, f~'[N] is empty or c-dense in
itself;

d) fe#, and f (i. e. the graph of f) is c-dense in itself.

Proof. a) = b): If fe, then fe#, and by Lemma 3.1 we see that b)
follows from Theorem 3.1 part c¢).

b) = ¢): Since U Co(f, z) is always a subset of [m{f, sup f]
ze[a ze[a,b
and C(f, z) = Co(f, a:),[ b) implies condition c¢) in Theorem[3]1 E[[erllce
fe#,. Let N be an interval for which f~'[N] # @. Let x,¢f'[N], and
let M be an interval about z,. Clearly there exists z'eM with f(xz,)e
C(f, x'), so card[f'[N] ~ M] = ¢. Thus f~'[N] is c-dense in itself.

¢) = d): Fix a point z,. Let N be an interval about f(«,), M an in-
terval about z,. Since f'[N]~ M # @, it must contain ¢ points.
Consequently, the rectangle M X N contains ¢ points of f.

d) =>a): Let a,bel, a <b, and suppose f(a) # f(b). Since fe%,,
fla, b] is dense in (f(a), f(b)). Thus, if ye(f(a), f(b)) and N is a neigh-
borhood of y there are x,, , in [a, b] with f(z,), f(z;)e N and f(z,) < y
< f(w,). Since there are c-points of f in the rectangle (w,, z,)X (f(=,),
f (wa)), there are c¢-points of (x,, ;) (and hence of [a, b]) which map into N.
Consequently fe%.

4. Uniform limits of Darboux functions. We are now ready to prove
the main results of this article. Thus in Theorem 4.3 we prove that % is
the uniform closure of the class of Darboux functions. Theorem 4.3 also
asserts that a Baire or measurable function is in % if and only if it is the
uniform limit of a sequence of Darboux Baire functions or Darboux
measurable functions respectively. Theorems 4.4 and 4.6 provide infor-
mation about certain classes of functions in #.

We begin with a lemma.

LEMMA 4.1. Any c-dense in itself subset A of I s the umion of
countably many disjoint, mon-void subsets each of which 18 c-dense
in A. Moreover, if A 18 Borel a or Lebesgue measurable, then the sub-
sets may be taken to be Borel of class max(a, 2) or Lebesque measurable
respectively.

Proof. I. The first statement is proved in Boboc and Marcus [2].

II. Now suppose A is any Borel set which is c-dense in itself. First
we show that any c-dense in itself Borel set B has two disjoint Borel
subsets each c-dense in B. Let {J,}n~.: be an enumeration of all rational
open intervals which intersect B. It is well known (see Kuratowski . [5],
p. 387) that each uncountable Borel set contains a perfect subset, which
in turn contains a nowhere dense (relative to the original set) perfect
subset. So we pick P, to be a nowhere dense perfect subset of J; ~ B
and @, to be a nowhere dense perfect subset of J, ~ B—P,. By induction
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we pick P, to be a nowhere dense perfect subset of

Jnn B— U P;— U@

i<n i<n

and @, to be a nowhere dense perfect subset of

Ip~n B— JPi— Q.

i<n i<n

Then (J P, and | @, are two disjoint, non-void subsets of B each
n=1

n=1
c-dense in B.

Now by the above construction there are disjoint subsets A, and B,
of A each c-dense in A. In turn, B, has disjoint subsets 4, and B, c-dense
in B,. By induction, B, has disjoint subsets 4,,, and B,,, each c-dense
in B, and hence in A. Then the sequence {4;};, together with

A, v (A— | A,) yields the desired sequence decomposing 4 into disjoint,
i-l
non-void Borel sets each c-dense in A. It is easily checked that A; where
t>2isan F, and A, v (A— | 4;) is a Borel set of class max(a, 2).
iz1

III. Let A be any Lebesgue measurable subset of I c-dense in itself.
Let {J,}i2, be an enumeration of all rational open intervals in R which
intersect 4. If J, ~ A has zero measure, we put B, = J,~ A. If J, ~ 4
has positive measure, we can find a perfect set P, of positive measure
inside J,, ~ A. Then by the process of “removing middle thirds” we can
find a nowhere dense perfect subset B, of P, which has zero measure.

Next put B = | B, to obtain a measurable subset of 4, which is ¢-dense

n=1
in itself and in 4 and has zero measure. By part I, B can be decomposed

into a sequence of subsets {C,},-, each c-dense in B. Then {C,}s., to-
gether with C, u (4 —B) is a disjoint sequence of non-void, measurable
subsets of A each of which is ¢c-dense in A and whose union is A.

THEOREM 4.1. Let fe# and ¢ > 0. Then there exists a ge¥ such that g
i8 constant on mo subinterval of I, the range of g is countable and ||f— g||
< & Moreover, if f i8 Baire a or measurable, then g may be taken to be Baire
of class max(a+1, 2) or measurable respectively.

Proof. If f is a constant, then the construction of g is clear. In
case f is not a constant, we can without loss of generality assume that
the closure of the range of f is B. Now decompose R into disjoint half-
open intervals {I,},_, each of length ¢ and having irrational endpoints.
Put A4, = f~'(I%). Enumerate the rationals in I, as {r,}5.,. Since each
A, is c-dense in itself (this follows from fe#), we may decompose A,
into sets {A,x}r=1 a8 given by Lemma 4.1. Now define g by g(x) = 7
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if zed,; and put g(x) = f(x) otherwise. Since each 4,; is c-dense in A4,,,
g can not be constant on any subinterval. In addition, it is obvious that
IIf —gll < € and the range of g is countable. And it is easily verified that
if f is Baire a or measurable, then g is Baire max(a-+1, 2) or measurable
respectively.

To show ge# we suppose without loss of generality that g(a) < g(b).
Let {I.}i—. be the set of intervals which intersect [g(a), g(b)] so that
aef~'(I,) and bef~'(I,). Let C be any set with card C < c¢. Because
fe#, the set f((a,b)—C) must intersect each I, for n < m. But it is
easily shown that whenever f((a, b)—C) intersects some I, 1 <n < m,
we can infer that g([a, b]— C) contains all rationals in I, as follows: Let
xe(a, b)—C so that f(z)ely. Then xeAd,, so that by the c-density of the
sets A,, we have (4,,—C) ~ (a, b) # O for each k. It follows then that ¢
assumes all rationals in I,, over (a, b)— C. Thus, in case f(b) eIy, g([a, b]—
—C) contains all rationals in [g(a), g(b)]. If f(b)¢I5,, then g([a, b]—C)

m-—1

contains all rationals in | J I, and, hence, in [g(a), g(b)] because g¢(b)
k=1

= f(b). So in any case g([a, b]—C) is dense in [g(a), g(b)], completing
the proof.

THEOREM 4.2. Let fe% be such that f is not constant on any subinterval
and the range of f is countable. Then f is the uniform limit of a sequence
of Darboux functions. Moreover, if f is Baire a or measurable, then the
approximating functions can be taken to be Baire of order max(a,2) or
measurable respectively.

Proof. I. First of all suppose f is a Baire function of order a. Let
e > 0. Then it suffices to find a Darboux, Baire function g of order
max(a, 2) such that ||f—g|l < e Without loss of generality we can
assume that I = [0, 1]. Let {r,}»_, be an enumeration of the range of f.
Put 4, =f"'(r,) and A} = [(m—1)/2", m/2") ~ 4, for each m with
0 < m < 2™ Clearly each A}’ is a Borel set of order a. For each Ay for
which card Ay = ¢ we pick a nowhere dense perfect set P, < A, (see
proof of Lemma 4.1, part IT) and a corresponding continuous function gy’
which maps P; onto the closed interval [r,—e,7,+¢]. Now define g as

follows:
g::z(w), if wePZL,

g(x) = : m
f(x), if x belongs to no P, .

That ||f—g| < ¢ is obvious. To show that ¢ is a Baire a function,
let V be any closed set in R. Then

g (V) = (H (g) (V) © (f“(V)—HPZ‘)

which is clearly a Borel set of order max(a, 2).
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To show ¢ is Darboux, let a < b with g(a) +# g(b). Put
a = inf f(x) and S = sup f(x).

ze[a,b] ze[a,b)

Since f is not constant on any subinterval, we have a < 8. Since fe%,
we can pick r, and 7, so that a <7, <7, < . Choose wef~'(r,) and
yef ' (rm). Supposing x < y pick an open interval U so that [#,y] = U
c U < (ay;b). Put B = {k: 7, < 1 < rp}. If, for each keB, card (4di ~
~ (x, y)) < ¢, we would have f¢#. Therefore, it follows that there are
infinitely many &’s in B for which card(d: ~ (2, y)) = ¢. Now choose
a k in B so large that the appropriate subintervals [(m—1)/2*, m[2¥)]
which contain  and y, lie entirely inside U. Hence, there exists an m
so that Py < U and thus ¢g(P%) = [rr—é&, rx+¢]. Then it is clear that
by varying the choices of r, and r,, in (a, f) we can prove that (a—e¢,
p+e¢) < g([a, b]). Since g(a) and g(b) belong to [a— &, B+ €], any value y
between g(a) and ¢(b) must belong to (a— ¢, f+ ¢) and hence to g([a, b]),
which establishes the Darboux property for g.

I1. Suppose f is measurable now. Then the proof in I works with the
following modifications: For any A, for which card 4, = ¢ we pick
a nowhere dense perfect subset P, of Ay if A, has positive measure.
In this case g, is defined as in I. If, however, A7’ has measure zero and
card Ay’ = ¢, we put P, = A;' and map P;' onto [r,—e,r,+¢&] by any
function g, . Since A7’ has measure zero, g5, will be measurable. Thus the
measurability of g is immediate. The rest of the proof is the same as in I.

III. Lastly suppose f is any function. Then the proof in I or II works
with the following modification: For any Ay, for which card 4, = ¢,
put P;' = Ay and map it by any function gy onto [r,—e,r,+¢].

We now put Theorems 4.1 and 4.2 together to obtain the results
promised at the beginning of this section.

THEOREM 4.3. A necessary and sufficient condition that fe¥ is that f
be the uniform limit of a sequence of Darboux functions. Moreover, if f is
Baire a where a = 1 or measurable, then the approximating functions may
be taken to be Baire a-+1 or measurable respectively.

Proof. The necessity is proved by applying Theorems 4.1 and 4.2.
For the sufficiency, let J = [a, b] be a closed subinterval of I and 4
be a set with card 4 < ¢. Let U be any open interval whose closure is
contained in (f(a), f(b)). For the proof we must show that f(J—4) ~ U
# @. Express U as (y—e,y+¢). There exists an n such that |f,(x)—
—f(z)| < €/3 for all xeJ and such that f,(a) < y—e and y+¢e < fr(b).
(Without loss of generality we are assuming f(a) < f(b).) Since f, takes
on each value in (y—¢/2, y+¢/2) over J, it follows that there exists
an xoed — A such that y — /2 < f,(x,) < y+¢/2. This in turn implies that
f(xy) e U, completing the proof.
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THEOREM 4.4. A Baire 1 function in % satisfies the Darboux condition.
Proof. Massera [7] (p. 666) has shown that a Baire 1 function with
the property that

f(z)e[lim f(2), lim f(2)] ~ [lim f(2), lim f(2)]

P P PR szt

for each zeI, must be a Darboux function. A Baire 1 function in %
obviously satisfies this condition, completing the proof.

COROLLARY. A Baire 1 function f belongs to # if and only if f is the
uniform limit of a sequence of Darboux, Baire 1 functions.

We do not know (P 546) whether Theorem 4.4 is valid for Baire
2 functions. However, Theorem 4.4 is not valid for functions in Baire
class 3. To see this, let

where the sets A, are pairwise disjoint, non-void, Borel 2 sets, each
c-dense in I. That this can be done is a consequence of Lemma 4.1. Let
71, 79, ... be an enumeration of all rational numbers. Define a function f
by f(x) = r, if ®eA,. Then f is a Baire 3 function in # but f is not
a Darboux function.

A function f is said to be convex in the semse of Jensen if

f(w+y) <f(w)+f(y)

5 9 for all z,yel.

A function is said to be additive if f(x+y) = f(x)+f(y) for all ¢, yel
such that 24 yeI. Every function which is additive on the entire real

line R is also convex in the sense of Jensen on R.

THEOREM 4.5. Let f be a function convex in the sense of Jensen on an
open interval I (which may be the entire real line). Then fe¥.

Proof. Let z,yel. Let D denote the set of rational numbers in
[0,1]. Then, according to [1] (p. 224), there is a conlinuous convex
function g on [x, y] such that ¢ = f on the set 8 = {{: ¢ = Az (1—A4)y
for some AeD}. It is clear that the projection of the graph of f over 8

onto the y-axis is dense in the interval [g(x), g(¥)] = [f(®), f(y)]. It
follows in particular that fe#,. Thus, according to theorem 3.2 it suffices

to show that the graph of f is c-dense in itself.
Let zyel. For xel, define

Z, = l(wo—i— ‘_”_;_n“jg,f(wo+ w;”%)):n =1,2, I
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Let 6 be a subinterval of I not containing z, and so small that  and
(x+ x,)/2 cannot be in ¢ simultaneously. Then Z, ~ Z,, = @ for z, 2’ €0.
Let U be some neighborhood of the point (z,, f(,)). Obviously, Z, ~ U
# @ for all vel. Therefore Z, ~ U, xed, is a family of non-empty and
disjoint sets and

card(U ~ f) = card(U ® ~ U) > card 6 = c.
Zed

Remark 1. A function convex in the sense of Jensen need not be
a Darboux function. To see this, let H be a Hamel basis including the
point # = 1. Define a function f by the equation

1 if =1,
flw) =10 if weH, z #1,
by additivity otherwise.

The function f is additive (and hence convex in the sense of Jensen)
on R, yet has the rationals as range. Such a function cannot be a Darboux
funection.

Remark 2. The proof of theorem 4.5 is valid for any generalized
convex function (see [1]).

5. Algebraic structure of #, and %. It is easy to provide examples
to show that the classes # and %, are not closed under the various alge-
braic operations. For example, Sierpiniski [10] and Fast [8] have shown
that any function on I is the sum of two Darboux functions. However,
a8 we show in this section, the classes  and %, are closed under certain
combinations of functions in # with continuous functions. Theorem 5.2
furnishes a general theorem of the desired kind and the usual algebraic
combinations are considered in the corollary to Theorem 5.2. Finally,
we consider the case in which the Darboux functions are also in the first
class of Baire.

Definition 5.1. Let F(z,y) be continuous in the entire plane.
A point y, is a singular point of F provided either

lim F(z,y) or lmF(x,y)
V- V-
T—00 Z—»—00
fails to exist in the extended sense.
Examples. Each of the functions x4y, max(w, y), min(», y) fails
to have a singular point. The function 2y has 0 as its only singular point.
THEOREM b.1. A polynomial, P(x,y), has at most a finite number
of singular poinis.
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Proof. Write
P(z,y) = D puly)a”,
k=0

where each p;(y) is a polynomial in ¥ and p,(y) is not identically zero.
We prove by induction on » that if p,(y,) # 0, then ¥, is not a singular
point of P and

lim P(z,y) # 0.

Y-Yg
T—>4 00

This is clear for » = 0. Suppose the assertion holds for n—1, and
Pn(Yo) # 0. Then

P(x,y) = po(¥)+2 Y pi(y)a~".

k=1

By hypothesis

lim ' p(y)a*
V-Yp k=1
I—+4 00

exists and is different from zero. Therefore, P(z, y) tends to an (infinite)
limit a8 ¥ — y, and # — 4 oo. This verifies the induction step and the
result is clear.

LEMMA 5.1. Let F(x,y) be continuous in the entire plane. Suppose
for each fe#, and continuous g that F(f(x), g(x))e%,. Then for each fe¥
and continuous g, F(f(x), g(x))e%.

Proof. Let fe%, let g be continuous. Since we are supposing that
h(x) = F (f(w), g(w)) is in %, it suffices, by Theorem 3.2, to show that A
is c-dense in itself. To this end fix a point x, and let ¥ and M be neigh-
borhoods respectively of h(x,) and z,. Since ¥ is continuous, there are
neighborhoods M, of f(x,) and M, of g(x,) for which F[M,X M,] < N.
Since g is continuous, there is a neighborhood M, of z,, M3 < M, so that
g{M;] =« M,. Since fe#, f intersects My;X M, in c-points. Thus there
are c¢-points # in M, with (v, f(x))eM,;x M,. For each such point h(z)
= F[f(»), g(x)] = N. Therefore, the set of points (2, h(x)) in M XN has
cardinality ¢ as was to be proved.

THEOREM 5.2. Let F(x,y) be continuous in the entire plane and have
at most a finite number of singular points. Then, if fe¥, (resp. %) and g
i8 continuous, the function h defined by h(z) = F(f(x), g(x)) is in %,
(resp. %).

Proof. By Lemma 5.1 it suffices to prove the assertion for #,. We
first show this in case F has at most one singular point y,.
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Let x,el. Suppose g(z,) # ¥,. Then,

Go(h’ wo) = {yl Yy = hmF(f(wn)’ g(mn))’ Ty — wo}
={yly = HmF(f(wn)y g(‘vn))’ Ty, —> Bgy f(@0) — ¥}

where —oo <y < co. By the continuity of F and the fact that, by
Theorem 3.1, OCy(f,x,) i8 a closed interval we have Cy(h, x,) =
F[Cyf, o) X{g(wo)}], a closed interval.

Thus, in the special case that F has no singular points or if the range
of g doesn’t contain any singular points, C,(k, ) is a closed interval
for each xel, proving that he%.

Suppose ¢(z,) = y,. Then we may write

Of(hyg) = Agw Ay v A_o,
where
Ao ={yly = F(y,90), v<Cs (f, %) ~ (—o0, 00)},
A, = {'yl y= limF(f(mn)’ g(wn))a Tp, — &g fn) > oo},
A_o = {yly = UmF(f(xa), §(2a)), Tn — 5, f(#a) — —oo}.

Since F is continuous, and Oy (f, xz,) is an interval, 4, is also an
interval.

Let a =infd,, f§ = supA,. Let o’ =infAd,,f = supAd..

Suppqse B < B’ and let ye(B, f'). Let x, — oy with f(x,) - oo and
F(f(w), g(x,)) > B’ We claim that w, is eventually in the set where
g(x) # y,. Otherwise we would have F(f(x,),g(®.) = F(f(x,),y,) for
a subsequence J of indices. But for neJ sufficiently large, f(x,)eCo(f, x,),
implying the contradiction: F(f(w,), y,) < pB for infinitely many n. We
may now assume ¢(x,) # ¥y, for all n. Let (a,, b,) be the component of
the set {z| g(x) # y,} in which x, lies. By choosing an appropriate sub-
sequence (which we continue to denote by I) we may suppose F(f(a,), ¥,)
< (y+p)/2. Since ¢g(a,) =y, for each n, we may choose y,e(a,,b,)
so close to a, that y, < «, and

|F(f(yn)’ g(?/n))—F(f(a'n)’ ?/o)' <(y—»ni2.

Then, for all large n»
h(yn) <y < h(@).

On the interval [y,, #,], the range of g contains no singular points
of F, so by a remark at the beginning of this proof A is in %, on this
interval. Hence, for large n there is a 2,e[y,, x,] with |h(2,)—y| < 1/n.
Since z, - xy, yeCf (h, ¢,). We have, therefore, proved that the points
of A which lie above 4, form an interval abutting on A4,. Similar
statements hold for the points of 4, lying below 4,, and, A4, lying
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above or below 4,. This makes it clear that Cf (h, x,) is a closed interval
containing h(x,).

Similarly, we may prove that C, (k, x,) is a closed interval.

By Theorem 3.1 we have he#%,.

Finally, we consider the general case when F has an arbitrary but
finite number of singular points. Let z,eI. We restrict our attention
to an interval about z, in which g assumes at most one of the singular
values of F. Then he%, in this interval and so each of C; (h, x,) and
Cy (h, z,) is a closed interval. By Theorem 3.1, he%,.

COROLLARY. If fe¥, (resp. %) and g i8 continuous, then each of the
following functions is in %, (resp. %): g(f),f(g), P(f, g) for any polyno-
mial P, (in particular f4g, f-g), max(f, g), min(f, g).

Proof. The assertions for ¢g(f) and f(g) follow easily from the defini-
tions of #, and %. The rest of the assertions are immediate from Theorems
5.1, 5.2 and Lemma 5.1.

The part of this corollary which deals with sums and %, was known
to Ellis [4], Massera [7], and Radakovic [9].

It follows from Theorem 4.4 and the corollary that the sum and
product of a Darboux function in Baire class 1 and a continuous function
are also Darboux functions in Baire class 1. This result also follows readily
from a criterion of Maximoff ([8], p. 260).

On the other hand, if f is any Darboux function in Baire class 1
which is discontinuous at a point x,, then it is easy to define another
Darboux funection ¢ in Baire class 1 and also discontinuous at z, such
that the function f+g¢ is not a Darboux function. However, there are
discontinuous Darboux functions in Baire class 1 whose product with
any Darboux function in Baire class 1 is again in that class. The
function f, given by

@ =sinz, @#0, f(0)=0,

is such a function. This function also has the property that its product
with any function in # is again in #. Again, the only functions f with
the property that if ge#, then f+} ge#, are the continuous functions.
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