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For nonlinear difference equations with continuous argument (time),
(1) x(t+1) = f(x(), teR*,

typical are so-called asymptotically discontinuous solutions — continuous and
bounded but not uniformly continuous on the semiaxis (see [1] and [2]). It
is interesting to study those in some sense exceptional situations, when
asymptotically discontinuous solutions of the equation (1) do not exist; i.e.,
when every solution R* 3t —x(t) is uniformly continuous.

For equation (1) we pose an initial value problem

2 x(t) =e(t), te[0,1]
and assume that
3) fecd,n, ¢ec(o, 11, D,

where I < R is some closed bounded interval. Moreover, let us assume that
the condition of compatibility is fulfilled:

4) e (1) = f(@(0).

It is easy to see that the solution x () of (1) and (2) exists, is unique and can
be written as

(5) x(t) = f"(p(t—n), te[n,n+1], neZ*,
where f" is the nth iterate of f. Therefore, in view of (3) and (4)
(6) x(-)eC(R", D).

From now on we assume that conditions (3) and (4) are fulfilled and thus
solutions satisfying (6) are only considered. The set of fixed points and the set
of periodic points of f will be denoted by Fix(f) and Per(f), respectively.

[443]



444 UNIFORMLY CONTINUOUS SOLUTIONS

THEOREM. The following conditions are equivalent:

(i) all solutions of equation (1) are uniformly continuous,
(i) the family |f™,.z+ is equicontinuous,
(ii)) the set Per(f) is connected and equals either Fix(f) or Fix(f?),

. . . def
(iv) there exists an interval [x,, x,] = 1= [a, b], x; < x, such that

g(x)=x for xe[x,, x,],

g(x)>x for xela, x,],

7

g(x) <x for xe(x,,b),

g*(x)#x  for xel\[xy, x,],
where g = for g = f2.

Proof (i) = (ii). Assume that the family {f"!,.,+ is not equicontinuous.
We will show that in this case equation (1) has asymptoticlly discontinuous
solutions. Since |f"},.z, is not equicontinuous one can find a sequence
(V.)};ez+ of nested intervals ¥, > V,,, for i€eZ* such that () V; = {x*}, and

iz0
an increasing sequence (n;) of positive integers such that diam (f"(¥))e for all
ieZ* and some ¢ > 0.

Let x(-) be the solution with an initial function ¢. We choose ¢ in such
a way that the set of its values (a closed interval, in view of continuity of ¢)
contains x* in its interior. Moreover, we assume that the graph of ¢
intersects the line x = x* at least in one point t* € (0, 1) i.e. for any é > O the
set @(U;(t¥)) contains a whole neighbourhood of x*. (By U,(B) we denote
the 6 — neighbourhood of B.) Any such solution x(-) is not uniformly
continuous on the semiaxis. Indeed diam(x(U;)) > ¢ for all ieZ*, where U;
= {te[m, n;+ ], t =n; eV}, but diam(U;) = diam(}}) =20 as i > 0

(i) = (i). The implication is a simple consequence of the equicontinuity
of {f™,cz+, the uniform continuity of ¢, and formula (5).

(ii) = (iii). First we show that the equicontinuity of {f"},.,+ implies
connectedness of Fix(f). Suppose the contrary. Since f is continuous, we can
find two points x’, x” €Fix(f) such that (x', x") "Fix(f) = @. Let for defi-
nitness f(x) > x for x e(x’, x"'). Then sup f"(x) = x” for x e(x’, x") and f*(x’)

= x' for any neZ*. Therefore, for any small semineighbourhood [x’, x'+ 6)
of the point x we have

supdiam(f"([x', x'+8))) > Ix'—x"|

which contradicts the equicontinuity of {f"},.z+. Consequently the set
Fix(f) is connected. Analogously one can prove that the sets Fix(f"), neZ +
are connected, and therefore the set Per(f) is connected. The fact that Per(f)
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in this case equals either Fix(f) or Fix(f?) follows from the following.
Assume that f has a cycle !x,,..., x,,) of some period m > 2, where Xx;
<x;4+; fori=1,...,m—1. Then

(8) fm(x)=x for all xe[xl,_ Xm]-

It is well known that for a continuous function this implies that the equality
(8) fulfilled for m =1 or m = 2. Thus the map f can have only cycles of
period either 1 or 2.

The conditions (iv) are a simple decoding of the conditions (iii) and
therefore we omit the proof of their equivalence. Hence, in order to complete
the proof of the theorem it is sufficient to show that (iv) implies (ii).

(iv) = (ii). Let the inequalities (7) be fullfiled for g = f. We shall show
that then the sequence (f") is uniformly convergent to some function and this
will quarantee the equicontinuity of {f " nez++ BY (1) we have Per(f)
= Fix(f) = [x;, x,], hence the trajectory {f"(x)} ,+ of any point xel is
attracted by the interval [x,, x,]. Moreover if this trajectory hits the interior
of [x;, x,] in some time, it stays there. We split I into two subsets X, and
X,, where

X, = xel: 3no=no(x),f"°(x)6[x1,xz]}, X, =I1\X,.

The points of X, are attracted under f to one of the endpoints of [x,, x,].
But, in general before falling into the domain of the immediate attraction of
X, Or x,, the trajectory !f "(x)}”ez+ (xeX,) can go around the interval

[x,, x,] a few times. Nevertheless, there exists n, such that for all x € X, and
n > n; f"(x) lies in the domain of the immediate.attraction of either x; or x,
and thus is monotonically attracted to one of these points. Therefore

X, ='X2,1UX2,2,
where
XZ,I = {XEXZ:f"(X) —X; as n—’w},

X2.2 = {XEX2: fn(X) X, as n —*OO}.
It is also clear that X,; nX,, = @. We define the limit function f, by

") if xeX,,
© Jo(x) =4 x, if xeX,,,
X2 lf XEX2'2.

The uniform convergence of the sequence (f") to f, is a consequence of the
described properties. In the case when inequalities (7) hold for g = f2, the
proof is analogous, with the difference that the sequence (") has two cluster
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points
lim f 2(x) = (f%)o (%),
lim f 2 x) = £((f?)o (),

where (f2?), is defined by (9). Thus the theorem is proved.
CoRroLLARY. If the inequalities (7) are fulfilled for g = f, then

lim x(t+n) = (fo (@ (1)),
uniformly in t €[0, 1].
If the inequalities (7) are fulfilled for g =2, then

lim x(t +2n) = (f Yo (e (1)),

n— o

lim x (¢ +2n+1) = £((f 3o (0 (1)),

n—a

uniformly in t [0, 1].
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In the theory of dynamical systems, along with open or closed sets such as
basins of sinks, nonwandering sets, centers of dynamical systems, one consi-
ders sets with more complicated structure. There appear F, sets, which are
unions of not more than countably many closed sets, such as the set of all
periodic points, G, sets, which are intersections of not more than countably
many open sets, such as the set of all orbitally stable points, F,; sets, which
are intersections of not more than countably many F, sets etc. Sometimes
instead of the above Hausdorff classification one uses Baire (Lusin—de la
Vallée Poussin) classification. In the latter, open sets and closed sets together
with all sets which are both F, and G; belong to the first class. The second
class consists of sets which are F, sets or G; but not both and of sets which
are at the same time F,; and G4, but do not belong to the first class. Further
classes are defined in a similar way.

Usually upper descriptive estimates are obtained easily for dynamical
systems on an arbitrary space with countable basis of its topology. It turns
out that those upper estimates can be reached already on one dimensional
systems. Therefore, from the point of view of descriptive set theory, one
dimensional dynamical systems can be as complicated as dynamical systems
on arbitrary topological spaces‘?). Later on we shall give descriptive estima-
tes for the sets most frequently used in the theory of dynamical systems,
which are related to such notions as attraction of points, their stability,
recurrence.

1. Let (X, f) be a dynamical system with discrete time, let X be a separable

M In some sense this statement is no surprise: the real line is so rich that it meets almost
all needs of descriptive set theory. On the other hand, if we restrict our attention to those
dynamical systems which are group actions (as opposed to semigroups) then the dynamics on
the real line is quite simple and it suffices to deal with open or closed sets only.
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