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Spaces with a covariant constant linear geometric object

by JACEK GANCARZEWICZ (Krakow)

Absiract. In this note we prove the following theorem (Theorem A).

Let M be a connected paracompact manifold and A be a linear geometric object
on P(M,@). There is a connection in P(M, @) such that A is covariant constant if
and only if there exists a family of sections o,: Ua~—>P, a € I, such that {Ua}qer is an

open covering of M and the coordinates of 4 with respect to o, are the same constants
forallael.

In the proof we use the arguments analogous to those of M. Kurita [3]. The
above theorem generalizes Theorems 1 and 2 of M. Kurita [3].

1. Introduction. Let P(M, @) be a principal fibre bundle, V a vector
space of finite dimension and let

e: G—>GL(V)

be a homomorphism of Lie groups.

A p-linear geometric object, or shortly a linear geometric object, on
P(M, @) is a mapping A: P—V such that

A(pé) = o(§7) A(p)

forallpeP and £ e@. If o: U—P is a section of P(M, @), then the vee-
tor-valued function @ = Aoo: UV is called a system of coordinates of A
with respect to o (see [1]).

The aim of this note is to prove the following theorem.

THEOREM A. Let A be a g-linear geomelric object on P(M, @), where

the base M 1is connected and paracompact. The following conditions are equiv-
alent.

(A.1) There is a connection I' in P(M, @) such that V,A = 0 for all
vector fields v on M.

(A.2) There is a family of sections o,: U,—~P, ac I, such that {U,}.g

18 an open covering of M and the coordinates of A with respect to o, are the
same constants for all a € 1.
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(A.3) There is a closed subgroup H of G and an H-structure Po(M, H)
in P(M, Q) such that A is constant on P,.

2. Covariant differentiation. In this note we shall use the definition
of Crittenden [1] of covariant derivative. We remind that if A: P—F
is an object on P(M, @) such that

AoR; = A:—104,
where A;: F—F is a left translation on the manifold F, £ € @G, then
VA = dAoH, (),

where v: M —TM is a vector field on M and H,: P—TP is the horizontal
lift of » (with respect to a connection I" in P(M, G)). Now, V A is a geo-
metric object on P(M, @) such that

V,AoR; = dAg-10V, A

{see [1]). If F = V is a vector space and A, = ¢(&): V—V is linear, then
we have the natural identification ¢: T'V—V XV and the diagram

v — % _, vy

J' Apx A .l?
VxV—2 ,¥xV

is commutative. Thus
(2.1) V,A = pyopoV,A: PV,
where p,: V x V—V is the projection on the second factor, is a geometric
object such that
(Vo A)(p-€) = o(§7)(V,A)(p).
Let ¢: U—P be a section. We denote by a = Aocand V,a = l‘%,,Ao g
coordinates of A and V', A with respect to ¢. If we consider the diffeomor-

phism
a: UxG> (z, &)—>oa(x)-£E€P|U,
then
(2.2) (VyA00) (@) = dyry A (Vyz)
= Az, (A08)0(d(1,67) " (Bo(z)
where &,, = H,(o(x)) is a horizontal vector. If
(d(z.e)a')_l(z—’a(z)) = (”z’ 7—)) € T2M®TcG’

(*) If A: P—>F and p e P, then dyA: T,P—>T 4, F denotes the linear homo-
morphism induced by A and d4: TP—TF is a mapping between tangent bundles
such that d4|T,P = d, 4.
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then
Do(z) = iz, 0 (Vs T) = A0 (V) + . By (),

where B, : G2 {—>a(z)-& € P. If o denotes a connection form, then the
last formula implies

0 = 0(v,4) = (wod;0)(v;)+7,

because d, B, (v) is vertical (we identify % (@) with T,G). From the above
formula and from (2.2) we have

(VvAOd) (x) = d(a:,c)(Ao d) (“0,,, —(wo dzo)(”x)) .

Since (Aow)(z, &) = A(o(x)-&) = o(6 ) A(o(2)} = o(£ ") a(z) thus from
the Leibniz formula ([2], p. 11) we obtain

(VvAo d) (iv) = dza('v.t) + (dI)'a(z)o dc eo wu(:r-)o dzo) ('D:c) ’

where A,,: GL(V)> a—a-a(z)eV.
The action of GL(V) on V ean be prolonged in the natural way to an

d
action of gl(V) on V. If X = (Et_ a,)(O) e gl(V), where a, € GL(V) and
a, = I, then X-v = % (a,-v)(0) for v € V. Now,

(P20 @0 dr 040 8,00 0 dy0)(v,) = (20 w0 d;0)(v,) a(w),

where p: Z(G)—gl(V) is the Lie algebra homomorphism induced by o.
Thus we have

(2.3) V,a = V,Aos = (da)(v)+ (g0 wods)(v)-a,

where da denotes the exterior derivative of a.
Thereafter we shall write V,A instead of V A.

3. The proof of Theorem A. A proof of implication (A.1)=(A.2)
will be based on the lemma.

LEMMA. Let A be a linear geomelric object such that V,A = 0 for all
vector fields on M. Let x, € M, let U, be an open neighbourhood of x, and let
@o: Up—>K(0, ) be a diffeomorphism such that ¢,(x,) = 0 (K (0, &) denotes
a ball). If 2, € U,, p, € P and n(p,) = x,, then there is a section o: U,—P
such that o(x,) = p, and A has constant coordinates with respect to o.

Proof of the lemma. For u € K(0, ) we denote y,(t) = ¢, ' (tu).
7. 18 a curve such that y,(0) = #, and »,(1) = g, (). Let u, = @,(2,)
and let y; be a horizontal lift of y, such that v}, (1) = p,. We write p,
= ¥,(0). For € K(0,¢) we denote by y, a horizontal lift of y, such
that y,(0) = p,. Now,

o(r) = ?;o(z)(l); z e U,,
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is a section of P. We calculate I/, a along a curve y,, v € K(0, ¢). i.e.,
for v = y,. Now, do(y,) = 7. and hence, using (2.3), we get

. . d
V,a = da(y,)+(gow)(vh)a =~ (@07,

because y,, is horizontal. This means that a is constant along y, for all
u € K (0, ¢), and thus a is constant in the whole U,.

We now prove that (A.1) implies (A.2).

We fix z, € M. For each # € M we find a neighbourhood U, and a dif-
feomorphism ¢,: U,—~K(0,1), ¢, (z) = 0. For x, we choose a section
6o: Uy,— P such that the coordinates of A with respect to o, are constants
denoted by a,. For each point £ € M we choose & curve y from z, to .
We can find a finite sequence

Uzor U:rl’ (RS U.‘tn =U,

such that U, nU, #0 and Uy Uy ...y U;, cover y. We choose
y,€U;,_ NnU,, 1 =1,...,n By the lemma, for each i we can construct
a section o;: Uy—P such that o,(y;) = 0;_,(y;) and coordinates of 4
with respect to o; are constant. Since o,_,(y;) = o;(y,), these coordinates
are a, in each U,, 1 =0,1,...,n.

Implication (A.2)=(A.3) is trivial.

To prove that (A.3) implies (A.1) we consider any connection in
P,(M, H) with connection from w,. Such a connection exists because
M is paracompact (see [2], Theorem 2.1, p. 67). Next we extend w, to
a connection w in P(M, @) (see [2], Proposition 6.1, p. 79). If w € TP,,
then w(w) = w(w).

Since A is a constant a, on P, we have for each X € ¥ (H)

g(X)-a, =0.
This means that
V,a = (da)(v)+ (gowodos)(v)-a =0
for each section o of Py(M, G), because
(wodo)(v) = (weoda)(v) e Z(H)
and a = Aog = a, is constant.

The proof is now complete.

Remark. In the proof of implication (A.1) = (A.2) we used the same
arguments as Kurita [3] for the proof of his Theorem 1. Implication
(A.3)=>(A.1) [or (A.2)=(A.1)] means that the assumption that H is
reductive (see Kurita [3], Theorem 2) is not necessary.

Theorem A implies immediately the following corollaries (we assume
that M is a connected paracompact manifold).
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COROLLARY 3.1. Let A be a tensor field on M. There is a linear connection
on M such that A is covariant constant if and only if there is a family of fields
of frames such that coordinates of A are the same constants for each field of
the family (see Theorems 1 and 2 in [3]).

COROLLARY 3.2. Let v be a vector field on M. There i8 a linear connection
on M such that v i8 covariant constant if and only if either v vanishes identi-
cally or v, # 0 for each point x € M.

COROLLARY 3.3. If vy, ..., ¥, are vector fields on M, linearly independent
at each point of M, then there is a linear connection on M such that vy, ..., v,
are covariant constant.
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