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SEQUENTIAL ESTIMATION
OF THE TRANSITION INTENSITIES
IN MARKOV PROCESSES WITH MIGRATION

1. Statement of the problem. Assume that there is a flow of homo-

geneous objects arriving in a certain system A and each of the objects
I the system may immigrate into one of » directions B, ..., B,. We
also assume that the arriving objects form a Poisson flow with intensity
a-.FUI‘ther, if an object is in the system A at time ¢ > 0, then it can im-
mlgrate during the time (¢,¢+ 4t), independently of its arrival time,
0 the direction B;, j =1,...,n, with probability g;At+o(4t).
. Denote by V(¢) the number of objects which came into the system
0 the time interval [0, ¢). Let W,(?) be the number of objects which im-
igrated during this time in the direction B;, j=1,...,m, and let k,
be the number of objects present in A at time ¢ = 0.

Let I ={0,1,...} and T = [0, o0). Next, we put W,(t) = k,+V(2)
and denote by ¢ the vector (a, Bi,...,8,) €@ < (0, co)**1,

Let (2, #, P;) be a probability space. Let us’ consider a homogene-
Ous Markov process &(f)'= (W,(t), Wy(2), ..., W,(t)), t T, defined on
(2,7, P,) and with values @ = (w, Wy, ..., w,) € £ = I"*!, describing
Fhe behaviour of the above-introduced system and satisfying the follow-
lng conditions for every 9 e @:

(a) Py(£(0) = (Koy 0,y ..., 0)) = 1;
(b) the transition probabilities are of the form

Py (&(t4-4t) =y | £(1) = )

adt+o(A4t)

if & = (wgyWyy...,w,) and ¥y = (wy+1, Wy, ..., w,),2€x, ye X,
kB;At+o(4t) if = (woy, wy,...,w,) and

=] Y =(Woy Wiy eeeyWj_1,W;+L,Wj 11500, W), j=1..0,m, 2%, ye &,

1—(a+2n’k,3j)m+o(m) fz=—yed,
i=1

o(4t). otherwise,
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b

where k = w,— > w; denotes the value of the random variable
i=1

K(t) = 1/Vo(t)_ Zn: Wj(t)7

determining the number of objects present in the system at time ;

(¢) Py(K(t) > 0) =1 for every ¢t > 0.

The above-described model of a Markov process appears in problems
of demography and reliability theory when the long-life inspection of
objects arriving in the inspection stand and leaving the inspection stand
at random times takes place.

Our problem is to estimate the intensities a, 8, ..., f§, or their func-
tions using the observation of the process &(f), t € T, and applying the
sequential approach.

2. Sufficient statistics. Let (D, %) be a measurable space of
{(n+1)-dimensional vectors x(s) = (wo(s),wl(s), ...,wn(s)): T—-% whose
components represent right-continuous functions with integer nonnega-
tive values and unit jumps, having left-hand limits. By u, we denote
the measure on (D, ) corresponding to the process &(f), teT':

ps(B) =P,(£()eB), Be2.
Let us, be the truncation of the measure u, on the set
2, =c{x(s): s<t, seT, tel}.

Let us consider the sequential statistical space (D, 9, {us,, ¢ € 0}),
t € T, corresponding to the process &(f), te€T. Let B be the real line,
% < R™, and let %, denote the o-algebra of Borel subsets of #. A function
Z(t,x(")): T xD—-¥ such that for every ¢ e T the transformation Z(t, -)
is (2,, #4)-measurable is called an (m-dimensional) statistic on the space
(Dy Dy {poy, 9 €6}), teT.

Let ¥y = (agy Bory +-+y Bon) be any fixed value of the parameter 4.
It follows from the Skorohod theorems ([4], Section 8, and [5], Chapter 7,
Section 6) that:

1° the statistical space (D, 9, {us,, ¢ € 0}), t €T, is dominated, i.e.,
for every teT all the measures u,,, ? €, are absolutely continuous
with respect to the measure u,,;

2° the densities dus/dus , are defined by

Y R v
(1) W(w())—-(a—o) eXP[—(OI'—%)t’—

n n ‘”j(t) v(t) n

- S-safuors 3 S S| T
i=1 1I=1 0]

j=1 r=1 i=1
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Z;lhere »’8 denote the arrival times (0 < », <...<wy <t) and o;,’s are
€ exit times in directions B;: 0 < Tjp < oo < ity < 1y j=1...,n.
Let us put

{2) w(t) = (Wi (1), ..., w, (1),
n wj(t) v(f)
3) S(t,a() = k@t+ 3 3 oy~ Y,
j=1 l=1 r=1
4) B ZZﬂjj Bo =Zﬁo;‘7
(3) Z(t, x() = (o(), w(t), 8(t, 2 ().

Thf% function 8 determines the total time spent in the system by the
Objects which arrived during the time [0, {) or were present in the system
At time ¢ = 0. Using (2)-(5) we can rewrite density (1) in the form

(6) dtuﬂ,t (.’L‘

a v(¢) n \wj(®)
(—a—) exp [~ (a—ag)t— (B~ 8(t, o)) [ | (ﬁi)

0

C(t,Z(t,zv(-)); 0o)a”(‘)exp[—at—,38(t,m(-))]I_[ﬁ;."j(‘)

= h(t7 Z(ty w())’ 3, "90)9

Where the function ¢ does not depend on 4.

It follows from the Fisher-Neyman theorem on factorization (see,
©8., [2], p. 29-30) that Z(t, »(-)) = (v(t),w(t), S(t,w(-))) is an ((n+2)-
dimensional) sufficient statistic on the space (D, Z;, {us,, ¢ € 0}), teT.

3. Absolute continuity of the measures generated by a Markov stopping

t“_ne and a sufficient statistic. Let v = r(m(-)) be a finite Markov time
With respect to the family 2;, t e T, i.e., 7: D—[0, co] so that {a(-)
T(w(‘)) < t} € 9, for every teT and

y,.,({m(-): T(z() < oo}) =1 for all 0.

The statistic Z (t, z(-)) = (v(t), w(t), S(t, w(-))) is a mapping T X D->% xT
=%, right-continuous with respect to ¢ uj,-a.e. for every & c@. Let
U=Tx@, Usu=(t(u),2), tw)eT, 2x) = ([v),w), s@u) s,
Where v(u) e I, w(w) = (wy(%), ..., w,(w)) €I", and s(u)eT. The pair

2(2() = (v(2(), Z(z(00)), a())

of both 2,-measurable functions generates, for every & e @, the measure
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my on (U, #y) in the standard way: for every A € %y,

mold) = uo(Z7(4) = uy([r(2(), Z(z(a(), a() < 4).

From the modification of the Sudakov lemma obtained in [6] for right-
continuous functionals it follows that the measures m,, 9 € @, are ab-
solutely continuous with respect to the measure m, and

s (w) = h(t(u), 2(u); &, B,

i.e. (see formula (6)),

dmg

dmg,

() = C(w; 9,)a"™exp[ —at(u)— ps(u)] n gLt

Thus we have the following

LeEMMA 1. For every finite Markov time t there exists a o-finite measureé
m, on (U, By), independent of & and such that for every A € By and each
el

(7) ms(A) = [ a*™exp[ —at(w)—fs(w)] [ [ 811 m (du).

A

4. Sequential plans. Let g(d) be a real-valued function of the par-
ameter 9 € @. Observing the process &(¢), t €T, up to time r we have
to find an optimal, in some sense, estimate of the value of the function
g(9). A (By, Bg)-measurable function f: U—R is called an estimator for
g9(d).

Definition. By a sequential estimation plan for g(9) we mean any
pair (v, f) consisting of a Markov time v satisfying the condition

(8) Po{0 <7(8) < o) =1

for all 9 € ® and an estimator f such that, for every ¢ €6,

Bof*(Z(8) = [ (u)a"™exp[ —at(u)—ps(w)] [ | B m,(du) < oo
U j=1

and.

(9)  EBof(Z(8) = [fw)a"exp[—at(u)—ps(w)] [ | B m.(du) = g(9)-
U

i=1

It follows from (8) that the observation of the process £(t), t e T
terminates in a finite time. Condition (9) means that the estimator f is
unbiased for g(d).
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From (8) and Lemma 1 we have

(10) [ a*™exp[ —at(u)— fs(u)] n B (du) = 1

U
for each 9 e O.
In the sequel the functional

Z(z(8), & = (V(=(&), W(z(8)), 8(x(&), &)
°f the process will be simply denoted by
Z(7) = (V(‘L’), W(z), S(r)).
Write ¢7(8) = 9g(9)/0a and g)(9) = 99(8)/0B;, j = 1, ..., n. The follow-
g regularity conditions will be considered:

(1) g(®) is a differentiable function of the variables a, f,, ..., 8, such
that for every point ¢ = (a, By, ..., B,) € (0, 00)**! the derivatives g (%)
and 9;(%) (j =1,...,n) do not vanish simultaneously;

(ii) 0 < By[V(r)—ar] < oo for all e O and 0 < By[W;(v)—p;8(7)]
< oo for every j = 1,...,n and all ¢ c6;

_(iii) differentiation and repeated differentiation of the integrands
With respect to parameters a, f,,..., f, in identities (9) and (10), re-
SPectively, are allowed.

The following lemma can easily be established:
LevMA 2. If for a sequential plan (v, f) the regularity conditions (i)- (iii)
e satisfied, then the following identities hold: '

(11) E,V(z) = aByr,

12) E,[V(v)—arT = By V(2),

(13) E,W;(z) = B;Es8(x), j=1,...,m,

(L4) Eo[W;(r)— B;8()F = BeW;(z), j =1,...,n,

(15) E,[f(vy Z(2)) (V(z) — az)] = agl(9),

U6)  By[f(r, 2() (Wy(2) =B8] = Bi5(8), G =150 m,
(17) E,[(V(z)—ar) (W;(2) = Bi8@)] =0, j=1,...,,

(18) E, [(Wi(f)—ﬂiS(T)HWj(T)—ﬁjs(T))] =0, 4,j=1,...,m,% #]j.
Let
d— ( Ologh(v,Z(v); 9,9y) Ologh(r,Z(z);?,d,) Ologh(r,Z(r);ﬁ, 190))
W T o
(Y@ —ar W,(r)—p,8(z) W.(7) — B,8(7) )
a ? ﬂl A ] ﬁn ?
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let J = E,(A*A), where A* denotes the transposed matrix to 4, and
put G = (9.(8), 6:(#), ..., g,(9)). Assume that for a sequential plan
(7, f) the regularity conditions (i)-(iii) are satisfied. Then applying methods
used in [2], p. 52, or in [8] we obtain the inequality

Dyf(r, Z(T)) = E, [f('ﬁ Z(T)) _9(0)]2 = GJ_IG*7

where equality holds for a particular value of ¢ if and only if f(z,Z (1))
= @J ' A*+g(9) with probability 1. Using Lemma 2 we have the fol-
lowing

THEOREM 1. For every sequential plan (z,f) satisfying conditions
(i)-(iii) we have

a

E;7

P S | PO
(19)  Deffe, 20) > 5 WO+ 55 D) AT (9)]

for all & € @. The equality holds for a particular value of 9 if and only if
(200 f(r,Z(<)

R AC)) _ R N _
= S VO —arlt e M GO0~ 8] +9(9)

i=1

with probability 1.

A sequential estimation plan (z, f) for g(d) is said to be efficient al
(a fixed value) & if (19) becomes equality for ©#. The estimator f is then
called efficient at the value 9, and the function g(#) is efficiently estimable
at the point 9.

A sequential estimation plan (z,f) for g(#) is said to be efficient
if it is efficient at each ¢ € @. The estimator f is then called efficient,
and the function ¢(¥#) is efficiently estimable.

Two distinct values 9V and 9® are said to be equivalent with respect
to g(9) if g(9V) = g(99).

As an immediate consequence of the second part of Theorem 1 we
have the following corollary:

A sequential estimation plan (v,f) for g(9) is efficient at a point 9
if and only if there exist constants ¢, d,, ..., d, not all equal to zero such
that

(21)  flu) = elo(w) —at(w)]+ Y &;lw;(w)—fis ()] +g(8)  mea.e.

Using this fact, in an analogous way as in [1] we obtain the following
result:
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THEOREM 2. If a sequential estimation plan (v, f) for g(9) is efficient
% two values of ¥ which are mot equivalent with respect to g(®), then there

:;fist CONSLANtS Y1y ..oy Vyy 014 05, 03 mot all equal to zero and 6, = 0 such
at

(22) Zijj () + 6,8 (w) + 0,0 (u)+ O3t (u) -+, = 0 m -a.e.
j=1

It follows from Theorem 2 that one should seek the efficient sequential
Plans for g(9) among the plans determined by the Markov stopping times
for which (22) holds.

Theorem 1 implies that for a given Markov stopping time = the
Only efficient sequential estimators at a point 9° = (a°, 8, ..., ) are
those which take the form (see (21))

23)  f(r, 2(2) = [V ()= a7+ D BIW; (1) - F8(1)]+9 ()

With probability 1, where the constants ¢, d’, ..., @ do not vanish sim-
Wtaneously. Thus the function g(d) is efficiently estimable at ¢ = 9°
If anqd only if it is equal to the expected value of the estimator defined
Y (23). Therefore, we have

9(3) = Eof(z, % (7))
= B[V (2) =]+ Y diEy[W;(v) — Bj8(x)]+9(2).

J
Heﬂce, using (11) and (13) we obtain the following

. THEOREM 3. In a given sequential plan (t,f) the function g(9) is effi-
Cently estimable at a point 9° = (a9 B2, ..., B°) if and only if there exist
Constants o, d?, ..., dS not all equal to zero such that

(24) 9(8) = (a—a")Byr+ 3 &(f;— F)EeS (z) +g(8).
j=1

The study of functions efficiently estimable at a point was initiated
¥ DeGroot in [3] for the binomial process.
In connection with Theorem 2 let us consider the following Markov
Stopping times:
(23) W (a() = To,

Where T, is a positive real number;

(26) 1@ (z(-)) = inf{t: v(t) = o},
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where v, is a positive integer;
(27) ™ (()) = inf{t: 8(t, x(") = s},

where s, is a positive real number;

(28) T (- 1nf{ Zwom t) = mo}

where m, is a positive integer, (¢(1), ..., 6(n)) is a permutation of (1, ..., n),
and % is an integer, 2 <k < n;

(29) ™ (@(+) = inf{t: w;(t) = Iy},

where 1, is a positive integer.
Let us take into consideration, e.g., the sequential plan determined
by the Markov stopping time Y. For this plan we have

k
(30) 2 Wa(i)(fm) = My
=1

with probability 1. It can be easily checked that if E,S8%(z") < oo for
all ¢ € ©, then there exist appropriate integrable majorants for the deriva-
tives of the integrands in (9) and (10) in the case of the plan determined
by ¥, so that the regularity condition (iii) is satisfied for this plan.
From (13) we then have

3 k
my, = ZEoWa(i)(T“)) = Zﬂo(i)Ees(T(4))’
i=1

t=1

whence

(31) E,8(z") =

We estimate now the function

, C; ﬁd(‘t)
(32) 9(9) = S5——
ﬂa(t)

’

T %L ."_M”-

where ¢y, ..., ¢, are arbitrary constants not all equal to zero. It follows
from Theorem 1 that the sequential estimation plan (), f) for g¢(9)
given by (32) is efficient if and only if the estimator f takes the form
%
1 o,
(33)  f(x*, Z(z¥)) = T,80:0) ga(i)(ﬂ)[Wa(i.)(T“))_ﬁo(i)s(‘[“))]_i_g(,&)
i1
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¥ith probability 1. Using (30)-(32) and
c;—g(%)

k
2 :Bo(i)
i=1

We infer from (33) that this estimator is of the form
k

1 1
f(=®, 2 (=¥)) = o Z 0 W o (7).

0

b

g;(i) (9) =

t=1

Under the sequential plan regularity conditions for the respective
Markoy times defined by (25)-(29) we have the following class of efficient
Sequential plans:

(a) (=™, f@) with f® = ¢, TyV(T,) +e¢, is efficient for ¢(9) = ¢;a+
+¢,, where ¢; #0 and ¢, are arbitrary constants;

(b) (z®, @) with f® = ¢,0517® 4-¢, is efficient for g(9) = ¢;/a+tc,,

ere ¢, * 0 and ¢, are arbitrary constants;

(e) (9, @) with & =s;1 3 ¢;W;(z¥)+d is efficient for
i=1

g(8) = Dop;+d,
i=1

Where ¢,, ..., ¢,,d are constants such that ¢, ..., ¢, do not vanish simul-
taneously; .
(@) (¥, f@) with f9 =mg? 3 ¢;W,(v")+d is efficient for
i=1

k k
g(9) = (Zciﬂa(i))(zuﬁa(i))_l +d,

Where ¢,, ..., ¢, 4 are constants such that ¢, ..., ¢, do not vanish simul-
taneously;

(e) (v, f®) with fO = ¢,171 8 (z%¥)) + ¢, is efficient for g(9) = ¢,/B;+
+c¢,, where ¢; # 0 and ¢, are arbitrary constants.

In our study of efficient sequential estimation for Markov processes
With migration, the plan (z®, f©®) is essentially different from the plans
already investigated (see [7] and [8]) for the Poisson and finite-state
Markov processes.
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