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INTERDEPENDENCE BETWEEN CHD RISK FACTORS
EXAMINED USING LINEAR MODELS
WITH AND WITHOUT TRANSFORMATION OF DATA

We try to establish a dependence pattern in large epidemiological data.
¢ do this first in the classical way writing equations for the dependence
Structure and testing significance of factors introduced into the model.
The executed tests need normality of the considered variables, while in fact
these do not follow the normal distribution. To meet this difficulty we applied
t0 the predicted variables the Box—Cox transformation bringing the data
Dearer to normality. The dependence structure remained the same.

1. Data, the medical problem. We consider epidemiological data collected

! the Coronary Heart Disease (CHD) Prevention Study conducted in
Toclaw. Systematic investigations on the etiology and epidemiology of CHD
Are run in many countries (see, e.g., [5]). The results of these investigations are
Put together and analyzed inthe ERICA programme coordinated by the WHO
Onaborating Centre in Heidelberg. The data we consider in this paper come
.'om the first screening in Wroclaw. They comprise 6651 men working in
'ndustrial plants in Wroctaw. The scope of the study is a follow-up of a chosen
Sample of men in working age during successive 10 years. The data we consider
' this paper come from the beginning of the study. Our aim is to investigate
the relationship between some continuous and categorial variables often
Considered when indicating risk factors for CHD.

In this paper we consider 7 continuous variables (called in the following
al_SO Predicted or explained variables): BP (arterial blood pressure) systolic, BP
du_1Stoli<:,-.cholesteﬁrol, TGL (triglycerides), fraction HDL of cholesterol, glucose,
Uric acid..We consider 4 categorial variables: A — noise or vibration in the
blace of work, B — physical effort during the work, C — work in a hurry,

= daily smoked cigarettes.

4.,
Zastos, Mat. 20,3



378 A. Bartkowiak et al.

2. Linear model and its parametrization. We assume the following linear
model:

1) y=Xb+e,

where y is the (nx 1)-vector comprising observed values of the predicted
variable, X is a known n x m design matrix, the (m x 1)-vector b is the vector of
unknown parameters of the model, and e is an (n x 1)-vector comprising errors
(inadequacies) of the model. We assume first that the probability distribution of
e is multivariate normal N,(0, a*I).

In the following we take as y one after another each of the seven variables
listed above.

The matrix X should take into account the considered factors and,
additionally, the covariate “age”. The elements of the matrix X are the same fof
all seven predicted variables. The construction of elements of this matrix is
given below. - _

We consider 4 factors which possibly could influence the explained
variables. These are:

A — npoise or vibration in the place of work. This factor is considered in
3 levels: (1) no noise or vibration, (2) noise, (3) noise and vibration.

B — physical effort during the work. Here we distinguish 3 levels: (1) big
effort, (2) medium effort, (3) small effort.

C — work in a hurry. Here we distinguish 2 levels according to the
response: (1) no, (2) yes.

D — daily smoked cigarettes. Here we distinguish 3 levels: (1) he never
smoked, (2) he smokes less than 10 cigarettes per day and smokes not less than
2 years, (3) he smokes more than 10 cigarettes per day longer than 2 years.

The subdivision of our data into a fourfold contingency table is presented
in Table 1. One can see that, despite of having a large sample, the counts of
some subclasses are very small.

TABLE 1. Counts of subclasses of individuals subdivided according to four factors:
A, B, C, D (n=6651)

c1 2

D1 D2 D3 D1 D2 D3

Bl 10 0 26 31 7 100

At B2 51 6 123 114 13 250
B3 166 17 171 325 39 485

Bl 25 1 75 107 14 309

A2 B2 119 10 300 | 288 39 741
B3 44 7 85 130 18 286

B 13 4 105 207 21 531

A3 B2 82 1 178 209 28 527
B3 12 4 31 46 5 85
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To determine the design matrix X we use the independent variables
Coding (see, e.g, [3]).

. The first column of X is a column of ones. It corresponds to a parameter
Which is called the grand mean.

The next 7 columns correspond to the main effects of the factors A, B,
C and p.

Let the factor A occur at a levels. Its counterpart in the matrix is
COnstructed in a block X4 of a—1 columns defined rowwise (for subsequent
ndividuals) as follows:

. 1if for the i-th individual (i=1,...,n) the factor 4 occurs at the level
J (1 SJj < a—1), then the element xf; is set equal to one, and all other elements
0 this row are set equal to zero;

if for the i-th individual the factor 4 occurs at the level a, then all the
Clements Xfi, x84, ..., xf,_, are set equal to —1.

. Next we constructed blocks corresponding to interactions of the con-
Sidered factors. These were obtained by multiplying appropriate columns
Corresponding to the main effects.

For our data, introducing besides the main effects also double interactions

tween factors and taking the variable “age” as covariate, we obtained
 matrix X with m = 27 columns connected with:

Constant term — one column — the 1-st one;

main effects of A — two columns — the 2-nd and 3-rd ones;

main effects of B — two columns — the 4-th and 5-th ones;

main effects of C — one column — the 6-th one; '

main effects of D — two columns — the 7-th and 8-th ones;

interactions 4B — four columns: no. 9, 10, 11, 12;

interactions AC — two columns: no. 13, 14;

interactions AD — four columns: no. 15, 16, 17, 18;

interactions BC — two columns: no. 19, 20;

interactions BD — four columns: no. 21, 22, 23, 24;

interactions CD — two columns: no. 25, 26;

the covariate “age” — one column — the 27-th one.

Using this method of parametrization we obtained a parsimonious matrix
With rank very likely to be equal to m, the size of the vector b.

The model (1) is formally a linear model although it takes into account
Also the interactions, which are in fact nonlinearities of the considered factors.
. Our goal now is to investigate whether the introduced factors and their
l_ntel'actions have an essential “influence” on the considered variables y. By the
"luence we mean here a statistical influence which results in the possibility of
Predicting y when x is known.

With the known distribution of e, the error term in (1), we can execute
Statistica] tests verifying whether the observed statistical influence is really
StﬂtiStically significant, i.e., whether the introduced main effects and interaction
'etms are different from zero. -

X
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3. Evaluation of the importance of the considered parameters. The vector of
parameters b from (1), when considered for our data, can be subdivided intc
7 subgroups:

b =(by, by, by, be, bp, bint, by

with 1 (bo), 2 (b,), 2 (bp), 1 (bo), 2 (bp), 18 (bny) and 1 (b,) elements in
subsequent groups.

Applying the method of least squares we obtain an estimate of the vector
b by solving the normal equations, which are

(2) (X' X)b= X'y,

These can be solved straightforward (due to the independent vanables coding,
the matrix X'X is likely to be of full rank).

Next, using the estimate b and the known values of X we can reconstruct
the value of the variable y, obtaining an estimate § for each of the considered
individuals i (i = 1, ..., n). The closeness of y; and §, can be judged by their
difference, or generally by the residual sum of squares

SSE = Z (yi—j}i)z-

i=1

This in turn can be compared with the total adjusted sum of squares defined as
SST = Z vi—)*.
Ci=1

The difference SS,.,, = SST—SSE is that part of the sum SST which is
explained by the model (in other words, by the regression of the considered
predictor variables). If this part is big as compared with SST, then the fit
(adequacy) of the assumed model is good.

To obtain SSE, the residual sum of squares, we determined from (2) and
from SST the augmented matrix C,

L (XY
C= | c-cmmemeeeaas ,
X'y | SST
and applied to this matrix for k=1, 2,...,27 the sweep operator executing

modified Gauss—Jordan transformations (see, e.g., [4] or [1]) which introduce
sequentially subsequent factors into the regression set. This done, we got
directly the values SSE, and hence, by subtraction, the value SS;egr-

Next we calculated the index z defned as follows:

z = 10088, .,,/SST.

One can see that z is the percent of the total variance SST explained by the
introduced model.
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These calculations were carried out, one after another, for each of the seven
Variables, ie., BP systolic (BPs), BP diastolic (BPd), cholesterol (Ch), TGL,
fraction HDL, glucose (GL) and uric acid (UA). The values of z obtained for
these variables are given in the upper part of Table 2 (the other parts of

able 2 are explained in the next section of this paper).

TABLE 2. Percent of total SST explained by the introduced model with the covariate
“age” introduced last. The values of the F-statistic are given in parentheses.
x — significant at the level « = 0.05, x x — significant at the level a = 0.01

y 1 2 3 4 ¢ 5 6 7
Model BPs BPd Ch TGL  HDL GL UA
All 26 ex-

34 xx 28 xx 13 xx 10 xx 26 xx 14 xx 34 xx

planatory }, o) (1.3) (3.5) (2.6) (6.9) (37 9.1

variables

A 0.02 0.10 x 0.44 x 0.08 0.12 0.01 027 x x
B 0.13x 0.04 0.03 017x x 145x x 006 0.46 x x
C 0.01 0.01 0.00 0.06 x 031x x 0.00 0.09 x x
D 026x x 036x x 021x x 006 0.15x x 022x x 231x x
INT 0.18 0.15 0.54 x 062x x 055x x 026 0.28
Age 28x x  2lxx 0.1 0.0 0.0 0.8 0.0

D 025x x 040x x 015x x 003 025x x 022x x 256x x
C 0.01 0.01 0.00 0.04 026x x 0.00 007 x x
B 0.11 x 0.03 023x x 028x x 144x x 0.05 046 x x
A 0.04 0.06 030x x 0.00 0.08 0.02 0.04
INT The same figures as above.

Age The same figures as above.

Looking at the values of z shown in Table 2 one can see that the percent of
the explained variance oscillates between the value 1.0 (for TGL) and 34
for BPs). So the introduced model with 26 variables explains only a minuscule
Part of the total variance.

4. Statistical tests in the assumed model. Are the results univocal? Looking at
© results presented in Table 2 we could have doubts whether they reflect true
effects of the introduced factors. The stated reduction of SST could be purely
"andom. To exclude the last possibility we carry out statistical tests for proving
© statistical significance of the results.
First we test the hypothesis
H,: (b, st b¢c, by, bint, ba)=0'
To do this we calculate the F-statistic '
3) , . Fa SS,eg,: SSE
, ‘m—1 n—-m-1
Where p, s the rank of the matrix X.
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If H, is true and the errors e are independent and distributed normally,
then the F-statistic given by (3) has an F-distribution with m—1 and n—m—1
degrees of freedom. In our example m = 27 and n = 6651.

For our data the assumption of normality is generally not satisfied; see,
e.g., the coefficients of asymmetry and kurtosis in Table 4. Despite of this we
calculate the F-statistic according to (3) and execute the classical tests. The
calculated values of the F-statistic are given also in Table 2. One can see that
for all seven,considered variables the results are highly significant, which means
that the introduced model gives statistically significant reductions of the total
variance SST.

What is the participation of the considered factors in this statistical
significance?

According to the order of introducing the factors by the sweep operator
into the regression set we can split the explainea variance into some
components. Let the order applied be: 4, B, C, D, INTERACTIONS (INT),
age. In this case the total explained variance SS,er can be splitted into the
following parts:

(4)  SS.er = SS(b)+SS(bg/b )+ ... +SS(bint/(b 4, by, be, bp))
+SS(bo/(b 4 - ., biny)).

This done, we can test the following nested hypotheses:

H;: by,=0 (after swept in by),

Hy: by=0 (after swept in by, b,),

He: be=0 (after swept in by, b, by),

Hy,: bp,=0 (after swept in by, b, by, b,),

Hinr: bne =0 (after swept in by, b, by, b, bp).

For example, to test the hypothesis H ,, we have to calculate an F-statistic
of the form ' '

SS(b,) SSE

.
.

a—1 n—m

F,=

To test Hy we have to calculate

_ SS(bB/bA)_ SSE
T b=1 n—m

Fg

where b is the number of independent columns in the block X* (this block

comprises the columns of the matrix X which correspond to the main effects of
the factor B).
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Using the subdivision of SS.eer given in (4) we calculated also the values of
%, denoting the percents of SST explained by the considered factors when
Mtrodyced into the regression set in a prescribed order. The appropriate values
of 2 _are shown in Table 2. The statistical significance is denoted by
X (significance at the level 0.05) or by x x (significance at the level 0.01).
Obviously, the decomposition of SS,eer Into parts accounted to various
“Onsidered factors depends on the order in which the variables are swept in
Mo the regression set. In Table 2 we show another decomposition of the
Percents of explained variance. Both decompositions shown in Table 2 were
One in such a way that the covariate “age” was introduced into the regression
St last. We made two other decompositions introducing the variable “age”
st. The results of these decompositions are shown in Table 3.

TABLE 3. Percent of total SST explained by the introduced model with the
covariate “age” introduced first

y 1 2 3 4 5 6 7
Model BPs BPd Ch TGL HDL GL UA
Age 28x x 21xx 0.1x x 0.0 0.0 09x x 0.0
A 0.01 0.08 045x x 008 012x 001 0.27 x x
B 011x 005 0.03 0.17x x 146x x 0.04 0.46 x x
C. 0.00 0.00 0.00 006x  032x x 000 0.09 x
D 026x x 037xx 021x x 006 0.15x x 0.22x x 231x x
INT | 0.16 0.15 0.54 x 0.62x x 0.55x x 0.28 0.27
Age The same figures as above.
D 026x x 041x x 015x x 0.03 025x x 022x x 2.56x x
Cc 0.00 0.00 0.00 0.05 0.27x x 0.00 0.07 x
B 0.10x  0.05 023x x 028x x 145x x 0.04 0.45x x
A 0.02 0.04 030x x 000 0.08 0.02 0.04
INT  The same figures as above.

. Looking at Tables 2 and 3 one can state that the significance pattern is
Smilar jn all four decompositions. The interactions are significant for variables
»4 and 5. The covariate “age” is statistically significant for the variables BP
SySFOIic and BP diastolic, cholesterol and glucose regardless of the order in
Which the factors appear in the decomposition. Also the significance pattern
®Stablished for other factors is quite stable and does not depend on the order of
©se factors in the given decomposition. '
. Considering generally the values of z accounted by the factors considered
I oyr model, we state that the largest values of z are accounted by the
Covariate “age” when associated with systolic and diastolic blood pressure. The
Second most important factor (for which the values of z are the largest) is
D (Smoking habitudes). It is highly significant for all variables y except TGL.
Now we are going to transform the data and bring them nearer to
ll‘mnality. After this we shall repeat the calculations and see whether we obtain
€ same results. '



384 A. Bartkowiak et al.

To verify the assumption on the normality of errors appearing in the
model (1) we calculated the coefficients of asymmetry (y,) and kurtosis (k)
defined by the formulae

with

For normal distributions the values y, and k are expected to be equal to zero.

We calculated these coefficients twice: (a) for the direct observed values
Y1» --+» Y, and (b) for the residuals é,, ..., é,, where é,=y,—J,,i=1,...,n,
with j; being the expected value of y; assuming the model (1). The coefficients 7y,
and k calculated using methods (a) and (b) are shown in Table 4.

TABLE 4. Coefficients of asymmetry y, and kurtosis k calculated for original
and transformed data. A is the parameter of the Box-Cox transformation

. Original data Transformed data
Variable V)

direct y residuals direct y residuals

Coefficients of asymmetry y,

BPs 0.96 0.89 0.06 0.01 -.8
BPd 0.81 0.75 0.06 0.02 -3
Ch 0.78 0.76 —0.01 —-0.03 In
TGL 250 2.50 —0.35 —0.32 —.6
HDL 1.14 1.09 —0.00 —0.03 -3
GL 6.07 6.03 ~0.16 —0.20 -15
-UA 0.54 0.54 0.15 0.15 0.6

Coefficients of kurtosis k

BPs 201 1.93 0.54 0.54
BPd 3.04 278 - 0.57 0.51
Ch 249 2.52 0.57 0.60
TGL 8.50 8.58 —0.04 —0.03
HDL 2.33 2.26 0.21 0.22
GL 61.03 60.86 4.91 4.77
UA 1.23 1.27 1.22 1.27

We see that the distributions, especially TGL and glucbse, exhibit
a considerable asymmetry and are heavy-tailed (k > 0).
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. .We see that the difference between the coefficients calculated from the
Original values and from the residuals is very small. This is due to the fact that
the- introduced model explains only a minuscule part of SST, the total
Vanability of y.

Next we tried to bring the data nearer to normality transforming them by
the use of the formula proposed by Box and Cox [2]:

o (y*—=1)/4  for A #0,
" |ny for 1 = 0.

By trial and error we found such values of A which transformed the values
of the variables V1s Y25 --+5 ¥7 S0 that the coefficient of asymmetry was
Practically equal to zero and the coefficient of kurtosis was as small as possible.
Thg values of 4 satisfying both these criteria are given in the last column of

able 4.

The coefficients y, and k calculated for the transformed data are given
4%ain in Table 4. One can see that — except for glucose and perhaps uric acid
= the coefficients of kurtosis are now very near to zero.

We repeated the calculations of SSE for the transformed data. The
Percents z = 100 SS,.,,/SST are shown in Table 5. The decomposition of the

TABLE 5. Percent of variance explained by the
model (1) with 27 variables for untransformed
data. Model with m = 27 variables: the grand
mean, 4 factors, their interactions and one co-

variate
Variable Data Data
untransformed | transformed
1 3.36 "3.12
2 2.78 2.63
3 1.34 1.24
4 1.00 1.75
5 2.65 247
6 1.42 : 1.58
7 344 3.46

Percents is shown in Table 6. We see that these percents for transformed data

are similar to those calculated for untransformed data. It follows that the

?}?nnormality of errors in the model (1) had virtually no effects on the results of
€ tests.
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TABLE 6. Percent of total variance explained by the introduced model. Calculations
on transformed data according to two orders of introducing the factors into the
regression set

Variable 1 2 3 4 5 6 7
Factor BPs BPd Ch TGL HDL GL UA
The whole
model | 3.12 2.63 1.24 1.75 247 1.58 3.46
Age 252 2.00 0.12 0.05 0.03 1.04 0.05
A 0.03 0.09 041x x 0.27 0.11 0.03 0.28 x x
B 0.08 0.05 0.03 051x x 1738 0.07 049 x x
C 0.00 0.00 0.00 0.13x x 032x x 001 0.09 x x
D 029x x 036x x 019x x 0.12x 0.06 029 x x 2.28x x
INT 0.19 0.13 0.49 x 067x x 0.56x x 0.15 0.27
Age The same figures as above.
D 028x x 040x x 0.14x x 007x 0.13 x 028x x 253x x
C 0.00 0.00 0.00 009x x 028x x 001 007 x x
B 0.07 0.05 0.22 085x x 140x x Q.04 0.48 x
A 0.05 0.05 027x x 0.02x x 0.08x 0.07 0.05
INT The same figures as above.
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