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On the extension of holomorphic maps on locally convex spaces
with values in Fréchet spaces

by NGuvyEN VAN KHUE (Warszawa)

Abstract. It is shown that for every exact sequence
0-E->F->G-0

of Fréchet spaces and for every Fréchet space P the restriction map O(F', P)—>O(G’, P) is
surjective if either G is nuclear or F is a Fréchet-Schwartz space having a basis of pre-Hilbertian
neighbourhoods of zero. ‘

The aim of this paper is to study the extension of holomorphic maps
defined on locally convex spaces with values in Fréchet spaces. This problem
has been investigated by several authors [1], [2].

In Section 1 we deal with the extension of holomorphic maps on DF-
spaces with values in Fréchet spaces. It is proved that every locally bounded
holomorphic map on a DFN-subspace F of a locally convex space L with
values in a Fréchet space can be extended to a holomorphic map on some
neighbourhood of F in L. We also prove that for every exact sequence of
Fréchet spaces

0-E-F-G-0

and for every Fréchet space P the restriction map R: O(F', P) - O(G’, P) is
surjective if one of the two following conditions holds:
(FN) G is nuclear,

(FSH) F is an FSH-space i.e. a Fréchet-Schwartz space having a basis of
pre-Hilbertian neighbourhoods of zero.

Note that when F is nuclear and P = C this result has been established
by Boland [2].

Section 2 is devoted to a proof of the fact that if X i1s a Stein space
containing a subvariety W such that (W) = O(C") for some n, then there
exist an s-nuclear Fréchet space F containing O(X) as a subspace and a
holomorphic function on O(X) which cannot be extended to a holomorphic
function on a neighbourhood of O(X) in F.

1. The extension of holomorphic maps on DF—sphcw. In this section the
following two theorems are proved:
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1.1. THEOREM. Let F be a nuclear Fréchet space and L a locally convex
space containing F' as a subspace. Then every locally bounded holomorphic
map of F' into a Fréchet space P can be extended to a holomorphic map on a
neighbourhood of F' in L.

1.2. THEOREM. Let

0-ESFAG-0

he an exact sequence of Fréchet spaces and P a Fréchet space. Then the
restriction map O(F', P)— Q(G', P) is surjective if one of the two following
conditions holds:

(FN) G is nuclear.

(FSH) F is an FSH-space.

The proof of Theorem 1.1 is based on the following

13. ProrosiTion. Let E be a nuclear subspace of a locally convex space
L. Then there exist an SH-space E and continuous linear maps h: L — E and
é: E -~ E such that

hE=¢ and € is an embedding.

Proof. By #(E) we denote the set of all balanced convex neigh-
bourhoods of zero in E. For U, Ve#%(E) we write U<V if UoV
=V E, Ved(L) and the canonical map w(V, U): E(V) — E(U) belongs to
I' 2 [12], where E(U) denotes the completion of E/%, = E/%;"(0) equipped
with the norm %, generated by U.

Let ¥, Ue4#(E), U < V. Since w(V, U)el''?, it can be represented in the
form - .

w(V,U)u=Y Aujwv; forall ueE(V),
j=1

J
where 1;>0, ) \_/’A_j <o and sup {|jujl| +]|lvjll} < oo, [12], Proposition

j=1 -
8.4.2. By the Hahn-Banach theorem we find ;e L(V)" such that i,|E (V) = uj
and ||| = ||ujl| for all_j. Define continuous linear maps &(V, U): L(V) —
- E(U), P,(V, U): L(¥V)—>I? and Q, (¥, U): I? - E(U) by the formulas

&V, U)u = i Ly,  for ue L(P),
i=1

PV, Uyu = f A i;we, for ue L(V),
Jj=1

QW E=Y Jh&u  for E=()el
j=1

where {e;] is the canonical basis of . Note that o(V, U)=Q,(V, U)P(V, U)
and P,(V, U), Q,(V, U) are nuclear.
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We write \/Z B;a;, with Z IB] < o0, a; > 0, and define continuous

linear maps P,(V, U): L(V)—»l2 QZ(V Uy=1-1 by the formulas

L

P, (V, U)u = Z Biiajwe;, Q(V,U)E= Y a;¢je;.
i=1 i=1
Then P,(V,U) is nuclear, Q,(V,U) is compact and P,(V, U}
= Q,(V, U)P,(V, U). Continuing this process we get two sequences of
continuous linear maps {P,(V, U)} and [Q,(V, U)} such that P,(V, U) are
nuclear and Q,(V, U) are compact and

@V, U)=0,(V, V)P, (V, V)

(L1) e
P(V V)= Q,+1(V u)p +1(V, U)

...................

Fix We#(L). Let # (W) denote the set of all finite sequences .o
=V, 01, ..., (7, U, Ky, oy Ky, Where W, Uje%(L), Uj=U;nE <V
= V,ﬁE, kJEN.

For each .« € & (W) we denote by E(W, «7) the completion of L(W)/%.,
in the norm '

(1.2) Y, (u) = Z 1Py, (V;, U (W, Vull?)'72.

Then E(W, o) is a Hilbert space, since P,(V, U) have values in /2. For
a; = {(V{, U)), ...,(17,,1]',, Uiy ks s kile F (W) we write a, < a, if

and max k; < min kj. Note that if a, < a,, then the identity map L(W)
—+L(W) induces naturally a continuous linear map @&(a,, a,): E(W, ay)
— E(W, a,). Put E(W) = lim {E(W, o), @(W, a, b)]. From the construction

of E(W) it follows that for W,, Wye # (L), W, c W,, the map w(W,, W,):
L(W,) » L(W,) induces naturally a continuous linear map &(W,, W,):
E(W,) - E(W,) satisfying the relation h(W,)w(W,, W,) = &(W,, W) h(W,),
where h(W): L(W)— E(W) is the canonical map. Put E — lim [E(W),

@(W, W)}, h = lim h(W) and &= h|E. Then, by (1.1) and (1.2) and since

0,(V, U) are compact, it is easy to check that & is an embedding and E
is an SH-space. The lemma is proved.

1.4. LeMMa. Every locally bounded holomorphic map from a normed space
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B into a complete locally convex space L can be extended to a holomorphic
map on some ne!ghbourhood of B in the completion B.

Proof. Let f: B— L be a locally bounded holomorphic map. "To prove
the lemma it suffices to show that / can be extended to a holomorphic map
on some neighbourhood of every point xe B. We can assume that x = 0.
Take ¢ > 0 such that f is'bounded on S(¢) = {xeB: ||x|| < ¢&}. Consider the
Taylor expansion of f/ at zero

=Y P.f(x).
n=0
Since
Ax)dA
Pf(x)=3n f(T:?l— for xeS(e),
=1
it follows that
(1.3) q(P,f) < 3 M, me”,
where ¢ is a continuous seminorm on L and M, = sup q(fx): xeS(e)].

P ~
Let P, f denote the continuous extension of P, f onto B. Then by (1.3)

we have

A~
(1.4) q(P,f)<iM n"mn!e".

By (1.4) it follows that the series Z P, f converges uniformly on S{J) to a
n=0
holomorphic extension of f onto S(J), where 6 = ¢/e.
Proof of Theorem 1.1. First observe that every strong dual of a
Fréchet—-Montel space is Lindelof and satisfies the following condition [6]:

(G) Given a sequence of neighbourhoods of zero |{W,}, there exists a

sequence (4;], 4; > 0, such that () 4; W, is again a neighbourhood of zero.
i=1
Take a countable open covering {u;+ U;}, U;e % (F’), of F’ such that
flu;+U; is bounded. By (G) there exists a sequence [4;; such that U
= (Y A;U;e%(F’). Let K be a compact set in F such that span K is dense in
F and let g be a continuous norm on F’ given by

q(u) = %y (u)y+sup {u(v)]: veK}.

Then f can be considered as a G-holomorphic function on F'/q. Since
U/A; = Uy, it follows that U; is open in F'/q. Hence by the boundedness of f
on u;+ U; we infer that f is holomorphic and locally bounded on F'/q. Let
F',& and h be as in Lemma 13. Since I’ has a basis of pre-Hilbertian
neighbourhoods of zero, there exists a continuous seminorm § on F’ such
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that ¢ < §|F’ and F/§ is Hilbert. Let d: F /5 —»F'/§ be the orthogonal
projection. Since f is holomorphic and locally bounded on F'/q, f canf&
extended to a holomorphic map f on a neighbourhood Q of F/§ in F'/g
Setting f = f'dhj(dh)"'(2) we get a required extension of f. The theorem is
proved.

The proof of Theorem 1.2 is based on the following

1.5. LemMa [5]. Every separable Fréchet space is the image of a Fréchet—
Montel space under a continuous linear map.

1.6. LEMMA. Let g be a continuous linear map from a Fréchet space F
onto a separable Fréchet space E. Then there exists a separable closed
subspace G of F such that g(G) =

Proof. By a theorem of Michael [8] there exists a continuous map

q: E — F such that gq =id. Then setting G = span q(E) we get a separable
closed subspace G of F such that g(G) =

1.7. LEMMA. Let F be a reflexive Fréchet space and Q a subset of F' such
that QN U° is o(F', F)-open for all Uec%(F). Then Q is open.

Proof. Let {U,} be a decreasing basis of balanced convex neigh-
bourhoods of zero in F and F, = F(U,). Since F is reflexive Fréchet, F' is
bornological [13] and hence F' = lim F,. Thus it suffices to construct for

each ueQ a sequence of balanced convex neighbourhoods ¥, of zero in F,

such that u+ ) ¥, Q.

n=1"
Let ueQ. Take ng such that [Jull U,, < 1. Since Uy is a(F,
open in U? , there exists n, such that

F, )-

floi L]
!lo’
u+V,=QnUy and (lu+o|U, <1 for veV,,

where V, = U? no/nyg - Since u+V, is o(F, , F, o)-compact in U? ng» and hence
cr(F,,oﬂ, ,,0+1)-compact in U,,o+1, by the 0(Fag+1> Fny+1)-openness of
Qn U,,0+1 in U,,0+l it follows that there exists n, such that

u+V1+V2ch\U,,0+1 and  [lu+v,+0,5||Upysy <1

for v,eV, and vy,eV,, where V, = UJ . /n,.
Continuing this process we get a sequence of balanced convex neigh-
bourhoods V; of zero in F; .;-, such that

+ Z V. c
i=1
This completes the proof.

Since every Fréchet—Montel is reflexive and since its dual is also Montel,
the following corollary is an immediate consequence of Lemma 1.7.
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1.8. CoroLLARY. The dual space of a Fréchet—Montel space is a k-space.
Let L be a locally convex space and let P"(L) denote the set of continuous
homogeneous polynomials of degree n on L. A homogeneous polynomial
feP"(L) is called nuclear if it can be represented in the form

(1.5) fu) = Z & (u)...a%(u), where a*e L(UY
k=1

for some Ue% (L) and
(1.6) YU ... )lagll U < oo
x

By P} (L) we denote the set of nuclear homogeneous polynomials of degree n on
L. By (1.6) it follows that

(17) My(f) =inf!Y Gkl B... ka8l B: f =¥ ak...a%) < oo
k k

Jor every bounded subset B of L and for every f e Py(L).

It is known [2], Lemma 3.1, that if L is dual nuclear Fréchet, then

P} (L) = P*(L) for every n > 0 and the topology of O(L) can be defined by
the seminorms

Oy(f) =) Hp(d" f(O)/n!, [feO(L).

Proof of Theorem 1.2 in the case where G is nuclear.

(a) First we assume that F is Montel. By Corollary 1.8 it follows that
the spaces O(F') and O(G’) are Fréchet. Hence, to prove the surjectivity of
the restriction map R: O(F') - O(G’) it suffices to show that R is almost
open. Let K be a compact set in F'. Since the restriction map R|F”" = F: F
— G = G" is open, there exist a compact set K in G’ such that

(1.8) R(laeF: la|K <a <y < 1! > !beG: || K < 1}).
Let

U= feOF): IfliIK<a<1] and V={fe0(G): z(f)<Bj,
where f = a(l —a)/2.

We will show that R(U) = V. Let f e V. Consider the Taylor expansion of
f at Q,

f=73 dfoyn.
n=0

Since the sequence {P, = Y d"f(0)/n!} converges to fin O(G’), it suffices to
a=0

check that P,e R(U) for all r = 0.
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Select a representative

P.=Y% Y a,..d,

of P, such that

Y Y @R .. lld R < B.

n=0 k=1
By (1.8), for every (k, j, n) there exists d@j,€ F such that
R@)=d, and [ @K <yldlK.
Put
Pi=Y dp.d Pi=Y &,..2

Then R(P?) = P? for every n> 0 and g > 1 and
N PIK<TIPIK< T ¥ ylIdlR. NI R <Y "B <a

as<r a<r n<r k<gq

for every q > 1. Hence P, eR(U) for every r > 0.

(b) In general, by Lemma 1.6 there exists a separable closed subspace F,
of F such that n(F,) = G. Lemma 1.5 implies that there exists a continuous
lincar map g from a Fréchet-Montel space E onto F,. Consider the
commutative diagram

Gl C___;FI
0 Lr

E, ¢ FIH
9

where F,’ denotes the vector space F'’ equipped with the topology of
uniform convergence on countable sets in F” and r the canonical map. Since
E is separable, g’ is continuous. On the other hand, since F is Fréchet, every
countable bounded set in F” is equicontinuous [13] and the map r is
continuous. Hence by (a) we infer that the restriction map O(F') - O(G') is
surjective.

(c¢) Since O(G’) is nuclear [3], by (b) and by the relations O(F’, P)
=~ O(F)eP, 0(G, P)=0(G)eP = O(G') ®, P, we infer that the restriction
map O(F’, P) —» O(G', P) is surjective.

Now assume that F is an FSH-space. To prove the theorem in this case
we need the following

1.9. Lemma [11] (Mittag-Leffer). Let

Ul @n
0 {E,, B} =5 {F,, @™ 5 [G,, a} =0
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be a complex of projective systems of Fréchet spaces. Let k > 0. Assume that
kerf,=0, Imjf,=Kerg, forevery n>1

and

(ML) Img,>2Ima,,, forevery n>1,

(ML,) ImpBh,sy isdensein Imf;., forevery n>1.

Then the map lim g, is surjective.

Proof of Theorem 1.2 in the case where F is an FSH-space. Let
{U,} be a decreasing basis of balanced convex neighbourhoods of zero in F
such that F, = F(U,) are Hilbert spaces and the maps o}, = @(U,+, U,)
are compact. Let G, = G(nU,) and o) = w(nU,, nU,). By n, we denote the
map induced by n from F, onto G,. Consider the complex of projective
systems of Fréchet spaces |

- (i}
(19) 0 — {Ker iz} = {0, (Fi, P)} —> {04(G}, P)} =0,
where, for every n, by O,(F,, P) we denote the space of holomorphic maps
from F, into P which are bounded on every bounded set in F,. This space is

equipped with the topology of uniform convergence on bounded sets in F,.
Since w?,, and af,, are compact, we have

O(F, P)=1lim O,(F,, P) and O(G, P)=1im 0,(G,, P).

Thus by Lemma 1.9 it remains to check that (1.9) satisfies (ML,) and (ML,).
(ML,) is trivial since G, is complemented in Fj,.
(ML,) Without loss of generality we may assume that P is Banach.
Take o€0,(F,, P), olG, =0, suppose K = F,_, is bounded and ¢ > 0.
Let d: F, — G, be the orthogonal projection. Define the isomorphism
6: F,—-G,xE,, where E,=E(U,nE), by 6u=(du, e,u). Then ¢0!
€0(G,, Oo(E,, P)) = 0(Gye0,(E,)eP, where Oy(E,) = (BeO(E,): B(0) =0).

Hence we find f= Y B,0;b;, B;€P[G,], 0;€ Po[E,], b;e P, such that
j=1

J
le6~'—BIIK <&, where K =080 V' (K).
Since G, and E, are Hilbert spaces, we may assume that B; and o; are

polynomials in u,, ..., 4, €G, and v, ..., v, € E,, respectively. Then by the
relations

BO(u) = ZI Biuy (du, ..., u,‘(du))aj(vl(e;(u).), e Uy (e;(u))bj)
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holding for all ueF,, F, =F,, E; =E, and

Im[Fn+1_~’Fn]=Fm lm[En+l_)En]=En

we find 4y, ..., 4, €F,,, and ¥y, ..., 0,€E,,, such that

sup| Y. B(@ (), ..., @ (W)o;(F1 (s s u), ..., Dilens 1 W) b;— POu| <.

uek j=1
This implies that (ML,) holds with k = 1. The theorem is proved.

2. The extension of holomorphic functions on Fréchet spaces. Let L be a
locally convex space. Then L is called s-nuclear [12] if for each Ue % (L)
there exists Ve % (L) such that V < U and the map w (¥, U) is s-nuclear, ie.,
can represented in the form

oWV, Du=Y iujwy
=1

J
with

112’122 s >03

Ajp<oo forevery p>0
j=1

and
sup {llujll +livll} < oo.
In this section we prove the following
2.1. THEOREM. Let X be a Stein space containing a subvariety W such
that O (W) = O(C") for some n. Then there exist an s-nuclear Fréchet space F

containing O(X) as a subspace and a holomorphic function on O(X) which

cannot be extended to a holomorphic function on a neighbourhood of O(X)
in F.

The proof of the theorem is based on the following

2.2 LemMaA [9]. Let X be a paracompact analytic space and & a coherent
analytic sheaf on X. Then the space H°(X, %) is s-nuclear.

23. LemMa [9]. Given an s-nuclear closed subspace E of a Fréchet space

F, there exist an s-nuclear Fréchet space E and continuous linear maps h: F
—~E and & E — E such that

h|E =¢ and € is an embedding.

24. LeMMA. Let E be a nuclear Fréchet space and f € O(E). Then { can
be extended to a holomorphic function on some neighbourhood of E in every
Fréchet space F containing E as a subspace if and only if f can be written in
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the form f = gI1(U) for some U c % (E), where I1(U) is the canonical map from
E into E(U) and geO(E/%y).
Proof. To prove the necessity we consider the canonical embedding

: E-F = ]_[ E(U;), where {U;} is a decreasing basis of balanced convex

ne:ghbourhoods of zero in E. By hypothesis f is extended to a holomorphic

function f on some connected neighbourhood @ on E in F. For each ue®,
put

n(u) = min {n: there exists a neighbourhood Q, = U x [] E(U;) of u in Q

ji>n
such that f(«, v") =f(u, v") for all (v, u"), (&, v)eR,}.
Then n(u) is locally constant on Q. Hence by the connectedness of Q we get
n(u) = ny,.

Take ny = no such that f is bounded on U, . Considering the Taylor
expansion of f at zero we infer that f can be written in the form f
=gl (U, ), where g is G-holomorphic on E/@U . It remains to show that g
is holomorphic on E/‘ﬁu

Let ucE. Take a nelghbourhood Q,= ﬂ D, x H E(U) of uin Q

such that f(u’, u") =f (', v") for all (', u"), (u v”)eQu, where D; are neigh-
bourhoods of IT1(U)u in E(U;) such that w(U;,, U)D;,, < D;. Then g(«)
-j'(w(U,,l,U,)u' ,u,0) for all weD, NE/%, . We mfer that g is
holomorphic on D, nE/?U and hence g 1s holomorphlc on E/%y,

Conversely, take Ve %(F) such that V=VnEc U and w(V, 1U) is
nuclear. Let &: F(V)—»E(UE) be a continuous linear extension of
w(V, U) and § = [T (V)] *(R), where Q is a neighbourhood of E/%4, such
that f is extended to a holomorphic function on Q. Then @ is a neigh-
bourhood of E in F and ¢g&|@ is a holomorphic extension of f. The lemma is
proved.

25. LEMMA. Let X be a Stein space satisfying the following condition:

(LE) every holomorphic function on O(X) can be extended to a holo-
morphic function on some neighbourhood of O(X) in every Fréchet space F
containing O(X) as a subspace.

Then every irreducible subvariety W of X satisfies also condition (LE).

Proof. Let feO(O(W)) and g =fR, where R: O(X)—O(W) is the
restriction map. By Lemma 2.4 there exist a relatively compact holomorphic-

ally convex domain € in X and g, €0O(U), where U is a neighbourhood of
Im R(X, ©) in 0(2), such that

g(e) =¢,(0]Q) for all ce0(X)
and Q"W # Q.
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Let 6,, 6,€0(X) and 0,{o w = G3lo~w- Then a,ly = 6,5]y, since QN W # @
and W is irreducible. Hence

91(0,12) =g(o,) =f(o.lw) =S (02lw) = g(f’z) = g,(0,|Q).

Now assume that ¢, g,€ U, 0,|p.w = 03]|p~w-. Consider the coherent analy-
tic sheaf .¥ on X defined by

‘Sp: = {(,81:, »BZ:)eOz@O:: ﬁl:_ﬁZ:EJ:}’

where J denotes the ideal subsheaf of O associated with W. Note that
(6, 0)e H*(Q, &). Since Q is holomorphically convex, there exists a se-
quence {(o], 03)} e H*(X, &) @® H°(X, &) converging to (a,, 6;) on Q [7].
Hence, by the relation ¢%|,.w = 03|lo~w, W€ have

(2.1 g1(oy) = lim g, (¢1|Q) = lim g, (63|Q) = g,(0,).

By (2.1) and by the openness of the restriction map R: 0() - 0(Q n W) it
follows that f is written in the form f = hR(W, Q " W), where h is a
holomorphic function on some neighbourhood of Im R(W, 2~ W) in
0(Q2n W). The lemma is proved.

Proof of Theorem 2.1. Contradicting the assertion we infer by
Lemmas 2.2, 2.3 that O (X) satisfies (LE). Since O(W) =~ O(C"), W is irreduc-
ible. Hence by Lemma 2.5 O(C") satisfies (LE). We infer that O(C) satisfies
(LE). Since C x 0(C) = 0(QO), it follows that C x O(C) satisfies (LE). Consider
the holomorphic function Ev on C xO(C) given by

Ev(z,0)=0(z) forall (z, 6)eC xO(C).

By Lemma 2.4 there exist Ue#(C), Ve#(0(C)) and a holomorphic func-
tion ¢ on Cx0(0O)/%,.y =Cx0(C)/%, such that g(z, 6) =o(z) for all
(z,0)eCx0(C)/%,. Let r >0 be such that g, >0 in O(C)/%,, where o,
= (rz)". Then for z5eC, |rzol > 1, we get

0 =lim |g(zq, 0,)] =1ltm |6,(z0)] = him |rzy)” — oc.

This contradiction completes the proof.

In [4] Djakov and Mitjagin have proved that for every irreducible
algebraic subset ¥V of C" the space O(V) is isomorphic to O(C"), where r
= dim V. Hence the following is an immediate consequence of Theorem 2.1.

2.6. COrROLLARY. If X is a Stein space containing a subvariety, which is
holomorphically isomorphic to an algebraic subset of C", then there exist an s-
nuclear Fréchet space F containing O(X) as a subspace and a holomorphic
Sunction on O(X) which cannot be extended to a holomorphic function on a
neighbourhood of O(X) in F.

Let X be an analytic space and let R(X) denote the regular part of X. It
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is known that O(X) is contained in C*(R(X )) as a subspace. From the proof
of Theorem 2.1 we get the following

2.7. CoroLLARY. Let X be a Stein space as in Theorem 2.1. Then the
restriction map 0(C°°(R(X)))—>O(O(X)) is not surjective.

Proof. By the proof of Theorem 2.1, it suffices to show that for every
holomorphic function f on C®(R(X)) there exists a compact subset K of
R(X) and holomorphic function g on O(X)/% such that f = gIl, where %,
denotes the seminorm generated by K and II: O(X)— O(X)/%y is the
canonical map. Let f eO(C "’(R(X))). From the Taylor expansion of f at
zero we see that f can be written in the form f = gR(R(X), Q), where Q is a
relatively compact open subset of R(X) and g is a C-holomorphic function
on Im R(R(X),_.Q). Let Q, and Q, be relatively compact open subsets
of R(X) such that QcQ,cQ <cQ, and ¢@eC?(R(X)), ¢Q =1,
supp ¢ < Q,. By ¢ we denote the continuous linear map from C*(Q,)
— C*(R(X)) defined by multiplication by ¢. Then we have

f(po) = g(pa|Q) for all 6eC*(Q,).

Combining this with the relation Im R(Q;, Q) = Im R(R(X), Q) we conclude
that the map gR(Q,, 2): C*(2,) - C is holomorphic. Let e: 0(X)/%Q,
— C*(R,) denote the canonical map. Then gR(2,, Q)e: 0(X)/%Q, - C is
holomorphic and

f(6) = gR(Q,, Q) e(s]Q,) for all 6e0(X).

The corollary is proved.
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