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Periodic solutions
of differential equations in the cylindrical space

by STANISLAW SEDZIWY (Krakéw)

1. In [3] Mamrilla and the author have proved that if the real-
valued function f defined on the real line R is negative, continuous and
periodic and if the polynomial ¢(2) = A" '+ a A" %+ ... +a,_, has all
roots with negative real parts, then the differential equation

(1) Y +a gV e,y +f(y) =0
admits at least one solution ¥ = y(¢) having the following property:
(P) there is a T > 0 such that y(¢1+7) = y(¢)+1 for te R.

It will be shown that this result holds true under the assumption
that ¢(4) has no roots lying on the imaginary axis. Moreover, in the case
n = 3, the existence of a solution with property (P) will be proved for
the equation

(2) ¥y +aly)y"' +b(y)y +f(y) = 0.

Let «(f) be the (m—1)-vector with components y'(t),y" (t),...,
y™V(t), where y = y(2) is a solution of (1) or (2). It is clear that (P)
is equivalent to

(P1) there is T > 0 such that «(t+T) = =), y¢+T) = y({)+1 for
all ¢. . .

If R} denotes the set obtained from the n-dimensional Euclidean
space R™ by the identification of pairs (27, ..., 2", ¥), (..., 2"}, v)
with integer y — v, the “cylindrical space’’, then (P1) implies that the map
t > (x(t), ¥(¢)) of R into R} is periodic with period T.

2. THEOREM 1. Let a map f: B — (— oo, 0) be continuous and let

(3) fly+1) =fly) Jfor yeR.
If the polynomial ¢(A) = A" '+a,;A" %+ ... +a,_, (a;e B) has mo
pure ivmaginary roots, them (1) has a solution with property (P).

Remark. The condition a,_, # 0 is necessary for the existence of
solutions having property (P). In fact, let a,_; =0 and let y = y(¥)
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satisfy (P). Then the function s(t) =y V({)+ay™ )+ ... +
+a,_,y’(?) is periodic, whence s'(t) changes the sign. But s'(1) = —f(y ()
> 0, which gives the desired contradiction.

THEOREM 2. Let f be as in Theorem 1. Let functions a: R -~ R, b: R - R
be continuous and satisfy

(4) la(y)| =2a>0 for yc R,
(5) b(y+1) =bly) for yeR.

Let the solutions of (2) be wuniquely determined by initial conditions
and exist for all 1> 0.

Then (2) has a solution having property (P).

3. Write (1) or (2) as a system
(6) 2 =p(®,y),y =a',
in which z = (#%...,2"") and p: R"!x R — R"! is continuous and
periodic in y with period 1.

It will be shown that, under the assumptions of Theorem 1 or 2,

(6) admits a solution satisfying (P1). For this purpose the following obvious
lemma will be used:

LEMMA. Assume that for an arbitrary (zo, ¥,)e B* the initial value
problem (6), z(0) = x,, ¥(0) =y, has a unique solution x = x(t; z,, Yo),
y = y(t; @, Y,) which exists for all 1> 0. Let the map h: R*"' — R be
continuous and denote by 8,, S, the sets

S, ={(z,9): y =h(@),2z<R""}, 8, ={,9): y =h@)+1, zc "'}
For any woe R"', there is a unique number t(x,) such that
(7 (w(t(wo)i gy (@) s ¥ (t(20)5 Tos h(wo)))e 8.

Then (6) has a solution satisfying (P1l) if and only if the map wu:
R ' — R"! defined by
(8) (Lo} = a’(t(mo); Loy h(wo))
has a fixed point.

The following notation will be used: If 4 is » X m matrix, then |4},
AT denote respectively the norm and the matrix transpose to A. FrB
(C1B) denotes the boundary (closure) of the set B.

For a real-valued function W(z, y) (re R"', y¢ R), W'(x, y) denotes

its derivative with respect to solutions of (6), i.e. W'(z,y) = dW(w(t),
y(t))/dt, where (x(t), y(t)) is a solution of (6).

4. Proof of Theorem 1. System (6) has the form
(9) A ' = Az+bf(y), vy =,
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where
0 10 .. 0 0 e
0 0. 0 0 '
4 = , b= ), =
0 e e 0 1 0 .
—~ Uy e —a, -1 z"1

Let S, and 8, be defined as in the Lemma, with h(z) = (—a,_,) ' dT =,
d¥ = (a,_5y ...y 01,1). Let W(z,9) = a,_,y+d7 .

Since f is continuous, (3) implies that solutions of (9) exist for all 2.
Moreover, by W' = —f(y) > a > 0, the equation

W (@ (t; @0y h{(@o)), ¥(t; To, h(®0))) = an,

has a unique solution #(z,) for every z,¢ R* !, i.e. (7) holds. It is easy to
see that t(x,) is bounded (see [3]).

Assume additionally that (9) has the property of uniqueness. Thus
the Lemma is applicable and the proof reduces to showing that the mapping
(8) has a fixed point. The map % is defined by the formula

(%) = P(20) %o+ b (),
where
l(zg)
Pwy) = X(t(@0)), blao) = [ X (tao) —s)bf{y(s; a0, h(w0)))ds
0
(X (t) denotes the fundamental matrix of &' = Ax.)
Since A has no eigenvalues on the imaginary axis, P(x,) —I is non-
singular. By the boundedness of #(x) and f(y), lim (|b(=)|-|«]*) = o.
lizit—>o0o

Thus, by the finite-dimensional version of Theorem 1 [2] (see also [4],
Theorem 6.3), 4 has a fixed point, which completes the proof under the
assumption of uniqueness.

In the general case, observe that the boundedness of i{(x) implies
the boundedness of ||[P(z)—I|| and |b(z)||. Thus {xe¢R"': w(x) = &} c
{we R™': |lz|| < k}, where a constant &k > 0 depends only on 4 and esti-
mates of f. This permits us to approximate (9) by equations with the
property of uniqueness, such that corresponding sets of fixed points
are in the ball {z: |lz|| < k}. By the standard limiting argument (see [1],
Theorem 2.4), we conclude that Theorem 1 holds also without the assump-
tion of uniqueness.

5. Proof of Theorem 2. The first order system equivalent to (2) is

(10) ¥ =a?, ¥ = —a@at-by)at—fly), ¢ =2t
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Let a(z), b(2) be positive (in other cases the proof is similar). Put

W(z,y) = 2*+A(@@)+B(y), h(r) =B—s2—A("),
where :

g = (s4,2%), Az =[a(s)ds, B(z) = [b(s)ds
0 0
and B! denotes the map inverse to B. Let 2(t; 2o, ¥o), ¥(T; Lo, Yo), Soy S1y
u be defined as in the Lemma. |

Observe that S, =_{(a;, y): W(z,y) =0}, 8, = {(=vy): W(z,y) = BQ)}.
Hence W' = —f(y) > a > 0 implies that for any z,e RK?, there is a t(z,) > 0
satisfying (7). This shows that « is defined for all z,. Furthermore u is
a homeomorphism preserving the orientation of R2

By (3), for any x,¢ R?, the points @;,, = u(x;) (¢ =0,1,...) belong
to the set {we R2: @ = z(t; @, h(a,)), t > 0}.

To complete the proof it is enough to show that (10) has a solution
(@ (), (t)) with 2(t) bounded. In fact, if for some ,, #(t; @,, h(w,)) is
bounded for ¢ > 0, then the sequence {z,} is bounded and % has a fixed
point (see for example [4], Theorem 12.4), which by the Lemma proves
the theorem.

Let D(c) be the “half-cylinder” {(z,y)e R*XR: V(z)<ec, W(z,y)
> 0}, where V(z) = a}((wl)”—l—(wz)z)—ewlw?, e 1s a constant such that
0<e<l.

Replacing, if necessary, ¢ by a smaller number, from the formula

V'(z) = v'x?+ (22 — ex?) ( —a(z)x?—b(y)a! —f(y)) —e(x?)?
we obtain
(11) V' (+V2,0)>0, V'(0,+V2e)<0

for ¢ sufficiently large. By (11), the set B = [(m, y)e FrD(c): (w(t; o, y),
y(t; =, y))¢ ClD(c) for all small ¢ > 0} is non-empty and has at least two
components. If D, is any component of E, then the set

K, = {(#,9)eD(c) n 8y: (x(s; #,9),y(s; «,y))eD; for some s> 0,
(¢(t; z,9),y(t; =,y))eD(e) for te[0,s)},

as can easily be verified, is open in 8,. Obviously, K, corresponding to
different D; are disjoint.

Since 8, N D(c) is connected and open in S, (So nD(c))\K K
being the union of K;, is non-empty. Hence the solution (x(t) ,y(t)) of
(10) with (2(0), ¥(0))e (S, N D(c))\ K remains in D(c) for ¢>0. Since
the form V () is positive definite, # () is bounded and the proof of Theorem
2 is complete.

I wish to thank Professor G. Villari for valuable suggestions during
the preparation of this paper.
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